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An introduction to some of the most important features of the Extended Relativity
theory in Clifford-spaces (C-spaces) is presented whose “point” coordinates are
non-commuting Clifford-valued quantities which incorporate lines, areas, volumes,
hyper-volumes. . . degrees of freedom associated with the collective particle, string,
membrane, p-brane. . . dynamics of p-loops (closed p-branes) in target D-dimensional
spacetime backgrounds. C-space Relativity naturally incorporates the ideas of an
invariant length (Planck scale), maximal acceleration, non-commuting coordinates,
supersymmetry, holography, higher derivative gravity with torsion and variable
dimensions/signatures. It permits to study the dynamics of all (closed) p-branes, for
all values of p, on a unified footing. It resolves the ordering ambiguities in QFT,
the problem of time in Cosmology and admits superluminal propagation (tachyons)
without violations of causality. A discussion of the maximal-acceleration Relativity
principle in phase-spaces follows and the study of the invariance group of symmetry
transformations in phase-space allows to show why Planck areas are invariant under
acceleration-boosts transformations. This invariance feature suggests that a maximal-
string tension principle may be operating in Nature. We continue by pointing out
how the relativity of signatures of the underlying n-dimensional spacetime results
from taking different n-dimensional slices through C-space. The conformal group
in spacetime emerges as a natural subgroup of the Clifford group and Relativity in
C-spaces involves natural scale changes in the sizes of physical objects without the
introduction of forces nor Weyl’s gauge field of dilations. We finalize by constructing
the generalization of Maxwell theory of Electrodynamics of point charges to a theory
in C-spaces that involves extended charges coupled to antisymmetric tensor fields
of arbitrary rank. In the concluding remarks we outline briefly the current promising
research programs and their plausible connections with C-space Relativity.
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1 Introduction

In recent years it was argued that the underlying fundamental
physical principle behind string theory, not unlike the prin-
ciple of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of
an invariant minimal length scale (Planck scale) attainable
in nature [8]. A theory involving spacetime resolutions was
developed long ago by Nottale [23] where the Planck scale
was postulated as the minimum observer independent invar-
iant resolution [23] in Nature. Since “points” cannot be ob-
served physically with an ultimate resolution, it is reasonable
to postulate that they are smeared out into fuzzy balls. In
refs.[8] it was assumed that those balls have the Planck radius
and arbitrary dimension. For this reason it was argued in
refs. [8] that one should construct a theory which includes
all dimensions (and signatures) on the equal footing. In [8]
this Extended Scale Relativity principle was applied to the
quantum mechanics of p-branes which led to the construction
of Clifford-space (C-space) where all p-branes were taken to
be on the same footing, in the sense that the transformations
in C-space reshuffled a string history for a five-brane history,
a membrane history for a string history, for example.

Clifford algebras contained the appropriate algebraic-
geometric features to implement this principle of polydim-
ensional transformations [14]–[17]. In [14]–[16] it was pro-
posed that every physical quantity is in fact a polyvector, that
is, a Clifford number or a Clifford aggregate. Also, spinors
are the members of left or right minimal ideals of Clifford
algebra, which may provide the framework for a deeper
understanding of sypersymmetries, i. e., the transformations
relating bosons and fermions. The Fock-Stueckelberg theory
of a relativistic particle can be embedded in the Clifford
algebra of spacetime [15, 16]. Many important aspects of
Clifford algebra are described in [1], [6], [7], [3], [15, 16, 17],
[5], [48]. It is our belief that this may lead to the proper
formulation of string and M theory.

A geometric approach to the physics of the Standard
Model in terms of Clifford algebras was advanced by [4]. It
was realized in [43] that the Cl(8) Clifford algebra contains
the 4 fundamental nontrivial representations of Spin(8) that
accommodate the chiral fermions and gauge bosons of the
Standard Model and which also includes gravitons via the
McDowell-Mansouri-Chamseddine-West formulation of
gravity, which permits to construct locally, in D=8, a geom-
etric Lagrangian for the Standard Model plus Gravity. Fur-
thermore, discrete Clifford-algebraic methods based on
hyperdiamond-lattices have been instrumental in construct-
ing E8 lattices and deriving the values of the force-strengths
(coupling constants) and masses of the Standard Model with
remarkable precision by [43]. These results have recently
been corroborated by [46] for Electromagnetism, and by [47],
where all the Standard Model parameters were obtained from
first principles, despite the contrary orthodox belief that it is

senseless to “derive” the values of the fundamental constants
in Nature from first principles, from pure thought alone; i. e.
one must invoke the Cosmological Anthropic Principle to
explain why the constants of Nature have they values they
have.

Using these methods the bosonic p-brane propagator,
in the quenched mini superspace approximation, was con-
structed in [18, 19]; the logarithmic corrections to the black
hole entropy based on the geometry of Clifford space (in
short C-space) were obtained in [21]; the modified nonlinear
de Broglie dispersion relations, the corresponding minimal-
length stringy [11] and p-brane uncertainty relations also
admitted a C-space interpretation [10], [19]. A generalization
of Maxwell theory of electromagnetism in C-spaces com-
prised of extended charges coupled to antisymmetric tensor
fields of arbitrary rank was attained recently in [75]. The
resolution of the ordering ambiguities of QFT in curved
spaces was resolved by using polyvectors, or Clifford-algebra
valued objects [26]. One of the most remarkable features
of the Extended Relativity in C-spaces is that a higher de-
rivative Gravity with Torsion in ordinary spacetime follows
naturally from the analog of the Einstein-Hlbert action in
curved C-space [20].

In this new physical theory the arena for physics is no
longer the ordinary spacetime, but a more general manifold of
Clifford algebra valued objects, noncommuting polyvectors.
Such a manifold has been called a pan-dimensional con-
tinuum [14] or C-space [8]. The latter describes on a unified
basis the objects of various dimensionality: not only points,
but also closed lines, surfaces, volumes, . . . , called 0-loops
(points), 1-loops (closed strings), 2-loops (closed mem-
branes), 3-loops, etc. It is a sort of a dimension category,
where the role of functorial maps is played by C-space
transformations which reshuffles a p-brane history for a p′-
brane history or a mixture of all of them, for example. The
above geometric objects may be considered as to correspond-
ing to the well-known physical objects, namely closed p-
branes. Technically those transformations in C-space that
reshuffle objects of different dimensions are generalizations
of the ordinary Lorentz transformations to C-space.

C-space Relativity involves a generalization of Lorentz
invariance (and not a deformation of such symmetry) in-
volving superpositions of p-branes (p-loops) of all possible
dimensions. The Planck scale is introduced as a natural para-
meter that allows us to bridge extended objects of different
dimensionalities. Like the speed of light was need in Einstein
Relativity to fuse space and time together in the Minkowski
spacetime interval. Another important point is that the Con-
formal Group of four-dimensional spacetime is a conse-
quence of the Clifford algebra in four-dimensions [25] and it
emphasizes the fact why the natural dilations/contractions of
objects in C-space is not the same physical phenomenon than
what occurs in Weyl’s geometry which requires introducing,
by hand, a gauge field of dilations. Objects move dilationally,
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in the absence of forces, for a different physical reasoning
than in Weyl’s geometry: they move dilationally because of
inertia. This was discussed long ago in refs. [27, 28].

This review is organized as follows: section 2 is dedi-
cated to extending ordinary Special Relativity theory, from
Minkowski spacetime to C-spaces, where the introduction
of the invariant Planck scale is required to bridge objects,
p-branes, of different dimensionality.

The generalized dynamics of particles, fields and branes
in C-space is studied in section 3. This formalism allows us
to construct for the first time, to our knowledge, a unified
action which comprises the dynamics of all p-branes in
C-spaces, for all values of p, in one single footing (see
also [15]). In particular, the polyparticle dynamics in C-
space, when reduced to 4-dimensional spacetime leads to the
Stuckelberg formalism and the solution to the problem of
time in Cosmology [15].

In section 4 we begin by discussing the geometric Clif-
ford calculus that allows us to reproduce all the standard
results in differential and projective geometry [41]. The re-
solution of the ordering ambiguities of QFT in curved spaces
follows next when we review how it can be resolved by
using polyvectors, or Clifford-algebra valued objects [26].
Afterwards we construct the Generalized Gravitational The-
ories in Curved C-spaces, in particular it is shown how
Higher derivative Gravity with Torsion in ordinary spacetime
follows naturaly from the Geometry of C-space [20].

In section 5 we discuss the Quantization program in
C-spaces, and write the C-space Klein-Gordon and Dirac
equations [15]. The coresponding bosonic/fermionic p-brane
loop-wave equations were studied by [12], [13] without em-
ploying Clifford algebra and the concept of C-space.

In section 6 we review the Maximal-Acceleration Rel-
ativity in Phase-Spaces [127], starting with the construction
of the submaximally-accelerated particle action of [53] using
Clifford algebras in phase-spaces; the U(1, 3) invariance
transformations [74] associated with an 8-dimensional phase
space, and show why the minimal Planck-Scale areas are
invariant under pure acceleration boosts which suggests that
there could be a principle of maximal-tension (maximal
acceleration) operating in string theory [68].

In section 7 we discuss the important point that the notion
of spacetime signature is relative to a chosen n-dimensional
subspace of 2n-dimensional Clifford space. Different sub-
spaces Vn — different sections through C-space — have in
general different signature [15] We show afterwards how the
Conformal algebra of spacetime emerges from the Clifford
algebra [25] and emphasize the physical differences between
our model and the one based on Weyl geometry. At the end
we show how Clifford algebraic methods permits one to
generalize Maxwell theory of Electrodynamics (associated
with ordinary point-charges) to a generalized Maxwell theory
in Clifford spaces involving extended charges and p-forms
of arbitrary rank [75].

In the concluding remarks, we briefly discuss the possible
avenues of future research in the construction of QFT in C-
spaces, Quantum Gravity, Noncommutative Geometry, and
other lines of current promising research in the literature.

2 Extending Relativity from Minkowski spacetime to
C-space

We embark into the construction of the extended relativity
theory in C-spaces by a natural generalization of the notion
of a spacetime interval in Minkowski space to C-space [8,
14, 16, 15, 17]:

dX2 = dσ2 + dxμdx
μ + dxμνdx

μν + . . . , (1)

where μ1<μ2< . . . . The Clifford valued polyvector:∗

X = XMEM = σ1 + xμγμ + x
μνγμ ∧ γν + . . .+

+ xμ1μ2...μDγμ1 ∧ γμ2 . . . ∧ γμD
(2)

denotes the position of a point in a manifold, called Clifford
space or C-space. The series of terms in (2) terminates at
a finite grade depending on the dimension D. A Clifford
algebra Cl(r, q) with r+ q=D has 2D basis elements. For
simplicity, the gammas γμ correspond to a Clifford algebra
associated with a flat spacetime:

1

2
{γμ, γν} = ημν , (3)

but in general one could extend this formulation to curved
spacetimes with metric gμν (see section 4).

The connection to strings and p-branes can be seen as
follows. In the case of a closed string (a 1-loop) embedded
in a target flat spacetime background of D-dimensions, one
represents the projections of the closed string (1-loop) onto
the embedding spacetime coordinate-planes by the variables
xμν . These variables represent the respective areas enclosed
by the projections of the closed string (1-loop) onto the
corresponding embedding spacetime planes. Similary, one
can embed a closed membrane (a 2-loop) onto a D-dim flat
spacetime, where the projections given by the antisymmetric
variables xμνρ represent the corresponding volumes enclosed
by the projections of the 2-loop along the hyperplanes of the
flat target spacetime background.

This procedure can be carried to all closed p-branes
(p-loops) where the values of p are p=0, 1, 2, 3, . . . . The
p=0 value represents the center of mass and the coordinates
xμν , xμνρ, . . . have been coined in the string-brane literature
[24]. as the holographic areas, volumes, . . . projections of
the nested family of p-loops (closed p-branes) onto the em-
bedding spacetime coordinate planes/hyperplanes. In ref. [17]

∗If we do not restrict indices according to μ1<μ2<μ3< . . . , then
the factors 1/2!, 1/3!, respectively, have to be included in front of every
term in the expansion (1).
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they were interpreted as the generalized centre of mass co-
ordinates of an extended object. Extended objects were thus
modeled in C-space.

The scalar coordinate σ entering a polyvectorX is a mea-
sure associated with the p-brane’s world manifold Vp+1 (e. g.,
the string’s 2-dimensional worldsheet V2): it is proportional
to the (p + 1)-dimensional area/volume of Vp+1. In other
words, σ is proportional to the areal-time parameter of the
Eguchi-Schild formulation of string dynamics [126, 37, 24].

We see in this generalized scheme the objects as observed
in spacetime (which is a section through C-space) need not
be infinitely extended along time-like directions. They need
not be infinitely long world lines, world tubes. They can be
finite world lines, world tubes. The σ coordinate measures
how long are world lines, world tubes. During evolution they
can becomes longer and longer or shorter and shorter.

If we take the differential dX of X and compute the
scalar product among two polyvectors <dX†dX>0 ≡ dX† ∗
dX ≡ |dX|2 we obtain the C-space extension of the particles
proper time in Minkowski space. The symbol X† denotes
the reversion operation and involves reversing the order
of all the basis γμ elements in the expansion of X . It is
the analog of the transpose (Hermitian) conjugation. The
C-space proper time associated with a polyparticle motion
is then the expression (1) which can be written more ex-
plicitly as:

|dX|2 = GMN dXMdXN = dS2 =

= dσ2 + L−2dxμdx
μ + L−4dxμνdx

μν + . . . +

+ L−2Ddxμ1...μD dxμ1...μD ,

(4)

where GMN =E
†
M ∗ EN is the C-space metric.

Here we have introduced the Planck scale L since a
length parameter is needed in order to tie objects of different
dimensionality together: 0-loops, 1-loops, . . . , p-loops. Ein-
stein introduced the speed of light as a universal absolute
invariant in order to “unite” space with time (to match units)
in the Minkowski space interval:

ds2 = c2dt2 + dxidx
i.

A similar unification is needed here to “unite” objects of
different dimensions, such as xμ, xμν , etc. . . . The Planck
scale then emerges as another universal invariant in con-
structing an extended relativity theory in C-spaces [8].

Since the D-dimensional Planck scale is given explicitly
in terms of the Newton constant: LD =(GN )1/(D−2), in
natural units of ~= c=1, one can see that when D=∞
the value of LD is then L∞=G

0=1 (assuming a finite
value of G). Hence in D=∞ the Planck scale has the
natural value of unity. However, if one wishes to avoid any
serious algebraic divergence problems in the series of terms
appearing in the expansion of the analog of proper time in
C-spaces, in the extreme case whenD=∞, from now on we

shall focus solely on a finite value of D. In this fashion we
avoid any serious algebraic convergence problems. We shall
not be concerned in this work with the representations of
Clifford algebras in different dimensions and with different
signatures.

The line element dS as defined in (4) is dimensionless.
Alternatively, one can define [8, 9] the line element whose
dimension is that of the D-volume so that:

dΣ2 = L2Ddσ2 + L2D−2dxμdμ+

+ L2D−4dxμνdx
μν + . . .+ dxμ1...μDdxμ1...μD .

(5)

Let us use the relation

γμ1 ∧ . . . ∧ γμD = γεμ1...μD (6)

and write the volume element as

dxμ1...μDγμ1 ∧ . . . ∧ γμD ≡ γdσ̃ , (7)

where
dσ̃ ≡ dxμ1...μDεμ1...μD . (8)

In all expressions we assume the ordering prescription
μ1<μ2< . . . <μr, r=1, 2, . . . , D. The line element can
then be written in the form

dΣ2 = L2Ddσ2 + L2D−2dxμdxμ+

+ L2D−4dxμνdx
μν + . . .+ |γ|2 dσ̃2,

(9)

where
|γ|2 ≡ γ† ∗ γ . (10)

Here γ is the pseudoscalar basis element and can be
written as γ0 ∧ γ1 ∧ . . . γD−1. In flat spacetime MD we
have that |γ|2=+1 or −1, depending on dimension and
signature. In M4 with signature (+−−−) we have γ† ∗ γ=
= γ†γ= γ2=−1 (γ ≡ γ5= γ0γ1γ2γ3), whilst in M5 with
signature (+−−−−) it is γ†γ=1.

The analog of Lorentz transformations in C-spaces which
transform a polyvector X into another poly-vector X ′ is
given by

X ′ = RXR−1 (11)
with

R = eθ
AEA = exp [(θI+θμγμ+θ

μ1μ2γμ1 ∧γμ2 . . .)] (12)

and also

R−1=e−θ
AEA=exp[−(θI+θνγν+θ

ν1ν2γν1∧γν2 . . .)] (13)

where the theta parameters in (12), (13) are the components
of the Clifford-value parameter Θ= θMEM :

θ; θμ; θμν ; . . . (14)

they are the C-space version of the Lorentz rotations/boosts
parameters.
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Since a Clifford algebra admits a matrix representation,
one can write the norm of a poly-vectors in terms of the
trace operation as: ||X||2= TraceX2. Hence under C-space
Lorentz transformation the norms of poly-vectors behave like
follows:

TraceX ′2 = Trace [RX2R−1] =

= Trace [RR−1X2] = TraceX2.
(15)

These norms are invariant under C-space Lorentz trans-
formations due to the cyclic property of the trace operation
and RR−1=1. If one writes the invariant norm in terms
of the reversal operation <X†X>s this will constrain the
explicit form of the terms in the exponential which define
the rotor R so the rotor R obeys the analog condition of
an orthogonal rotation matrix R†=R−1. Hence the appro-
priate poly-rotations of poly-vectors which preserve the norm
must be:

||(X ′)2||=<X ′†X ′>s=

=<(R−1)†X†R†RXR−1>s =

=<RX†XR−1>s=<X
†X>s= ||X2|| ,

(16)

where once again, we made use of the analog of the cyclic
property of the trace, <RX†XR−1>s=<X†X>s.

This way of rewriting the inner product of poly-vectors
by means of the reversal operation that reverses the order of
the Clifford basis generators: (γμ ∧ γν)†= γν ∧ γμ, etc. . .
has some subtleties. The analog of an orthogonal matrix in
Clifford spaces is R†=R−1 such that

<X ′†X ′>s=<(R
−1)†X†R†RXR−1>s=

=<RX†XR−1>s=<X
†X>s= invariant.

This condition R†=R−1, of course, will restrict the type
of terms allowed inside the exponential defining the rotor R
because the reversal of a p-vector obeys

(γμ1 ∧ γμ2 . . . ∧ γμp)
† = γμp ∧ γμp−1 . . . ∧ γμ2 ∧ γμ1 =

= (−1)p(p−1)/2γμ1 ∧ γμ2 . . . ∧ γμp .

Hence only those terms that change sign (under the
reversal operation) are permitted in the exponential defining
R= exp[θAEA].

Another possibility is to complexify the C-space poly-
vector valued coordinates Z =ZAEA=X

AEA+ i Y
AEA

and the boosts/rotation parameters θ allowing the unitary
condition Ū†=U−1 to hold in the generalized Clifford unit-
ary transformations Z ′=UZU † associated with the com-
plexified polyvector Z =ZAEA such that the interval

<dZ̄†dZ>s=dΩ̄dΩ+dz̄
μdzμ+dz̄

μνdzμν+dz̄
μνρdzμνρ+. . .

remains invariant (upon setting the Planck scale Λ=1).

The unitary condition Ū†=U−1 under the combined
reversal and complex-conjugate operation will constrain the
form of the complexified boosts/rotation parameters θA ap-
pearing in the rotor: U = exp

[
θAEA

]
. The theta parameters

θA are either purely real or purely imaginary depending if
the reversal EA

†=±EA, to ensure that an overall change
of sign occurs in the terms θAEA inside the exponential
defining U so that Ū†=U−1 holds and the norm <Z̄†Z>s
remains invariant under the analog of unitary transformations
in complexified C-spaces. These techniques are not very
different from Penrose Twistor spaces. As far as we know
a Clifford-Twistor space construction of C-spaces has not
been performed so far.

Another alternative is to define the polyrotations by R=
= exp(ΘAB [EA, EB ]) where the commutator [EA, EB ] =
=FABCEC is the C-space analog of the i [γμ, γν ] com-
mutator which is the generator of the Lorentz algebra, and
the theta parameters ΘAB are the C-space analogs of the
rotation/boots parameters θμν . The diverse parameters ΘAB

are purely real or purely imaginary depending whether the
reversal [EA, EB ]†= ± [EA, EB ] to ensure that R†=R−1

so that the scalar part <X†X>s remains invariant under the
transformations X ′=RXR−1. This last alternative seems
to be more physical because a poly-rotation should map the
EA direction into the EB direction in C-spaces, hence the
meaning of the generator [EA, EB ] which extends the notion
of the [γμ, γν ] Lorentz generator.

The above transformations are active transformations
since the transformed Clifford number X ′ (polyvector) is
different from the “original” Clifford numberX . Considering
the transformations of components we have

X ′ = X ′MEM = LMN X
NEM . (17)

If we compare (17) with (11) we find

LMNEN = RENR
−1 (18)

from which it follows that

LMN=〈E
MRENR

−1〉0≡E
M∗(RENR

−1)=EM∗E′N , (19)

where we have labelled E′N as new basis element since in
the active interpretation one may perform either a change of
the polyvector components or a change of the basis elements.
The 〈 〉0 means the scalar part of the expression and “∗” the
scalar product. Eq-(19) has been obtained after multiplying
(18) from the left byEJ , taking into account that 〈EJEN 〉0≡
≡EJ ∗EN = δJN , and renamiming the index J into M .

3 Generalized dynamics of particles, fields and branes
in C-space

An immediate application of this theory is that one may
consider “strings” and “branes” in C-spaces as a unifying
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description of all branes of different dimensionality. As we
have already indicated, since spinors are in left/right ideals
of a Clifford algebra, a supersymmetry is then naturally
incorporated into this approach as well. In particular, one
can have world manifold and target space supersymmetry
simultaneously [15]. We hope that the C-space “strings”
and “branes” may lead us towards discovering the physical
foundations of string and M-theory. For other alternatives
to supersymmetry see the work by [50]. In particular, Z3
generalizations of supersymmetry based on ternary algebras
and Clifford algebras have been proposed by Kerner [128]
in what has been called Hypersymmetry.

3.1 The Polyparticle Dynamics in C-space

We will now review the theory [15, 17] in which an extended
object is modeled by the components σ, xμ, xμν , . . . of the
Clifford valued polyvector (2). By assumption the extended
objects, as observed from Minkowski spacetime, can in gen-
eral be localized not only along space-like, but also along
time-like directions [15, 17]. In particular, they can be “in-
stantonic” p-loops with either space-like or time-like orient-
ation. Or they may be long, but finite, tube-like objects.
The theory that we consider here goes beyond the ordinary
relativity in Minkowski spacetime, therefore such localized
objects in Minkowski spacetime pose no problems. They
are postulated to satisfy the dynamical principle which is
formulated in C-space. All conservation laws hold in C-
space where we have infinitely long world “lines” or Clifford
lines. In Minkowski spacetime M4 — which is a subspace of
C-space — we observe the intersections of Clifford lines with
M4. And those intersections appear as localized extended
objects, p-loops, described above.

Let the motion of such an extended object be determined
by the action principle

I = κ

∫
dτ (Ẋ† ∗ Ẋ)1/2 = κ

∫
dτ (ẊAẊA)

1/2 , (20)

where κ is a constant, playing the role of “mass” in C-
space, and τ is an arbitrary parameter. The C-space velocities
ẊA= dXA/dτ =(σ̇, ẋμ, ẋμ nu, . . .) are also called “holo-
graphic” velocities.

The equation of motion resulting from (20) is

d
dτ

(
ẊA

√
ẊBẊB

)

= 0 . (21)

Taking ẊBẊB = constant 6=0 we have that ẌA=0, so
that xA(τ ) is a straight worldline in C-space. The com-
ponents xA then change linearly with the parameter τ . This
means that the extended object position xμ, effective area
xμν , 3-volume xμνα, 4-volume xμναβ , etc., they all change
with time. That is, such object experiences a sort of general-
ized dilational motion [17].

We shall now review the procedure exposed in ref. [17]

according to which in such a generalized dynamics an object
may be accelerated to faster than light speeds as viewed from
a 4-dimensional Minkowski space, which is a subspace of
C-space. For a different explanation of superluminal propa-
gation based on the modified nonlinear de Broglie dispersion
relations see [68].

The canonical momentum belonging to the action (20) is

PA =
κẊA

(ẊBẊB)1/2
. (22)

When the denominator in eq.-(22) is zero the momentum
becomes infinite. We shall now calculate the speed at which
this happens. This will be the maximum speed that an object
accelerating in C-space can reach. Although an initially slow
object cannot accelerate beyond that speed limit, this does
not automatically exclude the possibility that fast objects
traveling at a speed above that limit may exist. Such objects
are C-space analog of tachyons [31, 32]. All the well known
objections against tachyons should be reconsidered for the
case of C-space before we could say for sure that C-space
tachyons do not exist as freely propagating objects. We
will leave aside this interesting possibility, and assume as
a working hypothesis that there is no tachyons in C-space.

Vanishing of ẊBẊB is equivalent to vanishing of the
C-space line element

dXAdXA = dσ2+

(
dx0

L

)2
−

(
dx1

L

)2
−

(
dx01

L2

)2
. . .

. . .+

(
dx12

L2

)2
−

(
dx123

L3

)2
−

(
dx0123

L4

)2
+ . . .=0 ,

(23)

where by “. . .” we mean the terms with the remaining com-
ponents such as x2, x01, x23, . . . , x012, etc. The C-space
line element is associated with a particular choice of C-
space metric, namely GMN =E

†
M ∗ EN . If the basis EM ,

M =1, 2, . . . , 2D is generated by the flat space γμ satisfying
(3), then the C-space has the diagonal metric of eq.-(23)
with +,− signa. In general this is not necessarily so and the
C-space metric is a more complicated expression. We take
now dimension of spacetime being 4, so that x0123 is the
highest grade coordinate. In eq.-(23) we introduce a length
parameter L. This is necessary, since x0= ct has dimension
of length, x12 of length square, x123 of length to the third
power, and x0123 of length to the forth power. It is natural to
assume that L is the Planck length, that is L=1.6×10−35m.

Let us assume that the coordinate time t=x0/c is the
parameter with respect to which we define the speed V in
C-space.

So we have

V 2 = −

(

L
dσ
dt

)2
+

(
dx1

dt

)2
+

(
dx01

L2

)2
. . .

. . .−

(
1

L

dx12

dt

)2
+

(
1

L2
dx123

dt

)2
+

(
1

L3
dx0123

dt

)2
− . . .

(24)

36 C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces



April, 2005 PROGRESS IN PHYSICS Volume 1

From eqs.-(23), (24) we find that the maximum speed is
the maximum speed is given by

V 2 = c2 . (25)

First, we see, the maximum speed squared V 2 contains
not only the components of the 1-vector velocity dx1/dt, as it
is the case in the ordinary relativity, but also the multivector
components such as dx12/dt, dx123/dt, etc.

The following special cases when only certain compo-
nents of the velocity in C-space are different from zero, are
of particular interest:

(i) Maximum 1-vector speed

dx1

dt
= c = 3.0×108m/s ;

(ii) Maximum 3-vector speed

dx123

dt
= L2c = 7.7×10−62m3/s ;

d 3
√
x123

dt
= 4.3×10−21m/s (diameter speed) ;

(iii) Maximum 4-vector speed

dx0123

dt
= L3c = 1.2×10−96m4/s

d 4
√
x0123

dt
= 1.05×10−24m/s (diameter speed) .

Above we have also calculated the corresponding dia-
meter speeds for the illustration of how fast the object ex-
pands or contracts.

We see that the maximum multivector speeds are very
small. The diameters of objects change very slowly. There-
fore we normally do not observe the dilatational motion.

Because of the positive sign in front of the σ and x12,
x012, etc., terms in the quadratic form (23) there are no limits
to corresponding 0-vector, 2-vector and 3-vector speeds. But
if we calculate, for instance, the energy necessary to excite
2-vector motion we find that it is very high. Or equivalently,
to the relatively modest energies (available at the surface of
the Earth), the corresponding 2-vector speed is very small.
This can be seen by calculating the energy

p0 =
κc2

√
1− V 2

c2

(26)

(a) for the case of pure 1-vector motion by taking V =
= dx1/dt, and

(b) for the case of pure 2-vector motion by taking V =
= dx12/(Ldt).

By equating the energies belonging to the cases (a) and
(b) we have

p0 =
κc2

√

1−
(
1
c

dx1
dt

)2
=

κc2
√

1−
(
1
Lc

dx12
dt

)2
, (27)

which gives

1

c

dx1

dt
=
1

Lc

dx12

dt
=

√

1−

(
κc2

p0

)2
. (28)

Thus to the energy of an object moving translationally at
dx1/dt=1m/s, there corresponds the 2-vector speed
dx12/dt =L dx1/dt =1.6×10−35 m2/s (diameter speed 4 ×

×10−18 m/s). This would be a typical 2-vector speed of a
macroscopic object. For a microscopic object, such as the
electron, which can be accelerated close to the speed of
light, the corresponding 2-vector speed could be of the order
of 10−26 m2/s (diameter speed 10−13 m/s). In the examples
above we have provided rough estimations of possible 2-
vector speeds. Exact calculations should treat concrete sit-
uations of collisions of two or more objects, assume that
not only 1-vector, but also 2-vector, 3-vector and 4-vector
motions are possible, and take into account the conservation
of the polyvector momentum PA.

Maximum 1-vector speed, i. e., the usual speed, can ex-
ceed the speed of light when the holographic components
such as dσ/dt, dx12/dt, dx012/dt, etc., are different from
zero [17]. This can be immediately verified from eqs.-(23),
(24). The speed of light is no longer such a strict barrier
as it appears in the ordinary theory of relativity in M4. In
C-space a particle has extra degrees of freedom, besides the
translational degrees of freedom. The scalar, σ, the bivector,
x12 (in general, xrs, r, s = 1, 2, 3) and the three vector, x012

(in general, x0rs, r, s = 1, 2, 3), contributions to the C-space
quadratic form (23) have positive sign, which is just opposite
to the contributions of other components, such as xr, x0r,
xrst, xμνρσ . Because some terms in the quadratic form have
+ and some − sign, the absolute value of the 3-velocity
dxr/dx0 can be greater than c.

It is known that when tachyons can induce a breakdown
of causality. The simplest way to see why causality is violated
when tachyons are used to exchange signals is by writing the
temporal displacements δt= tB − tA between two events (in
Minkowski space-time) in two different frames of reference:

(δt)′=(δt) cosh(ξ)+
δx

c
sinh(ξ)=(δt)

[

cosh(ξ)+

+

(
1

c

δx

δt

)

sinh(ξ)

]

=(δt)[cosh(ξ)+(βtach.) sinh(ξ)]

(29)

the boost parameter ξ is defined in terms of the velocity
as βframe= vframe/c= tanh(ξ), where vframe is is the
relative velocity (in the x-direction) of the two reference
frames and can be written in terms of the Lorentz-boost
rapidity parameter ξ by using hyperbolic functions. The Lo-
rentz dilation factor is cosh(ξ)= (1−β2frame)

−1/2; whereas
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βtachyon= vtachyon/c is the beta parameter associated with
the tachyon velocity δx/δt. By emitting a tachyon along the
negative x -direction one has βtachyon< 0 and such that its
velocity exceeds the speed of light |βtachyon|> 1.

A reversal in the sign of (δt)′<0 in the above boost trans-
formations occurs when the tachyon velocity |βtachyon|>1
and the relative velocity of the reference frames |βframe|< 1
obey the inequality condition:

(δt)′ = (δt)[cosh(ξ)− |βtachyon| sinh(ξ)] < 0⇒

⇒ 1 <
1

tanh(ξ)
=

1

βframe
< |βtachyon|

(30)

thereby resulting in a causality violation in the primed refer-
ence frame since the effect (event B) occurs before the cause
(event A) in the primed reference frame.

In the case of subluminal propagation |βparticle|< 1 there
is no causality violation since one would have:

(δt)′ = (δt)[cosh(ξ)− |βparticle| sinh(ξ)] > 0 (31)

due to the hyperbolic trigonometric relation:

cosh2(ξ)− sinh2(ξ) = 1⇒ cosh(ξ)− sinh(ξ) > 0 . (32)

In the theory considered here, there are no tachyons in C-
space, because physical signals in C-space are constrained
to live inside the C-space-light cone, defined by eq.-(23).
However, certain worldlines in C-space, when projected onto
the subspaceM4, can appear as worldlines of ordinary tachy-
ons outside the light-cone in M4. The physical analog of
photons in C-space corresponds to tensionless p-loops, i. e.,
tensionless closed branes, since the analog of mass m in
C-space is the maximal p-loop tension. By “maximal p-
loop” we mean the loop with the maximum value of p
associated with the hierarchy of p-loops (closed p-branes):
p=0, 1, 2, . . . living in the embedding target spacetime. One
must not confuse the Stueckelberg parameter σ with the C-
space Proper-time Σ eq.-(5); so one could have a world line
in C-space such that

dΣ = 0↔ C-space photon ↔
Tensionless branes with
a monotonically increasing
Stueckelberg parameter σ.

In C-space the dynamics refers to a larger space. Min-
kowski space is just a subspace of C-space. “Wordlines”
now live in C-space that can be projected onto the Min-
kowski subspace M4. Concerning tachyons and causality
within the framework of the C-space relativity, the authors
of this review propose two different explanations, described
below.

According to one author (C. C.) one has to take into
account the fact that one is enlarging the ordinary Lorentz
group to a larger group of C-space Lorentz transformations
which involve poly-rotations and generalizations of boosts

transformations. In particular, the C-space generalization of
the ordinary boost transformations associated with the boost
rapidity parameter ξ such that tanh(ξ)=βframe will involve
now the family of C-space boost rapidity parameters θt1,
θt12, θt123, . . . θt123..., . . . since boosts are just (poly) rot-
ations along directions involving the time coordinate. Thus,
one is replacing the ordinary boost transformations in Min-
kowski spacetime for the more general C-space boost trans-
formations as we go from one frame of reference to another
frame of reference.

Due to the linkage among the C-space coordinates (poly-
dimensional covariance) when we envision an ordinary boost
along the x1-direction, we must not forget that it is also?
interconnected to the area-boosts in the x12-direction as well,
and, which in turn, is also linked to the x2 direction. Because
the latter direction is transverse to the original tachyonic?
x1-motion? the latter x2-boosts? won’t affect things and we
may concentrate? on the area-boosts along the x12 direction
involving the θt12 parameter that will appear in the C-space
boosts and which contribute to a crucial extra term in the
transformations such that no sign-change in δt′? will occur.

More precisely, let us set all the values of the theta
parameters to zero except the parameters θt1 and θt12 related
to the ordinary boosts in the x1 direction and area-boosts in
the x12 directions of C-space. This requires, for example,
that one has at least one spatial-area component, and one
temporal coordinate, which implies that the dimensions must
be at least D=2+1=3. Thus, we have in this case:

X ′ = RXR−1 = eθ
t1γt∧γ1+θ

t12γt∧γ1∧γ2 ×

×XMEMe
−θt1γt∧γ1−θ

t12γt∧γ1∧γ2⇒X ′N=LNMX
M,

(33)

where as we shown previously LNM =<ENREMR−1>0.
When one concentrates on the transformations of the time
coordinate, we have now that the C-space boosts do not
coincide with ordinary boosts in the x1 direction:

t′=LtMX
M=<EtREMR

−1>0X
M 6=(Ltt)t+(L

t
1)x

1, (34)

because of the extra non-vanishing θ parameter θt12.
This is because the rotor R includes the extra generator

θt12γt ∧ γ1 ∧ γ2 which will bring extra terms into the trans-
formations; i. e. it will rotate the E[12] bivector-basis, that
couples to the holographic coordinates x12, into the Et di-
rection which is being contracted with the Et element in
the definition of LtM . There are extra terms in the C-space
boosts because the poly-particle dynamics is taking place
in C-space and all coordinates XM which contain the t,
x1, x12 directions will contribute to the C-space boosts in
D=3, since one is projecting down the dynamics from C-
space onto the (t, x1) plane when one studies the motion of
the tachyon in M4.

Concluding, in the case when one sets all the θ parameters
to zero, except the θt1 and θt12, the X ′=RXMEMR

−1
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transformations will be:

(δt)′ = LtM (θ
t1; θt12)(δXM ) 6= Ltt(δt) + L

t
1(δx

1) , (35)

due to the presence of the extra term Lt12(δX
12) in the

transformations. In the more general case, when there are
more non-vanishing θ parameters, the indices M of the XM

coordinates must be restricted to those directions in C-space
which involve the t, x1, x12, x123 . . . directions as required
by the C-space poly-particle dynamics. The generalized C-
space boosts involve now the ordinary tachyon velocity com-
ponent of the poly-particle as well as the generalized holo-
graphic areas, volumes, hyper-volumes. . . velocities VM =
=(δXM/δt) associated with the poly-vector components of
the Clifford-valued C-space velocity.

Hence, at the expense of enlarging the ordinary Lorentz
boosts to the C-space Lorentz boosts, and the degrees of
freedom of a point particle into an extended poly-particle by
including the holographic coordinates, in C-space one can
still have ordinary point-particle tachyons without changing
the sign of δt, and without violating causality, due to the
presence of the extra terms in the C-space boosts transfor-
mations which ensure us that the sign of δt> 0 is maintained
as we go from one frame of reference to another one. Natur-
ally, if one were to freeze all the θ parameters to zero except
one θt1 one would end up with the standard Lorentz boosts
along the x1-direction and a violation of causality would
occur for tachyons as a result of the sign-change in δt′.

In future work we shall analyze in more detail if the
condition δt′=LtM (δX

M )> 0 is satisfied for any physical
values of the θ C-space boosts parameters and for any
physical values of the holographic velocities consistent with
the condition that the C-space velocity VMV

M > 0. What
one cannot have is a C-space tachyon; i. e. the physical
signals in C-space must be constrained to live inside the
C-space light-cone. The analog of “photons” in C-space
are tensionless branes. The corresponding analog of C-space
tachyons involve branes with imaginary tensions, not unlike
ordinary tachyons m2 < 0 of imaginary mass.

To sum up: Relativity in C-space demands enlarging
the ordinary Lorentz group (boosts) to a larger symmetry
group of C-space Lorentz group and enlarging the degrees
of freedom by including Clifford-valued coordinates X =
=XMEM . This is the only way one can have a point-
particle tachyonic speed in a Minkowski subspace without
violating causality in C-space. Ordinary Lorentz boosts are
incompatible with tachyons if one wishes to preserve causa-
lity. In C-space one requires to have, at least, two theta
parameters θt1 and θt12 with the inclusion, at least, of the
t, x1, x12 coordinates in a C-space boost, to be able to
enforce the condition δt′> 0 under (combined) boosts along
the x1 direction accompanied by an area-boost along the x12

direction of C-space. It is beyond the scope of this review
to analyze all the further details of the full-fledged C-boosts

transformations in order to check that the condition δt′> 0
is obeyed for any physical values of the θ parameters and
holographic velocities.

According to the other author (M. P.), the problem of
causality could be explained as follows. In the usual theory
of relativity the existence of tachyons is problematic because
one can arrange for situations such that tachyons are sent
into the past. A tachyon T1 is emitted from an apparatus
worldline C at x01 and a second tachyon T2 can arrive to
the same worldline C at an earlier time x′0<x01 and trigger
destruction of the apparatus. The spacetime event E′ at which
the apparatus is destroyed coincides with the event E at
which the apparatus by initial assumption kept on functioning
normally and later emitted T1. So there is a paradox from
the ordinary (constrained) relativistic particle dynamics.

There is no paradox if one invokes the unconstrained
Stueckelberg description of superluminal propagation in M4.
It can be described as follows. A C-space worldline can
be described in terms of five functions xμ(τ ), σ(τ ) (all
other C-space coordinates being kept constant). In C-space
we have the constrained action (20), whilst in Minkowski
space we have a reduced, unconstrained action. A reduction
of variables can be done by choosing a gauge in which
σ(τ )= τ . It was shown in ref. [16, 15, 17] that the latter
unconstrained action is equivalent to the well known Stue-
ckelberg action [33, 34]. In other words, the Stueckelberg
relativistic dynamics is embedded in C-space. In Stueckel-
berg theory all four spacetime coordinates xμ are independ-
ent dynamical degrees of freedom that evolve in terms of
an extra parameter σ which is invariant under Lorentz trans-
formations in M4.

From the C-space point of view, the evolution parameter
σ is just one of the C-space coordintes XM . By assumption,
σ is monotonically increasing along particles’ worldlines.
Certain C-space worldlines may appear tachyonic from the
point of view of M4. If we now repeat the above experiment
with the emission of the first and absorption of the second
tachyon we find out that the second tachyon T2 cannot
reach the aparatus worldline earlier than it was emmitted
from. Namely, T2 can arrive at a C-space event E′ with
x′0<x01, but the latter event does not coincide with the
event E on the aparatus worldline, since although having
the same coordinates x′μ=xμ, the events E and E′ have
different extra coordinates σ′ 6=σ. In other words, E and E′

are different points in C-space. Therefore T2 cannot destroy
the apparatus and there is no paradox.

If nature indeed obeys the dynamics in Clifford space,
then a particle, as observed from the 4-dimensional Minkow-
ski space, can be accelerated beyond the speed of light [17],
provided that its extra degrees of freedom xμν , xμνα, . . . ,
are changing simultaneously with the ordinary position xμ.
But such a particle, although moving faster than light in
the subspace M4, is moving slower than light in C-space,
since its speed V , defined in eq.-(24), is smaller than c. In
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this respect, our particle is not tachyon at all! In C-space
we thus retain all the nice features of relativity, but in the
subspace M4 we have, as a particular case, the unconstrained
Stueckelberg theory in which faster-than-light propagation
is not paradoxical and is consistent with the quantum field
theory as well [15]. This is so, because the unconstrained
Stueckelberg theory is quite different from the ordinary (con-
strained) theory of relativity in M4, and faster than light
motion in the former theory is of totally different nature from
the faster that light motion in the latter theory. The tachyonic
“world lines” in M4 are just projections of trajectories in
C-space onto Minkowski space, however, the true world
lines of M4 must be interpreted always as being embedded
onto a larger C-space, such that they cannot take part in the
paradoxical arrangement in which future could influence the
past. The well known objections against tachyons are not
valid for our particle which moves according to the relativity
in C-space.

We have described how one can obtain faster than light
motion in M4 from the theory of relativity in C-space. There
are other possible ways to achieve superluminal propagation.
One such approach is described in refs. [84]

An alternative procedure In ref. [9] an alternative factor-
ization of the C-space line element has been undertaken.
Starting from the line element dΣ of eq.-(5), instead of fac-
toring out the (dx0)2 element, one may factor out the (dΩ)2≡
≡L2Ddσ2 element, giving rise to the generalized “holo-
graphic” velocities measured w. r. t the Ω parameter, for ex-
ample the areal-time parameter in the Eguchi-Schild formu-
lation of string dynamics [126], [37], [24], instead of the x0

parameter (coordinate clock). One then obtains

dΣ2 = dΩ2
[

1 + L2D−2
dxμ
dΩ

dxμ

dΩ
+

+L2D−4
dxμν
dΩ

dxμν

dΩ
+ . . .+ |γ|2

(
dσ̃
dΩ

)2 ]

.

(36)

The idea of ref. [9] was to restrict the line element (36) to
the non tachyonic values which imposes un upper limit on the
holographic velocities. The motivation was to find a lower
bound of length scale. This upper holographic-velocity bound
does not necessarily translate into a lower bound on the
values of lengths, areas, volumes. . . without the introduction
of quantum mechanical considerations. One possibility could
be that the upper limiting speed of light and the upper bound
of the momentum mpc of a Planck-mass elementary particle
(the so-called Planckton in the literature) generalizes now
to an upper-bound in the p-loop holographic velocities and
the p-loop holographic momenta associated with elementary
closed p-branes whose tensions are given by powers of the
Planck mass. And the latter upper bounds on the holographic
p-loop momenta implies a lower-bound on the holographic
areas, volumes, . . . , resulting from the string/brane uncer-

tainty relations [11], [10], [19]. Thus, Quantum Mechanics
is required to implement the postulated principle of minimal
lengths, areas, volumes. . . and which cannot be derived from
the classical geometry alone. The emergence of minimal
Planck areas occurs also in the Loop Quantum Gravity pro-
gram [111] where the expectation values of the Area operator
are given by multiples of Planck area.

Recently in [134] an isomorphism between Yang’s Non-
commutative space-time algebra (involving two length
scales) [136] and the holographic area coordinates algebra
of C-spaces (Clifford spaces) was constructed via an AdS5
space-time which is instrumental in explaining the origins of
an extra (infrared) scale R in conjunction to the (ultraviolet)
Planck scale λ characteristic of C-spaces. Yang’s Noncom-
mutative space-time algebra allowed Tanaka [137] to explain
the origins behind the discrete nature of the spectrum for
the spatial coordinates and spatial momenta which yields a
minimum length-scale λ (ultraviolet cutoff) and a minimum
momentum p= ~/R (maximal length R, infrared cutoff).
In particular, the norm-squared A2 of the holographic Area
operator XABXAB has a correspondence with the quadratic
Casimir operator ΣABΣ

AB of the conformal algebra
SO(4, 2) (SO(5, 1) in the Euclideanized AdS5 case). This
holographic area-Casimir relationship does not differ much
from the area-spin relation in Loop Quantum Gravity A2 ∼
∼ λ4

∑
ji (ji+1) in terms of the SU (2) Casimir J2 with

eigenvalues j (j+1) and where the sum is taken over the
spin network sites.

3.2 A unified theory of all p-Branes in C-spaces

The generalization to C-spaces of string and p-brane actions
as embeddings of world-manifolds onto target spacetime
backgrounds involves the embeddings of polyvector-valued
world-manifolds (of dimensions 2d) onto polyvector-valued
target spaces (of dimensions 2D), given by the Clifford-
valued maps X =X(Σ) (see [15]). These are maps from the
Clifford-valued world-manifold, parametrized by the poly-
vector-valued variables Σ, onto the Clifford-valued target
space parametrized by the polyvector-valued coordinates X .
Physically one envisions these maps as taking an n-dimen-
sional simplicial cell (n-loop) of the world-manifold onto an
m-dimensional simplicial cell (m-loop) of the target C-space
manifold; i. e. maps from n-dim objects onto m-dim objects
generalizing the old maps of taking points onto points. One is
basically dealing with a dimension-category of objects. The
size of the simplicial cells (p-loops), upon quantization of a
generalized harmonic oscillator, for example, are given by
multiples of the Planck scale, in area, volume, hypervolume
units or Clifford-bits.

In compact multi-index notation X =XMΓM one de-
notes for each one of the components of the target space
polyvector X:

XM ≡ Xμ1μ2...μr , μ1 < μ2 < . . . < μr (37)
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and for the world-manifold polyvector Σ=ΣAEA:

ΣA ≡ ξa1a2...as , a1 < a2 < . . . < as , (38)

where ΓM =(1, γμ, γμν , . . .) and EA=(1, ea, eab, . . .) form
the basis of the target manifold and world manifold Clifford
algebra, respectively. It is very important to order the indices
within each multi-index M and A as shown above. The
above Clifford-valued coordinates XM ,ΣA correspond to
antisymmetric tensors of ranks r, s in the target spacetime
background and in the world-manifold, respectively.

There are many different ways to construct C-space brane
actions which are on-shell equivalent to the analogs of the
Dirac-Nambu-Goto action for extended objects and that are
given by the world-volume spanned by the branes in their
motion through the target spacetime background.

One of these actions is the Polyakov-Howe-Tucker one:

I=
T

2

∫
[DΣ]

√
|H|
[
HAB∂AX

M∂BX
NGMN+(2−2

d)
]

(39)

with the 2d-dim world-manifold measure:

[DΣ] = (dξ)(dξa)(dξa1a2)(dξa1a2a3) . . . (40)

Upon the algebraic elimination of the auxiliary world-
manifold metric HAB from the action (39), via the equations
of motion, yields for its on-shell solution the pullback of the
target C-space metric onto the C-space world-manifold:

HAB(on− shell) = GAB = ∂AX
M∂BX

NGMN (41)

upon inserting back the on-shell solutions (41) into (39)
gives the Dirac-Nambu-Goto action for the C-space branes
directly in terms of the C-space determinant, or measure, of
the induced C-space world-manifold metric GAB , as a result
of the embedding:

I = T

∫
[DΣ]

√
Det(∂AXM∂BXNGMN ) . (42)

However in C-space, the Polyakov-Howe-Tucker action
admits an even further generalization that is comprised of
two terms S1+S2. The first term is [15]:

S1 =

∫
[DΣ]|E|EAEB∂AX

M∂BX
NΓMΓN . (43)

Notice that this is a generalized action which is written
in terms of the C-space coordinates XM (Σ) and the C-
space analog of the target-spacetime vielbein/frame one-
forms em= emμdxμ given by the ΓM variables. The auxi-
liary world-manifold vielbein variables ea, are given now by
the Clifford-valued frame EA variables.

In the conventional Polyakov-Howe-Tucker action, the
auxiliary world-manifold metric hab associated with the stan-
dard p-brane actions is given by the usual scalar product

of the frame vectors ea, eb= eaμe
b
νg
μν =hab. Hence, the C-

space world-manifold metric HAB appearing in (41) is given
by scalar product <(EA)†EB>0=HAB , where (EA)† de-
notes the reversal operation of EA which requires reversing
the ordering of the vectors present in the Clifford aggre-
gate EA.

Notice, however, that the form of the action (43) is far
more general than the action in (39). In particular, the S1
itself can be decomposed further into two additional pieces
by rewriting the Clifford product of two basis elements into
a symmetric plus an antisymmetric piece, respectively:

EAEB =
1

2
{EA, EB}+

1

2
[EA, EB ] , (44)

ΓMΓN =
1

2
{ΓM ,ΓN}+

1

2
[ΓM ,ΓN ]. (45)

In this fashion, the S1 component has two kinds of terms.
The first term containing the symmetric combination is just
the analog of the standard non-linear sigma model action, and
the second term is a Wess-Zumino-like term, containing the
antisymmetric combination. To extract the non-linear sigma
model part of the generalized action above, we may simply
take the scalar product of the vielbein-variables as follows:

(S1)sigma =

=
T

2

∫
[DΣ]|E|<(EA∂AX

MΓM )
†(EB∂BX

NΓN )>0
(46)

where once again we have made use of the reversal operation
(the analog of the hermitian adjoint) before contracting multi-
indices. In this fashion we recover again the Clifford-scalar
valued action given by [15].

Actions like the ones presented here in terms of deriva-
tives with respect to quantities with multi-indices can be
mapped to actions involving higher derivatives, in the same
fashion that the C-space scalar curvature, the analog of the
Einstein-Hilbert action, could be recast as a higher derivative
gravity with torsion (reviewed in sec. 4). Higher derivatives
actions are also related to theories of Higher spin fields [117]
and W -geometry, W -algebras [116], [122]. For the role of
Clifford algerbras to higher spin theories see [51].

The S2 (scalar) component of the C-space brane action
is the usual cosmological constant term given by the C-space
determinant |E|= det(HAB) based on the scalar part of the
geometric product <(EA)†EB>0=HAB

S2 =
T

2

∫
[DΣ]|E| , (2− 2d) , (47)

where the C-space determinant |E|=
√
|det(HAB)| of the

2d×2d generalized world-manifold metric HAB is given by:

det(HAB) =
1

(2d)!
εA1A2...A2d εB1B2...B2d×

×HA1B1HA2B2 . . . HA2dB2d .

(48)
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The εA1A2...A2d is the totally antisymmetric tensor den-
sity in C-space.

There are many different forms of p-brane actions, with
and without a cosmological constant [123], and based on
a new integration measure by recurring to auxiliary scalar
fields [115], that one could have used to construct their C-
space generalizations. Since all of them are on-shell equiv-
alent to the Dirac-Nambu-Goto p-brane actions, we decided
to focus solely on those actions having the Polyakov-Howe-
Tucker form.

4 Generalized gravitational theories in curved C-spa-
ces: higher derivative gravity and torsion from the
geometry of C-space

4.1 Ordinary space

4.1.1 Clifford algebra based geometric calculus in curv-
ed space(time)

Clifford algebra is a very useful tool for description of ge-
ometry, especially of curved space Vn. Let us first review
how it works in curved space(time). Later we will discuss a
generalization to curved Clifford space [20].

We would like to make those techniques accessible to
a wide audience of physicists who are not so familiar with
the rigorous underlying mathematics, and demonstrate how
Clifford algebra can be straightforwardly employed in the
theory of gravity and its generalization. So we will leave
aside the sophisticated mathematical approach, and rather
follow as simple line of thought as possible, a praxis that
is normally pursued by physicists. For instance, physicists
in their works on general relativity employ a mathematical
formulation and notation which is much simpler from that
of purely mathematical or mathematically oriented works.
For rigorous mathematical treatment the reader is advised to
study, refs. [1, 76, 77, 78, 79].

Let the vector fields γμ, μ=1, 2, . . . , n be a coordinate
basis in Vn satisfying the Clifford algebra relation

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν , (49)

where gμν is the metric of Vn. In curved space γμ and gμν
cannot be constant but necessarily depend on position xμ.
An arbitrary vector is a linear superposition [1]

a = aμγμ , (50)

where the components aμ are scalars from the geometric
point of view, whilst γμ are vectors.

Besides the basis {γμ} we can introduce the reciprocal
basis∗ {γμ} satisfying

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν , (51)

∗In Appendix A of the Hesteness book [1] the frame {γμ} is called
dual frame because the duality operation is used in constructing it.

where gμν is the covariant metric tensor such that gμαgαν =
= δμν , γμγν + γνγμ=2δμν and γμ= gμνγν .

Following ref. [1] (see also [15]) we consider the vector
derivative or gradient defined according to

∂ ≡ γμ∂μ , (52)

where ∂μ is an operator whose action depends on the quantity
it acts on [26].

Applying the vector derivative ∂ on a scalar field φ
we have

∂φ = γμ∂μφ , (53)

where ∂μφ≡ (∂/∂xμ)φ coincides with the partial deriva-
tive of φ.

But if we apply it on a vector field a we have

∂a = γμ∂μ(a
νγν) = γμ(∂μa

νγν + a
ν∂μγν) . (54)

In general γν is not constant; it satisfies the relation to
works [1, 15]

∂μγν = Γ
α
μνγα , (55)

where Γαμν is the connection. Similarly, for γν = gναγα we
have

∂μγ
ν = −Γνμαγ

α . (56)

The non commuting operator ∂μ so defined determines
the parallel transport of a basis vector γν . Instead of the
symbol ∂μ Hestenes uses 2μ, whilst Wheeler et. al. [36]
use ∇μ and call it “covariant derivative”. In modern, math-
ematically oriented literature more explicit notation such as
Dγμ or ∇γμ is used. However, such a notation, although
mathematically very relevant, would not be very practical
in long computations. We find it very convenient to keep
the symbol ∂μ for components of the geometric operator
∂= γμ∂μ. When acting on a scalar field the derivative ∂μ
happens to be commuting and thus behaves as the ordinary
partial derivative. When acting on a vector field, ∂μ is a
non commuting operator. In this respect, there can be no
confusion with partial derivative, because the latter normally
acts on scalar fields, and in such a case partial derivative
and ∂μ are one and the same thing. However, when acting
on a vector field, the derivative ∂μ is non commuting. Our
operator ∂μ when acting on γμ or γμ should be distinguished
from the ordinary — commuting — partial derivative, let be
denoted γν,μ , usually used in the literature on the Dirac
equation in curved spacetime. The latter derivative is not
used in the present paper, so there should be no confusion.

Using (55), eq.-(54) becomes

∂a=γμγν(∂μa
ν+Γνμαa

α)≡γμγνDμa
ν=γμγνDμaν (57)

where Dμ is the covariant derivative of tensor analysis.
Decomposing the Clifford product γμγν into its sym-

metric and antisymmetric part [1]

γμγν = γμ ∙ γν + γμ ∧ γν , (58)
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where

γμ ∙ γν ≡
1

2
(γμγν + γνγμ) = gμν (59)

is the inner product and

γμ ∧ γν ≡
1

2
(γμγν − γνγμ) (60)

the outer product, we can write eq.-(57) as

∂a = gμν Dμaν + γ
μ ∧ γνDμaν =

= Dμa
μ +

1

2
γμ ∧ γν(Dμaν − Dνaμ) .

(61)

Without employing the expansion in terms of γμ we have
simply

∂a = ∂ ∙ a+ ∂ ∧ a . (62)

Acting twice on a vector by the operator ∂ we have∗

∂∂a = γμ∂μ(γ
ν∂ν)(a

αγα) = γμγνγαDμDνa
α =

= γαDμDμaα +
1

2
(γμ ∧ γν)γα[Dμ,Dν ]a

α =

= γαDμDμaα + γμ(Rμρa
ρ +Kμα

ρDρa
α) +

+
1

2
(γμ ∧ γν ∧ γα)(Rμνρ

αaρ +Kμν
ρDρa

α) .

(63)

We have used

[Dμ,Dν ]a
α = Rμνρ

αaρ +Kμν
ρDρa

α , (64)

where
Kμν

ρ = Γρμν − Γ
ρ
νμ (65)

is torsion and Rμνρ
α the curvature tensor. Using eq.-(55) we

find

[∂α, ∂β ]γμ = Rαβμ
νγν , (66)

from which we have

Rαβμ
ν = ([[∂α, ∂β ]γμ) ∙ γ

ν . (67)

Thus in general the commutator of derivatives ∂μ acting
on a vector does not give zero, but is given by the curvature
tensor.

In general, for an r-vector A= aα1...αrγα1γα2 . . . γαr we
have

∂∂ . . . ∂A = (γμ1∂μ1)(γ
μ2∂μ2) . . . (γ

μk∂μk)×

× (aα1...αrγα1γα2 . . . γαr ) = γμ1γμ2 . . .

. . . γμkγα1γα2 . . . γαrDμ1Dμ2 . . .Dμka
α1...αr .

(68)

∗We use (a∧ b) c=(a∧ b) ∙ c+ a∧ b∧ c [1] and also (a∧ b) ∙ c=
=(b ∙ c) a− (a ∙ c)b.

4.1.2 Clifford algebra based geometric calculus and re-
solution of the ordering ambiguity for the product
of momentum operators

Clifford algebra is a very useful tool for description of ge-
ometry of curved space. Moreover, as shown in ref. [26] it
provides a resolution of the long standing problem of the
ordering ambiguity of quantum mechanics in curved space.
Namely, eq.-(52) for the vector derivative suggests that the
momentum operator is given by

p = −i ∂ = −i γμ∂μ . (69)

One can consider three distinct models:

(i) The non relativistic particle moving in ndimensional
curved space. Then, μ=1, 2, . . . , n, and signature is
(+ + ++ . . .);

(ii) The relativistic particle in curved spacetime, described
by the Schild action [37]. Then, μ=0, 1, 2, . . . , n− 1
and signature is (+−−− . . .);

(iii) The Stueckelberg unconstrained particle [33, 34, 35,
29].

In all three cases the classical action has the form

I[Xμ] =
1

2Λ

∫
dτ gμν(x)Ẋ

μẊν (70)

and the corresponding Hamiltonian is

H =
Λ

2
gμν(x)pμpν =

Λ

2
p2 . (71)

If, upon quantization we take for the momentum operator
pμ=−i ∂μ, then the ambiguity arises of how to write the
quantum Hamilton operator. The problem occurs because
the expressions gμνpμpν , pμgμνpν and pμpνg

μν are not
equivalent.

But, if we rewrite H as

H =
Λ

2
p2 , (72)

where p= γμpμ is the momentum vector which upon quanti-
zation becomes the momentum vector operator (69), we find
that there is no ambiguity in writing the square p2. When
acting with H on a scalar wave function φ we obtain the
unambiguous expression

Hφ=
Λ

2
p2φ=

Λ

2
(−i)2(γμ∂μ)(γ

ν∂ν)φ=−
Λ

2
DμDμφ (73)

in which there is no curvature term R. We expect that a term
with R will arise upon acting with H on a spinor field ψ.

4.2 C-space

Let us now consider C-space and review the procedure of
ref. [20]. A basis in C-space is given by

EA = {γ, γμ, γμ ∧ γν , γμ ∧ γν ∧ γρ, . . .} , (74)
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where in an r-vector γμ1∧γμ2∧ . . .∧γμr we take the indices
so that μ1<μ2< . . . <μr. An element of C-space is a
Clifford number, called also Polyvector or Clifford aggregate
which we now write in the form

X = XAEA = s γ + xμγμ + x
μνγμ ∧ γν + . . . . (75)

A C-space is parametrized not only by 1-vector coordi-
nates xμ but also by the 2-vector coordinates xμν , 3-vector
coordinates xμνα, etc., called also holographic coordinates,
since they describe the holographic projections of 1-loops,
2-loops, 3-loops, etc., onto the coordinate planes. By p-loop
we mean a closed p-brane; in particular, a 1-loop is closed
string.

In order to avoid using the powers of the Planck scale
length parameter L in the expansion of the polyvector X we
use the dilatationally invariant units [15] in which L is set
to 1. The dilation invariant physics was discussed from a
different perspective also in refs. [23, 21].

In a flat C-space the basis vectors EA are constants. In a
curved C-space this is no longer true. Each EA is a function
of the C-space coordinates

XA = {s, xμ, xμν , . . .} (76)

which include scalar, vector, bivector, . . . , r-vector, . . . , co-
ordinates.

Now we define the connection Γ̃CAB in C-space accord-
ing to

∂AEB = Γ̃
C
ABEC , (77)

where ∂A ≡ ∂/∂XA is the derivative in C-space. This
definition is analogous to the one in ordinary space. Let
us therefore define the C-space curvature as

RABC
D = ([∂A, ∂B ]EC) ∗ E

D , (78)

which is a straightforward generalization of the relation (67).
The “star” means the scalar product between two polyvectors
A and B, defined as

A ∗B = 〈AB〉S , (79)

where “S” means “the scalar part” of the geometric product
AB.

In the following we shall explore the above relation for
curvature and see how it is related to the curvature of the
ordinary space. Before doing that we shall demonstrate that
the derivative with respect to the bivector coordinate xμν is
equal to the commutator of the derivatives with respect to
the vector coordinates xμ.

Returning now to eq.-(77), the differential of a C-space
basis vector is given by

dEA =
∂EA
∂XB

dXB = ΓCAB EC dXB . (80)

In particular, for A=μ and EA= γμ we have

dγμ =
∂γμ
∂Xν

dxν +
∂γμ
∂xαβ

dxαβ + . . . =

= Γ̃AνμEAdxν + Γ̃A[αβ]μEAdxαβ + . . . =

= (Γ̃ανμγα + Γ̃
[ρσ]
νμ γρ ∧ γσ + . . .)dx

ν +

+(Γ̃
ρ
[αβ]μγρ + Γ̃

[ρσ]
[αβ]μγρ ∧ γσ + . . .)dx

αβ + . . . .

(81)

We see that the differential dγμ is in general a polyvector,
i. e., a Clifford aggregate. In eq.-(81) we have used

∂γμ
∂xν

= Γ̃ανμγα + Γ̃
[ρσ]
νμ γρ ∧ γσ + . . . , (82)

∂γμ
∂xαβ

= Γ̃
ρ
[αβ]μγρ + Γ̃

[ρσ]
[αβ]μγρ ∧ γσ + . . . . (83)

Let us now consider a restricted space in which the
derivatives of γμ with respect to xν and xαβ do not contain
higher rank multivectors. Then eqs.-(82), (83) become

∂γμ
∂xν

= Γ̃ανμγα , (84)

∂γμ
∂xαβ

= Γ̃
ρ
[αβ]μγρ . (85)

Further we assume that:

(i) The components Γ̃ανμ of the C-space connection Γ̃CAB
coincide with the connection Γανμ of an ordinary space;

(ii) The components Γ̃ρ[αβ]μ of the C-space connection co-
incide with the curvature tensor Rαβμ

ρ of an ordinary
space.

Hence, eqs.-(84), (85) read

∂γμ
∂xν

= Γανμγα , (86)

∂γμ
∂xαβ

= Rαβμ
ργρ , (87)

and the differential (81) becomes

dγμ =
(
Γραμdxα +

1

2
Rαβμ

ρdxαβ
)
γρ . (88)

The same relation was obtained by Pezzaglia [14] by
using a different method, namely by considering how poly-
vectors change with position. The above relation demon-
strates that a geodesic in C-space is not a geodesic in ordinary
spacetime. Namely, in ordinary spacetime we obtain Papa-
petrou’s equation. This was previously pointed out by Pezza-
glia [14].

Although a C-space connection does not transform like
a C-space tensor, some of its components, i. e., those of eq.-
(85), may have the transformation properties of a tensor in
an ordinary space.
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Under a general coordinate transformation in C-space

XA → X ′A = X ′A(XB) (89)

the connection transforms according to∗

Γ̃′
C
AB=

∂X ′C

∂XE

∂XJ

∂X ′A

∂XK

∂X ′B
Γ̃EJK+

∂X ′C

∂XJ

∂2XJ

∂X ′A∂X ′B
. (90)

In particular, the components which contain the bivector
index A = [αβ] transform as

Γ̃′
ρ
[αβ]μ=

∂X ′ρ

∂XE

∂XJ

∂σ′αβ
∂XK

∂x′μ
Γ̃EJK+

∂x′ρ

∂XJ

∂2XJ

∂σ′αβ∂x′μ
. (91)

Let us now consider a particular class of coordinate
transformations in C-space such that

∂x′ρ

∂xμν
= 0 ,

∂xμν

∂x′α
= 0 . (92)

Then the second term in eq.-(91) vanishes and the trans-
formation becomes

Γ̃′
ρ
[αβ]μ =

∂X ′ρ

∂xε
∂xρσ

∂σ′αβ
∂xγ

∂x′μ
Γ̃ε[ρσ]γ . (93)

Now, for the bivector whose components are dxαβ we
have

dσ′αβγ′α ∧ γ
′
β = dxαβγα ∧ γβ . (94)

Taking into account that in our particular case (92) γα
transforms as a basis vector in an ordinary space

γ′α =
∂xμ

∂x′α
γμ , (95)

we find that (94) and (95) imply

dσ′αβ
∂xμ

∂x′α
∂xν

∂x′β
= dxμν , (96)

which means that

∂xμν

∂σ′αβ
=
1

2

(
∂xμ

∂x′α
∂xν

∂x′β
−
∂xν

∂x′α
∂xμ

∂x′β

)

≡
∂x[μ

∂x′α
∂xν]

∂x′β
. (97)

The transformation of the bivector coordinate xμν is thus
determined by the transformation of the vector coordinates
xμ. This is so because the basis bivectors are the wedge
products of basis vectors γμ.

From (93) and (97) we see that Γ̃ε[ρσ]γ transforms like a
4th-rank tensor in an ordinary space.

Comparing eq.-(87) with the relation (66) we find

∂γμ
∂xαβ

= [∂α, ∂β ]γμ . (98)

∗This can be derived from the relation dE′A =
∂E′A
∂X ′B

dX ′B , where

E′A =
∂XD

∂X ′A
ED and dX ′B =

∂X ′B

∂XC
dXC .

The derivative of a basis vector with respect to the
bivector coordinates xαβ is equal to the commutator of the
derivatives with respect to the vector coordinates xα.

The above relation (98) holds for the basis vectors γμ.
For an arbitrary polyvector

A = AAEA = sγ + aαγα + a
αβγα ∧ γβ + . . . (99)

we will assume the validity of the following relation

DAA

Dxμν
= [Dμ,Dν ]A

A , (100)

where D/Dxμν is the covariant derivative, defined in anal-
ogous way as in eqs. (57):

DAA

DXB
=
∂AA

∂XB
+ Γ̃ABCA

C . (101)

From eq.-(100) we obtain

Ds
Dxμν

= [Dμ,Dν ]s = Kμν
ρ∂ρs , (102)

Daα

Dxμν
= [Dμ,Dν ]a

α = Rμνρ
αaρ +Kμν

ρDρa
α . (103)

Using (101) we have that

Ds
Dxμν

=
∂s

∂xμν
(104)

and also follows

Daα

Dxμν
=

∂aα

∂xμν
+ Γ̃α[μν]ρa

ρ =
∂aα

∂xμν
+Rμνρ

αaρ , (105)

where, according to (ii), Γ̃α[μν]ρ has been identified with
curvature. So we obtain, after inserting (104), (105) into
(102), (103) that:

(a) The partial derivatives of the coefficients s and aα,
which are Clifford scalars†, with respect to xμν are
related to torsion:

∂s

∂xμν
= Kμν

ρ∂ρs , (106)

∂aα

∂xμν
= Kμν

ρDρa
α ; (107)

(b) Whilst the derivative of the basis vectors with respect
to xμν are related to curvature:

∂γα
∂xμν

= Rμνα
βγβ . (108)

In other words, the dependence of coefficients s and aα

on xμν indicates the presence of torsion. On the contrary,
when basis vectors γα depend on xμν this indicates that the
corresponding vector space has non vanishing curvature.

†In the geometric calculus based on Clifford algebra, the coefficients
such as s, aα, aαβ ,. . . , are called scalars (although in tensor calculus
they are called scalars, vectors and tensors, respectively), whilst the objects
γα, γα ∧ γβ , . . . , are called vectors, bivectors, etc.
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4.3 On the relation between the curvature of C-space
and the curvature of an ordinary space

Let us now consider the C-space curvature defined in eq.-
(78). The indices A,B, can be of vector, bivector, etc., type.
It is instructive to consider a particular example.

A= [μν], B= [αβ], C = γ, D= δ
([

∂

∂xμν
,

∂

∂xαβ

]

γγ

)

∙ γδ = R[μν][αβ]γ
δ . (109)

Using (87) we have

∂

∂xμν
∂

∂xαβ
γγ=

∂

∂xμν
(Rαβγ

ργρ)=Rαβγ
ρRμνρ

σγσ (110)

where we have taken

∂

∂xμν
Rαβγ

ρ = 0 , (111)

which is true in the case of vanishing torsion (see also an
explanation that follows after the next paragraph). Inserting
(110) into (109) we find

R[μν][αβ]γ
δ = Rμνγ

ρRαβρ
δ −Rαβγ

ρRμνρ
δ , (112)

which is the product of two usual curvature tensors. We can
proceed in analogous way to calculate the other components
of RABC

D such as R[αβγδ][ρσ]ε
μ, R[αβγδ][ρστκ]ε

[μν], etc.
These contain higher powers of the curvature in an ordinary
space. All this is true in our restricted C-space given by eqs.-
(84), (85) and the assumptions (i), (ii) bellow those equations.
By releasing those restrictions we would have arrived at an
even more involved situation which is beyond the scope of
the present paper.

After performing the contractions of (112) and the corre-
sponding higher order relations we obtain the expansion of
the form

R = R+ α1R
2 + α2RμνR

μν + . . . . (113)

So we have shown that the C-space curvature can be ex-
pressed as the sum of the products of the ordinary spacetime
curvature. This bears a resemblance to the string effective
action in curved spacetimes given by sums of powers of
the curvature tensors based on the quantization of non-linear
sigma models [118].

If one sets aside the algebraic convergence problems
when working with Clifford algebras in infinite dimensions,
one can consider the possibility of studying Quantum Gravity
in a very large number of dimensions which has been revi-
sited recently [83] in connection to a perturbative renorm-
alizable quantum theory of gravity in infinite dimensions.
Another interesting possibility is that an infinite series ex-
pansion of the powers of the scalar curvature could yield the
recently proposed modified Lagrangians R+1/R of gravity
to accommodate the cosmological accelerated expansion of

the Universe [131], after a judicious choice of the algebraic
coefficients is taken. One may notice also that having a
vanishing cosmological constant in C-space,R=Λ=0 does
not necessarily imply that one has a vanishing cosmological
constant in ordinary spacetime. For example, in the very
special case of homogeneous symmetric spacetimes, like
spheres and hyperboloids, where all the curvature tensors
are proportional to suitable combinations of the metric tensor
times the scalar curvature, it is possible to envision that the
net combination of the sum of all the powers of the curvature
tensors may cancel-out giving an overall zero value R=0.
This possibility deserves investigation.

Let us now show that for vanishing torsion the curvature
is independent of the bivector coordinates xμν , as it was
taken in eq.-(111). Consider the basic relation

γμ ∙ γν = gμν . (114)

Differentiating with respect to xαβ we have

∂

∂xαβ
(γμ ∙ γν) =

∂γμ
∂xαβ

∙ γν + γμ ∙
∂γν
∂xαβ

=

= Rαβμν +Rαβνμ = 0 .

(115)

This implies that

∂gμν
∂σαβ

= [∂α, ∂β ]gμν = 0 . (116)

Hence the metric, in this particular case, is independent
of the holographic (bivector) coordinates. Since the curvature
tensor — when torsion is zero — can be written in terms of
the metric tensor and its derivatives, we conclude that not
only the metric, but also the curvature is independent of
xμν . In general, when the metric has a dependence on the
holographic coordinates one expects further corrections to
eq.-(112) that would include torsion.

5 On the quantization in C-spaces

5.1 The momentum constraint in C-space

A detailed discussion of the physical properties of all the
components of the polymomentum P in four dimensions and
the emergence of the physical mass in Minkowski spacetime
has been provided in the book [15]. The polymomentum in
D=4, canonically conjugate to the position polyvector

X = σ + xμγμ + γ
μν γμ ∧ γν + ξ

μγ5γμ + sγ5 (117)

can be written as:

P = μ+ pμγμ + S
μνγμ ∧ γν + π

μγ5γμ +mγ5 , (118)

where besides the vector components pμ we have the scalar
component μ, the 2-vector components Sμν , that are con-
nected to the spin as shown by [14]; the pseudovector com-
ponents πμ and the pseudoscalar component m.
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The most salient feature of the polyparticle dynamics in
C-spaces [15] is that one can start with a constrained action
in C-space and arrive, nevertheless, at an unconstrained
Stuckelberg action in Minkowski space (a subspace of C-
space) in which pμp

μ is a constant of motion. The true
constraint in C-space is:

PAP
A = μ2+pμp

μ−2SμνSμν+πμπ
μ−m2 =M2 , (119)

where M is a fixed constant, the mass in C-space. The
pseudoscalar componentm is a variable, like μ, pμ, Sμν , and
πμ, which altogether are constrained according to eq.-(119).
It becomes the physical mass in Minkowski spacetime in the
special case when other extra components vanish, i. e., when
μ=0, Sμν =0 and πμ=0. This justifies using the notation
m for mass. This is basically the distinction between the mass
in Minkowski space which is a constant of motion pμpμ and
the fixed mass M in C-space. The variable m is canonically
conjugate to s which acquires the role of the Stuckelberg
evolution parameter s that allowed ref. [29, 15] to propose a
natural solution of the problem of time in quantum gravity.
The polyparticle dynamics in C-space is a generalization of
the relativistic Regge top construction which has recently
been studied in de Sitter spaces by [135].

A derivation of a charge, mass, and spin relationship of a
polyparticle can be obtained from the above polymomentum
constraint in C-space if one relates the norm of the axial-
momentum component πμ of the polymomentum P to the
charge [80]. It agrees exactly with the recent charge-mass-
spin relationship obtained by [44] based on the Kerr-
Newman black hole metric solutions of the Einstein-Maxwell
equations. The naked singularity Kerr-Newman solutions
have been interpreted by [45] as Dirac particles. Further
investigation is needed to understand better these relation-
ships, in particular, the deep reasons behind the charge as-
signment to the norm of the axial-vector πμ component of the
polymomentum which suggests that mass has a gravitational,
electromagnetic and rotational aspects to it. In a Kaluza-
Klein reduction from D=5 to D=4 it is well known that
the electric charge is related to the p5 component of the
momentum. Hence, charge bears a connection to an internal
momentum.

5.2 C-space Klein-Gordon and Dirac wave equations

The ordinary Klein-Gordon equation can be easily obtained
by implementing the on-shell constraint p2−m2=0 as an
operator constraint on the physical states after replacing pμ
for −i∂/∂xμ (we use units in which ~=1, c=1):

(
∂2

∂xμ∂xμ
+m2

)

φ = 0. (120)

The C-space generalization follows from the P 2−M2=0

condition by replacing

PA → −i
∂

∂XA
= −i

(
∂

∂σ
,
∂

∂xμ
,

∂

∂xμν
, . . .

)

, (121)

(
∂2

∂σ2
+

∂2

∂xμ∂xμ
+

∂2

∂xμν∂xμν
+ . . .+M2

)

Φ=0, (122)

where we have set L= ~= c=1 for convenience purposes
and the C-space scalar field Φ(σ, xμ, xμν , . . .) is a poly-
vector-valued scalar function of all the C-space variables.
This is the Klein-Gordon equation associated with a free
scalar polyparticle in C-space.

A wave equation for a generalized C-space harmonic
oscillator requires to introduce the potential of the form
V =κX2 that admits straightforward solutions in terms of
Gaussians and Hermite polynomials similar to the ordinary
point-particle oscillator. There are now collective excitations
of the Clifford-oscillator in terms of the number of Clifford-
bits and which represent the quanta of areas, volumes, hyper-
volumes, . . . , associated with the p-loops oscillations in
Planck scale units. The logarithm of the degeneracy of the
first collective state of the C-space oscillator, as a function
of the number of bits, bears the same functional form as the
Bekenstein-Hawking black hole entropy, with the upshot that
one recovers, in a natural way, the logarithmic corrections to
the black-hole entropy as well, if one identifies the number
of Clifford-bits with the number of area-quanta of the black
hole horizon. For further details about this derivation and
the emergence of the Schwarzschild horizon radius relation,
the Hawking temperature, the maximal Planck temperature
condition, etc., we refer to [21]. Perhaps the most important
consequence of this latter view of black hole entropy is the
possibility that there is a ground state of quantum spacetime,
resulting from of a Bose-Einstein condensate of the C-space
harmonic oscillator.

A C-space version of the Dirac Equation, representing
the dynamics of spinning-polyparticles (theories of extended-
spin, extended charges) is obtained via the square-root pro-
cedure of the Klein-Gordon equation:

−i

(
∂

∂σ
+γμ

∂

∂xμ
+γμ∧γν

∂

∂xμν
+ . . .

)

Ψ=MΨ , (123)

where Ψ(σ, xμ, xμν , . . .) is a polyvector-valued function, a
Clifford-number, Ψ=ΨAEA of all the C-space variables.
For simplicity we consider here a flat C-space in which the
metric GAB =E

†
A ∗ EB = ηAB is diagonal, ηAB being the

C-space analog of Minkowski tensor. In curved C-space the
equation (123) should be properly generalized. This goes
beyond the scope of the present paper.

Ordinary spinors are nothing but elements of the left/right
ideals of a Clifford algebra. So they are automatically con-
tained in the polyvector valued wave function Ψ. The ordi-
nary Dirac equation can be obtained when Ψ is independent
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of the extra variables associated with a polyvector-valued
coordinates X (i. e., of xμν , xμνρ, . . . ). For details see [15].

Thus far we have written ordinary wave equations in
C-space, that is, we considered the wave equations for a
“point particle” in C-space. From the perspective of the 4-
dimensional Minkowski spacetime the latter “point particle”
has, of course, a much richer structure then a mere point: it
is an extended object, modeled by coordinates xμ, xμν , . . .
But such modeling does not embrace all the details of an
extended object. In order to provide a description with more
details, one can considere not the “point particles” in C-
space, but branes in C-space. They are described by the
embeddings X =X(Σ), that is XM =XM (ΣA), considered
in sec. 3.2. Quantization of such branes can employ wave
functional equation, or other methods, including the second
quantization formalism. For a more detailed study detailed
study of the second quantization of extended objects using
the tools of Clifford algebra see [15].

Without emplying Clifford algebra a lot of illuminating
work has been done in relation to description of branes in
terms of p-loop coordinates [132]. A bosonic/fermionic p-
brane wave-functional equation was presented in [12], gener-
alizing the closed-string (loop) results in [13] and the the
quantum bosonic p-brane propagator, in the quenched-
reduced minisuperspace approximation, was attained by [18].
In the latter work branes are described in terms of the
collective coordinates which are just the highest grade com-
ponents in the expansion of a poplyvector X given in eq.-(2).
This work thus paved the way for the next logical step, that is,
to consider other multivector components of X in a unified
description of all branes.

Notice that the approach based on eqs.-(122), (123) is
different from that by Hestenes [1] who proposed an equation
which is known as the Dirac-Hestenes equation. Dirac’s
equation using quaternions (related to Clifford algebras) was
first derived by Lanczos [91]. Later on the Dirac-Lanczos
equation was rediscovered by many people, in particular by
Hestenes and Gursey [92] in what became known as the
Dirac-Hestenes equation. The former Dirac-Lanczos equa-
tion is Lorentz covariant despite the fact that it singles out
an arbitrary but unique direction in ordinary space: the spin
quantization axis. Lanczos, without knowing, had anticipated
the existence of isospin as well. The Dirac-Hestenes equation
∂Ψe21=mΨe0 is covariant under a change of frame [133],
[93]. e′μ=UeμU

−1 and Ψ′=ΨU−1 with U an element of
the Spin+(1, 3) yielding ∂Ψ′e′21=mΨ

′e′0. As Lanczos had
anticipated, in a new frame of reference, the spin quantization
axis is also rotated appropriately, thus there is no breakdown
of covariance by introducing bivectors in the Dirac-Hestenes
equation.

However, subtleties still remain. In the Dirac-Hestenes
equation instead of the imaginary unit i there occurs the
bivector γ1γ−2. Its square is −1 and commutes with all the
elements of the Dirac algebra which is just a desired property.

But on the other hand, the introduction of a bivector into an
equation implies a selection of a preferred orientation in
spacetime; i. e. the choice of the spin quantization axis in the
original Dirac-Lanczos quaternionic equation. How is such
preferred orientation (spin quantization axis) determined?
Is there some dynamical symmetry which determines the
preferred orientation (spin quantization axis)? is there an
action which encodes a hidden dynamical principle that se-
lects dynamically a preferred spacetime orientation (spin
quantization axis)?

Many subtleties of the Dirac-Hesteness equation and its
relation to the ordinary Dirac equation and the Seiberg-
Witten equation are investigated from the rigorous mathe-
matical point of view in refs. [93]. The approach in refs. [16,
15, 17, 8], reviewed here, is different. We start from the usual
formulation of quantum theory and extend it to C-space. We
retain the imaginary unit i. Next step is to give a geometric
interpretation to i. Instead of trying to find a geometric origin
of i in spacetime we adopt the interpretation proposed in [15]
according to which the i is the bivector of the 2-dimensional
phase space (whose direct product with the n-dimensional
configuration space gives the 2n-dimensional phase space)∗.
This appears to be a natural assumption due to the fact that
complex valued quantum mechanical wave functions involve
momenta pμ and coordinates xμ (e. g., a plane wave is given
by exp[ipμxμ], and arbitrary wave packet is a superposition
of plane waves).

6 Maximal-acceleration Relativity in phase-spaces

In this section we shall discuss the maximal acceleration
Relativity principle [68] based on Finsler geometry which
does not destroy, nor deform, Lorentz invariance. Our dis-
cussion differs from the pseudo-complex Lorentz group de-
scription by Schuller [61] related to the effects of maximal
acceleration in Born-Infeld models that also maintains Lo-
rentz invariance, in contrast to the approaches of Double
Special Relativity (DSR). In addition one does not need to
modify the energy-momentum addition (conservation) laws
in the scattering of particles which break translational invari-
ance. For a discussions on the open problems of Double Spe-
cial Relativity theories based on kappa-deformed Poincaré
symmetries [63] and motivated by the anomalous Lorentz-
violating dispersion relations in the ultra high energy cosmic
rays [71, 72, 73], we refer to [70].

Related to the minimal Planck scale, an upper limit on the
maximal acceleration principle in Nature was proposed by
long ago Cainello [52]. This idea is a direct consequence of a
suggestion made years earlier by Max Born on a Dual Relati-
vity principle operating in phase spaces [49], [74] wherethere

∗Yet another interpretation of the imaginary unit i present in the
Heisenberg uncertainty relations has been undertaken by Finkelstein and
collaborators [96].
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is an upper bound on the four-force (maximal string tension
or tidal forces in the string case) acting on a particle as well as
an upper bound in the particle velocity. One can combine the
maximum speed of light with a minimum Planck scale into a
maximal proper-acceleration a= c2/L within the framework
of Finsler geometry [56]. For a recent status of the geometries
behind maximal-acceleration see [73]; its relation to the
Double Special Relativity programs was studied by [55] and
the possibility that Moyal deformations of Poincaré algebras
could be related to the kappa-deformed Poincaré algebras
was raised in [68]. A thorough study of Finsler geometry
and Clifford algebras has been undertaken by Vacaru [81]
where Clifford/spinor structures were defined with respect to
Nonlinear connections associated with certain nonholonomic
modifications of Riemann-Cartan gravity.

Other several new physical implications of the maximal
acceleration principle in Nature, like neutrino oscillations
and other phenomena, have been studied by [54], [67], [42].
Recently, the variations of the fine structure constant α [64],
with the cosmological accelerated expansion of the Universe,
was recast as a renormalization group-like equation govern-
ing the cosmological red shift (Universe scale) variations of
α based on this maximal acceleration principle in Nature
[68]. The fine structure constant was smaller in the past.
Pushing the cutoff scale to the minimum Planck scale led
to the intriguing result that the fine structure constant could
have been extremely small (zero) in the early Universe and
that all matter in the Universe could have emerged via the
Unruh-Rindler-Hawking effect (creation of radiation/matter)
due to the acceleration w. r. t the vacuum frame of reference.
For reviews on the alleged variations of the fundamental
constants in Nature see [65] and for more astonishing vari-
ations of αdriven by quintessence see [66].

6.1 Clifford algebras in phase space

We shall employ the procedure described in [15] to construct
the Phase Space Clifford algebra that allowed [127] to repro-
duce the sub-maximally accelerated particle action of [53].

For simplicity we will focus on a two-dim phase space.
Let ep, eq be the Clifford-algebra basis elements in a two-dim
phase space obeying the following relations [15]:

ep ∙ eq ≡
1

2
(eqep + epeq) = 0 (124)

and epep= eqeq =1.
The Clifford product of ep, eq is by definition the sum of

the scalar and the wedge product:

epeq = ep ∙ eq + ep ∧ eq = 0 + ep ∧ eq = i , (125)

such that i2= epeqepeq =−1. Hence, the imaginary unit
i, i2=−1 admits a very natural interpretation in terms of
Clifford algebras, i. e., it is represented by the wedge product

i= ep ∧ eq , a phase-space area element. Such imaginary unit
allows us to express vectors in a C-phase space in the form:

Q = qeq + peq ,

Q ∙ eq = q + pep ∙ eq = q + ip = z ,

eq ∙Q = q + peq ∙ ep = q − ip = z∗ ,

(126)

which reminds us of the creation/annihilation operators used
in the harmonic oscillator.

We shall now review the steps in [127] to reproduce the
sub-maximally accelerated particle action [53]. The phase-
space analog of the spacetime action is:

dQdQ = (dq)2+(dp)2 ⇒ S = m

∫√
(dq)2+(dp)2 . (127)

Introducing the appropriate length/mass scale parameters
in order to have consistent units yields:

S = m

∫ √

(dq)2 +

(
L

m

)2
(dp)2 , (128)

where we have introduced the Planck scale L and have
chosen the natural units ~= c=1. A detailed physical dis-
cussion of the dilational invariant system of units ~= c=
=G=4πε0=1 was presented in ref. [15]. G is the Newton
constant and ε0 is the permittivity of the vacuum.

Extending this two-dim result to a 2n-dim phase space
result requires to have for Clifford basis the elements epμ ,
eqμ , where μ=1, 2, 3, . . . n. The action in the 2n-dim phase
space is:

S = m

∫ √

(dqμdqμ) +

(
L

m

)2
(dpμdpμ) =

= m

∫
dτ

√

1 +

(
L

m

)2
(dpμ/dτ )(dpμ/dτ ) ,

(129)

where we have factored-out of the square-root the infinite-
simal proper-time displacement (dτ )2= dqμdqμ.

One can recognize the action (129), up to a numerical
factor of m/a, where a is the proper acceleration, as the
same action for a sub-maximally accelerated particle given
by Nesterenko [53] by rewriting (dpμ/dτ )=m(d2xμ/dτ 2):

S = m

∫
dτ
√
1 + L2(d2xμ/dτ 2)(d2xμ/dτ 2) . (130)

Postulating that the maximal proper-acceleration is given
in terms of the speed of light and the minimal Planck scale
by a= c2/L=1/L, the action above gives the Nesterenko
action, up to a numerical m/a factor:

S = m

∫
dτ
√
1 + a−2(d2xμ/dτ 2)(d2xμ/dτ 2) . (131)
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The proper-acceleration is orthogonal to the proper-
velocity and this can be easily verified by differentiating
the time-like proper-velocity squared:

V 2 =
dxμ

dτ

dxμ
dτ

= V μVμ = 1 > 0⇒

⇒
dV μ

dτ
Vμ =

d2xμ

dτ 2
Vμ = 0 ,

(132)

which implies that the proper-acceleration is space-like:

g2(τ ) = −
d2xμ

dτ 2
d2xμ
dτ 2

> 0⇒

⇒ S = m

∫
dτ

√

1−
g2

a2
= m

∫
dω ,

(133)

where the analog of the Lorentz time-dilation factor for a
sub-maximally accelerated particle is given by

dω = dτ

√

1−
g2(τ )

a2
. (134)

Therefore the dynamics of a sub-maximally accelerated
particle can be reinterpreted as that of a particle moving in
the spacetime tangent bundle whose Finsler-like metric is

(dω)2=gμν(x
μ, dxμ)dxμdxν=(dτ )2

(

1−
g2(τ )

a2

)

. (135)

The invariant time now is no longer the standard proper-
time τ but is given by the quantity ω(τ ). The deep connection
between the physics of maximal acceleration and Finsler
geometry has been analyzed by [56]. This sort of actions
involving second derivatives have also been studied in the
construction of actions associated with rigid particles
(strings) [57], [58], [59], [60] among others.

The action is real-valued if, and only if, g2<a2 in the
same fashion that the action in Minkowski spacetime is real-
valued if, and only if, v2<c2. This is the physical reason
why there is an upper bound in the proper-acceleration. In
the special case of uniformly-accelerated motion g(τ )= g0=
= constant, the trajectory of the particle in Minkowski space-
time is a hyperbola.

Most recently, an Extended Relativity Theory in Born-
Clifford-Phase spaces with an upper and lower length scales
(infrared/ultraviolet cutoff ) has been constructed [138]. The
invariance symmetry associated with an 8D Phase Space
leads naturally to the real Clifford algebra Cl(2, 6, R) and
complexified Clifford ClC (4) algebra related to Twistors.
The consequences of Mach’s principle of inertia within the
context of Born’s Dual Phase Space Relativity Principle
were also studied in [138] and they were compatible with
the Eddington-Dirac large numbers coincidence and with
the observed values of the anomalous Galileo-Pioneer ac-
celeration. The modified Newtonian dynamics due to the
upper/lower scales and modified Schwarzschild dynamics
due the maximal acceleration were also provided.

6.2 Invariance under the U(1, 3) Group

In this section we will review in detail the principle of
Maximal-acceleration Relativity [68] from the perspective
of 8D Phase Spaces and the U (1, 3) Group. The U (1, 3)=
=SU (1, 3) ⊗ U(1) Group transformations, which leave in-
variant the phase-space intervals under rotations, velocity
and acceleration boosts, were found by Low [74] and can be
simplified drastically when the velocity/acceleration boosts
are taken to lie in the z-direction, leaving the transverse direc-
tions x, y, px, py intact; i. e., the U (1, 1)=SU (1, 1)⊗U (1)
subgroup transformations that leave invariant the phase-
space interval are given by (in units of ~= c=1)

(dσ)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

= (dτ )2
[

1 +
(dE/dτ )2 − (dP/dτ )2

b2

]

=

= (dτ )2
[

1−
m2g2(τ )

m2
PA

2
max

]

,

(136)

where we have factored out the proper time infinitesimal
(dτ )2= dT 2− dX2 in eq.-(136) and the maximal proper-
force is set to be b≡mPAmax. mP is the Planck mass
1/LP so that b=(1/LP )2, may also be interpreted as the
maximal string tension when LP is the Planck scale.

The quantity g(τ ) is the proper four-acceleration of a
particle of mass m in the z-direction which we take to be
X . Notice that the invariant interval (dσ)2 in eq.-(136) is
not strictly the same as the interval (dω)2 of the Nesterenko
action eq.-(131), which was invariant under a pseudo-
complexification of the Lorentz group [61]. Only when
m=mP , the two intervals agree. The interval (dσ)2 de-
scribed by Low [74] is U (1, 3)-invariant for the most general
transformations in the 8D phase-space. These transforma-
tions are rather elaborate, so we refer to the references [74]
for details. The analog of the Lorentz relativistic factor in eq.-
(136) involves the ratios of two proper forces. One variable
force is given by ma and the maximal proper force sustained
by an elementary particle of mass mP (a Planckton) is
assumed to be Fmax=mPlanckc

2/LP . When m=mP , the
ratio-squared of the forces appearing in the relativistic factor
of eq.-(136) becomes then g2/A2max, and the phase space
interval (136) coincides with the geometric interval of (131).

The transformations laws of the coordinates in that leave
invariant the interval (136) are [74]:

T ′ = T cosh ξ +

(
ξvX

c2
+
ξaP

b2

)
sinh ξ

ξ
, (137)

E′ = E cosh ξ + (−ξaX + ξvP )
sinh ξ

ξ
, (138)

X ′ = X cosh ξ +

(

ξvT −
ξaE

b2

)
sinh ξ

ξ
, (139)
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P ′ = P cosh ξ +

(
ξvE

c2
+ ξaT

)
sinh ξ

ξ
. (140)

The ξv is velocity-boost rapidity parameter and the ξa
is the force/acceleration-boost rapidity parameter of the
primed-reference frame. They are defined respectively (in
the special case when m=mP ):

tanh

(
ξv
c

)

=
v

c
,

tanh
ξa
b
=

ma

mPAmax
. (141)

The effective boost parameter ξ of the U (1, 1) subgroup
transformations appearing in eqs.-(137)–(140) is defined in
terms of the velocity and acceleration boosts parameters ξv ,
ξa respectively as:

ξ ≡

√
ξ2v
c2
+
ξ2a
b2
. (142)

Our definition of the rapidity parameters are different
than those in [74].

Straightforward algebra allows us to verify that these
transformations leave the interval of eq.-(136) in classical
phase space invariant. They are are fully consistent with
Born’s duality Relativity symmetry principle [49] (Q,P )→
→ (P,−Q). By inspection we can see that under Born dual-
ity, the transformations in eqs.-(137)–(140) are rotated into
each other, up to numerical b factors in order to match
units. When on sets ξa=0 in (137)–(140) one recovers
automatically the standard Lorentz transformations for the
X,T and E,P variables separately, leaving invariant the
intervals dT 2−dX2=(dτ )2 and (dE2−dP 2)/b2 separately.

When one sets ξv =0 we obtain the transformations rules
of the events in Phase space, from one reference-frame into
another uniformly-accelerated frame of reference, a= const,
whose acceleration-rapidity parameter is in this particular
case:

ξ ≡
ξa
b
, tanh ξ =

ma

mPAmax
. (143)

The transformations for pure acceleration-boosts in are:

T ′ = T cosh ξ +
P

b
sinh ξ , (144)

E′ = E cosh ξ − bX sinh ξ , (145)

X ′ = X cosh ξ −
E

b
sinh ξ , (146)

P ′ = P cosh ξ + bT sinh ξ . (147)

It is straightforward to verify that the transformations
(144)–(146) leave invariant the fully phase space interval

(136) but does not leave invariant the proper time interval
(dτ )2= dT 2− dX2. Only the combination:

(dσ)2 = (dτ )2
(

1−
m2g2

m2
PA

2
max

)

(148)

is truly left invariant under pure acceleration-boosts (144)–
(146). One can verify as well that these transformations
satisfy Born’s duality symmetry principle:

(T,X)→ (E,P ) , (E,P )→ (−T,−X) (149)

and b→ 1
b . The latter Born duality transformation is nothing

but a manifestation of the large/small tension duality prin-
ciple reminiscent of the T -duality symmetry in string theory;
i. e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compactifi-
cations and the Ultraviolet/Infrared entanglement in Non-
commutative Field Theories. Hence, Born’s duality prin-
ciple in exchanging coordinates for momenta could be the
underlying physical reason behind T -duality in string theory.

The composition of two successive pure acceleration-
boosts is another pure acceleration-boost with acceleration
rapidity given by ξ′′= ξ+ ξ′. The addition of proper four-
forces (accelerations) follows the usual relativistic compo-
sition rule:

tanh ξ′′ = tanh(ξ + ξ′) =
tanh ξ + tanh ξ′

1 + tanh ξ tanh ξ′
⇒

⇒
ma′′

mPA
=

ma
mPA

+ ma′

mPA

1 + m2aa′

m2
PA

2

,

(150)

and in this fashion the upper limiting proper acceleration is
never surpassed like it happens with the ordinary Special
Relativistic addition of velocities.

The group properties of the full combination of velocity
and acceleration boosts (137)–(140) requires much more
algebra [68]. A careful study reveals that the composition
rule of two succesive full transformations is given by ξ′′=
= ξ+ ξ′ and the transformation laws are preserved if, and
only if, the ξ ; ξ′ ; ξ′′ . . . parameters obeyed the suitable
relations:

ξa
ξ
=
ξ′a
ξ′
=
ξ′′a
ξ′′
=

ξ′′a
ξ + ξ′

, (151)

ξv
ξ
=
ξ′v
ξ′
=
ξ′′v
ξ′′
=

ξ′′v
ξ + ξ′

. (152)

Finally we arrive at the composition law for the effective,
velocity and acceleration boosts parameters ξ′′; ξ′′v ; ξ′′a re-
spectively:

ξ′′v = ξv + ξ
′
v , (153)

ξ′′a = ξa + ξ
′
a , (154)

ξ′′ = ξ + ξ′ . (155)
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The relations (151, 152, 153, 154, 155) are required in
order to prove the group composition law of the transfor-
mations of (137)–(140) and, consequently, in order to have
a truly Maximal-Acceleration Phase Space Relativity theory
resulting from a phase-space change of coordinates in the
cotangent bundle of spacetime.

6.3 Planck-Scale Areas are invariant under acceleration
boosts

Having displayed explicitly the Group transformations rules
of the coordinates in Phase space we will show why infinite
acceleration-boosts (which is not the same as infinite proper
acceleration) preserve Planck-Scale Areas [68] as a result of
the fact that b=(1/L2P ) equals the maximal invariant force,
or string tension, if the units of ~= c=1 are used.

At Planck-scale LP intervals/increments in one reference
frame we have by definition (in units of ~= c=1): ΔX =
=ΔT =LP and ΔE=ΔP = 1

LP
where b≡ 1

L2P
is the max-

imal tension. From eqs.-(137)–(140) we get for the trans-
formation rules of the finite intervals ΔX , ΔT , ΔE, ΔP ,
from one reference frame into another frame, in the infinite
acceleration-boost limit ξ→∞,

ΔT ′ = LP (cosh ξ + sinh ξ)→∞ , (156)

ΔE′ =
1

LP
(cosh ξ − sinh ξ)→ 0 (157)

by a simple use of L’Hôpital’s rule or by noticing that both
cosh ξ; sinh ξ functions approach infinity at the same rate

ΔX ′ = LP (cosh ξ − sinh ξ)→ 0 , (158)

ΔP ′ =
1

LP
(cosh ξ + sinh ξ)→∞ , (159)

where the discrete displacements of two events in Phase Spa-
ce are defined: ΔX =X2−X1=LP , ΔE=E2−E1= 1

LP
,

ΔT =T2−T1=LP and ΔP =P2−P1= 1
LP
.

Due to the identity:

(cosh ξ+sinh ξ)(cosh ξ− sinh ξ)= cosh2 ξ− sinh2 ξ=1 (160)

one can see from eqs.-(156)–(159) that the Planck-scale
Areas are truly invariant under infinite acceleration-boosts
ξ=∞:

ΔX ′ΔP ′ = 0×∞ = ΔXΔP (cosh2 ξ− sinh2 ξ) =

= ΔXΔP =
LP
LP

= 1 ,
(161)

ΔT ′ΔE′ =∞×0 = ΔTΔE(cosh2 ξ− sinh2 ξ) =

= ΔTΔE =
LP
LP

= 1 ,
(162)

ΔX ′ΔT ′ = 0×∞ = ΔXΔT (cosh2 ξ− sinh2 ξ) =

= ΔXΔT = (LP )
2 ,

(163)

ΔP ′ΔE′ =∞×0 = ΔPΔE(cosh2 ξ− sinh2 ξ) =

= ΔPΔE =
1

L2P
.

(164)

It is important to emphasize that the invariance property
of the minimal Planck-scale Areas (maximal Tension) is not
an exclusive property of infinite acceleration boosts ξ=∞,
but, as a result of the identity cosh2 ξ− sinh2 ξ=1, for
all values of ξ, the minimal Planck-scale Areas are always
invariant under any acceleration-boosts transformations.
Meaning physically, in units of ~= c=1, that the Maximal
Tension (or maximal Force) b= 1

L2P
is a true physical invar-

iant universal quantity. Also we notice that the Phase-space
areas, or cells, in units of ~, are also invariant! The pure-
acceleration boosts transformations are “symplectic”. It can
be shown also that areas greater (smaller) than the Planck-
area remain greater (smaller) than the invariant Planck-area
under acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the
infinite red-shift effects when light signals barely escape
Black hole Horizons reaching an asymptotic observer with an
infinite red shift factor. The important fact is that the Planck-
scale Areas are truly maintained invariant under acceleration-
boosts. This could reveal very important information about
Black-holes Entropy and Holography. The logarithmic cor-
rections to the Black-Hole Area-Entropy relation were ob-
tained directly from Clifford-algebraic methods in C-spaces
[21], in addition to the derivation of the maximal Planck
temperature condition and the Schwarzschild radius in terms
of the Thermodynamics of a gas of p-loop-oscillators quanta
represented by area-bits, volume-bits, . . . hyper-volume-bits
in Planck scale units. Minimal loop-areas, in Planck units, is
also one of the most important consequences found in Loop
Quantum Gravity long ago [111].

7 Some further important physical applications related
to the C-space physics

7.1 Relativity of signature

In previous sections we have seen how Clifford algebra can
be used in the formulation of the point particle classical
and quantum theory. The metric of spacetime was assumed,
as usually, to have the Minkowski signature, and we have
used the choice (+ − −−). There were arguments in the
literature of why the spacetime signature is of the Minkowski
type [113, 43]. But there are also studies in which signature
changes are admitted [112]. It has been found out [16, 15, 30]
that within Clifford algebra the signature of the underlying
space is a matter of choice of basis vectors amongst available
Clifford numbers. We are now going to review those impor-
tant topics.

Suppose we have a 4-dimensional space V4 with signature
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(+ + ++). Let eμ, μ=0, 1, 2, 3, be basis vectors satisfying

eμ ∙ eν ≡
1

2
(eμeν + eνeμ) = δμν , (165)

where δμν is the Euclidean signature of V4. The vectors eμ
can be used as generators of Clifford algebra C4 over V4 with
a generic Clifford number (also called polyvector or Clifford
aggregate) expanded in term of eJ=(1,eμ,eμν ,eμνα,eμναβ),
μ<ν <α<β,

A = aJeJ = a+ aμeμ + a
μνeμeν +

+ aμναeμeνeα + a
μναβeμeνeαeβ .

(166)

Let us consider the set of four Clifford numbers (e0, eie0),
i=1, 2, 3, and denote them as

e0 ≡ γ0 ,

eie0 ≡ γi .
(167)

The Clifford numbers γμ, μ=0, 1, 2, 3, satisfy

1

2
(γμγν + γνγμ) = ημν , (168)

where ημν =diag(1,−1,−1,−1) is the Minkowski tensor.
We see that the γμ behave as basis vectors in a 4-dimensional
space V1,3 with signature (+−−−). We can form a Clifford
aggregate

α = αμγμ , (169)

which has the properties of a vector in V1,3. From the point
of view of the space V4 the same object α is a linear
combination of a vector and bivector:

α = α0e0 + α
ieie0 . (170)

We may use γμ as generators of the Clifford al-
gebra C1,3 defined over the pseudo-Euclidean space V1,3. The
basis elements of C1,3 are γJ =(1, γμ, γμν , γμνα, γμναβ),
with μ<ν <α<β. A generic Clifford aggregate in C1,3 is
given by

B = bJγJ = b+ bμγμ + b
μνγμγν +

+ bμναγμγνγα + b
μναβγμγνγαγβ .

(171)

With suitable choice of the coefficients bJ =(b, bμ, bμν ,
bμνα, bμναβ) we have that B of eq.-(171) is equal to A of
eq.-(166). Thus the same number A can be described either
with eμ which generate C4, or with γμ which generate C1,3.
The expansions (171) and (166) exhaust all possible numbers
of the Clifford algebras C1,3 and C4. Those expansions are
just two different representations of the same set of Clifford
numbers (also being called polyvectors or Clifford ag-
gregates).

As an alternative to (167) we can choose

e0e3 ≡ γ̃0 ,

ei ≡ γ̃i ,
(172)

from which we have

1

2
(γ̃μγ̃ν + γ̃ν γ̃μ) = η̃μν (173)

with η̃μν =diag(−1, 1, 1, 1). Obviously γ̃μ are basis vectors
of a pseudo-Euclidean space Ṽ1,3 and they generate the
Clifford algebra over Ṽ1,3 which is yet another representation
of the same set of objects (i. e., polyvectors). The spaces V4,
V1,3 and Ṽ1,3 are different slices through C-space, and they
span different subsets of polyvectors. In a similar way we can
obtain spaces with signatures (+ − ++), (+ + −+), (+ +
+−), (−+−−), (−−+−), (−−−+) and corresponding
higher dimensional analogs. But we cannot obtain signatures
of the type (+ + −−), (+ − +−), etc. In order to obtain
such signatures we proceed as follows.

4-space. First we observe that the bivector Ī4-space.
e3e4 satisfies Ī2=−1, commutes with e1, e2 and anticom-
mutes with e3, e4. So we obtain that the set of Clifford
numbers γμ=(e1Ī , e2Ī , e3, e3) satisfies

γμ ∙ γν = η̄μν , (174)

where η̄=diag(−1,−1, 1, 1).
8-space. Let eA be basis vectors of 8-dimensional

vector space with signature (+ + + + + + + +). Let us
decompose

eA = (eμ, eμ̄) , μ = 0, 1, 2, 3 ,

μ̄ = 0̄, 1̄, 2̄, 3̄ .
(175)

The inner product of two basis vectors

eA ∙ eB = δAB , (176)

then splits into the following set of equations:

eμ ∙ eν = δμν ,

eμ̄ ∙ eν̄ = δμ̄ν̄ ,

eμ ∙ eν̄ = 0 .

(177)

The number Ī = e0̄e1̄e2̄e3̄ has the properties

Ī2 = 1 ,

Īeμ = eμĪ ,

Īeμ̄ = −eμ̄Ī .

(178)

The set of numbers

γμ = eμ ,

γμ̄ = eμ̄Ī
(179)
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satisfies
γμ ∙ γν = δμν ,

γμ̄ ∙ γν̄ = −δμν ,

γμ ∙ γμ̄ = 0 .

(180)

The numbers (γμ, γμ̄) thus form a set of basis vectors of
a vector space V4,4 with signature (+ + ++−−−−).

10-space. Let eA = (eμ, eμ̄), μ = 1, 2, 3, 4, 5; μ̄ =
= 1̄, 2̄, 3̄, 4̄, 5̄ be basis vectors of a 10-dimensional Euclid-
ean space V10 with signature (+++ . . .). We introduce Ī =
= e1̄e2̄e3̄e4̄e5̄ which satisfies

Ī2 = 1 ,

eμĪ = −Īeμ ,

eμ̄Ī = Īeμ̄ .

(181)

Then the Clifford numbers

γμ = eμĪ ,

γμ̄ = eμ
(182)

satisfy
γμ ∙ γν = −δμν ,

γμ̄ ∙ γν̄ = δμ̄ν̄ ,

γμ ∙ γμ̄ = 0 .

(183)

The set γA=(γμ, γμ̄) therefore spans the vector space of
signature (−−−−−+++++).

The examples above demonstrate how vector spaces of
various signatures are obtained within a given set of poly-
vectors. Namely, vector spaces of different signature are
different subsets of polyvectors within the same Clifford
algebra. In other words, vector spaces of different signature
are different subspaces of C-space, i. e., different sections
through C-space∗.

This has important physical implications. We have argued
that physical quantities are polyvectors (Clifford numbers or
Clifford aggregates). Physical space is then not simply a vec-
tor space (e.g., Minkowski space), but a space of polyvectors,
called C-space, a pandimensional continuum of points, lines,
planes, volumes, etc., altogether. Minkowski space is then
just a subspace with pseudo-Euclidean signature. Other sub-
spaces with other signatures also exist within the pandimen-
sional continuum C and they all have physical significance.
If we describe a particle as moving in Minkowski spacetime
V1,3 we consider only certain physical aspects of the object
considered. We have omitted its other physical properties like
spin, charge, magnetic moment, etc. We can as well describe
the same object as moving in an Euclidean space V4. Again
such a description would reflect only a part of the underlying
physical situation described by Clifford algebra.

∗What we consider here should not be confused with the well known
fact that Clifford algebras associated with vector spaces of different
signatures (p, q), with p+ q = n, are not all isomorphic.

7.2 Clifford space and the conformal group

7.2.1 Line element in C-space of Minkowski spacetime

In 4-dimensional spacetime a polyvector and its square (1)
can be written as

dX = dσ+dxμγμ+
1

2
dxμνγμ∧γν+dx̃μ Iγμ+dσ̃I , (184)

|dX|2= dσ2+dxμdxμ+
1

2
dxμνdxμν−dx̃μdx̃μ−dσ̃2. (185)

The minus sign in the last two terms of the above quad-
ratic form occurs because in 4-dimensional spacetime with
signature (+−−−) we have I2=(γ0γ1γ2γ3)(γ0γ1γ2γ3)=
=−1, and I†I =(γ3γ2γ1γ0)(γ0γ1γ2γ3)=−1.

In eq.-(185) the line element dxμdxμ of the ordinary
special or general relativity is replaced by the line element
in Clifford space. A “square root” of such a generalized line
element is dX of eq.-(184). The latter object is a polyvector,
a differential of the coordinate polyvector field

X = σ + xμγμ +
1

2
xμνγμ ∧ γν + x̃

μIγμ + σ̃I , (186)

whose square is

|X|2 = σ2 + xμxμ +
1

2
xμνxμν − x̃

μx̃μ − σ̃
2 . (187)

The polyvectorX contains not only the vector part xμγμ,
but also a scalar part σ, tensor part xμνγμ∧γν , pseudovector
part x̃μ Iγμ and pseudoscalar part σ̃I . Similarly for the
differential dX .

When calculating the quadratic forms |X|2 and |dX|2 one
obtains in 4-dimensional spacetime with pseudo euclidean
signature (+−−−) the minus sign in front of the squares of
the pseudovector and pseudoscalar terms. This is so, because
in such a case the pseudoscalar unit square in flat spacetime
is I2= I†I =−1. In 4-dimensions I†= I regardless of the
signature.

Instead of Lorentz transformations — pseudo rotations
in spacetime — which preserve xμxμ and dxμdxμ we have
now more general rotations — rotations in C-space — which
preserve |X|2 and |dX|2.

7.2.2 C-space and conformal transformations

From (185) and (187) we see [25] that a subgroup of the Clif-
ford Group, or rotations in C-space is the group SO(4, 2).
The transformations of the latter group rotate xμ, σ, σ̃, but
leave xμν and x̃μ unchanged. Although according to our
assumption physics takes place in full C-space, it is very
instructive to consider a subspace of C-space, that we shall
call conformal space whose isometry group is SO(4, 2).

Coordinates can be given arbitrary symbols. Let us now
use the symbol ημ instead of xμ, and η5,η6 instead of σ̃, σ. In
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other words, instead of (xμ, σ̃, σ) we write (ημ, η5, η6)≡ ηa,
μ=0, 1, 2, 3, a=0, 1, 2, 3, 5, 6. The quadratic form reads

ηaηa = gabη
aηb (188)

with
gab = diag(1,−1,−1,−1,−1, 1) (189)

being the diagonal metric of the flat 6-dimensional space, a
subspace of C-space, parametrized by coordinates ηa. The
transformations which preserve the quadratic form (188)
belong to the group SO(4, 2). It is well known [38, 39]
that the latter group, when taken on the cone

ηaηa = 0 (190)

is isomorphic to the 15-parameter group of conformal trans-
formations in 4-dimensional spacetime [40].

Let us consider first the rotations of η5 and η6 which
leave coordinates ημ unchanged. The transformations that
leave −(η5)2+(η6)2 invariant are

η′5 = η5 coshα+ η6 sinhα

η′6 = η5 sinhα+ η6 coshα ,
(191)

where α is a parameter of such pseudo rotations.
Instead of the coordinates η5, η6 we can introduce [38,

39] new coordinates κ, λ according to

κ = η5 − η6 ,

λ = η5 + η6 .
(192)

In the new coordinates the quadratic form (188) reads

ηaηa = ημημ − (η
5)2 − (η6)2 = ημημ − κλ . (193)

The transformation (191) becomes

κ′ = ρ−1κ , (194)

λ′ = ρλ , (195)

where ρ= eα. This is just a dilation of κ and the inverse
dilation of λ.

Let us now introduce new coordinates xμ∗

ημ = κxμ . (196)

Under the transformation (196) we have

η′μ = ημ , (197)

but
x′μ = ρxμ , (198)

the latter transformation is dilatation of coordinates xμ.
∗These new coordinates xμ should not be confused with coordinate xμ

used in section 2.

Considering now a line element

dηadηa = dημdημ − dκd , λ (199)

we find that on the cone ηaηa=0 it is

dηadηa = κ2 dxμdxμ (200)

even if κ is not constant. Under the transformation (194) we
have

dη′adη′a = dηadηa , (201)

dx′μdx′μ = ρ2 dxμdxμ . (202)

The last relation is a dilatation of the 4-dimensional line
element related to coordinates xμ. In a similar way also other
transformations of the group SO(4, 2) that preserve (190)
and (201) we can rewrite in terms of of the coordinates xμ.
So we obtain — besides dilations — translations, Lorentz
transformations, and special conformal transformations; al-
together they are called conformal transformations. This is a
well known old observation [38, 39] and we shall not discuss
it further. What we wanted to point out here is that conformal
group SO (4, 2) is a subgroup of the Clifford group.

7.2.3 On the physical interpretation of the conformal
group SO(4, 2)

In order to understand the physical meaning of the transfor-
mations (196) from the coordinates ημ to the coordinates xμ

let us consider the following transformation in 6-dimensional
space V6:

xμ = κ−1ημ ,

α = −κ−1 ,

Λ = λ− κ−1ημημ .

(203)

This is a transformation from the coordinates ηa=
=(ημ, κ, λ) to the new coordinates xa=(xμ, α,Λ). No extra
condition on coordinates, such as (190), is assumed now. If
we calculate the line element in the coordinates ηa and xa,
respectively, we find the the following relation [27]

dημdην gμν − dκ dλ = α−2(dxμdxν gμν − dαdΛ) . (204)

We can interpret a transformation of coordinates pass-
ively or actively. Geometric calculus clarifies significantly
the meaning of passive and active transformations. Under
a passive transformation a vector remains the same, but
its components and basis vector change. For a vector dη=
= dηaγa we have

dη′ = dη′aγ′a = dηaγa = dη (205)

with

dη′a =
∂η′a

∂ηb
dηb (206)
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and

γ′a =
∂ηb

∂η′a
γb . (207)

Since the vector is invariant, so it is its square:

dη′2 = dη′aγ′a dη′bγ′b = dη′adη′bg′ab = dηadηbgab . (208)

From (207) we read that the well known relation between
new and old coordinates:

g′ab =
∂ηc

∂η′a
∂ηd

∂η′b
gcd . (209)

Under an active transformation a vector changes. This
means that in a fixed basis the components of a vector
change:

dη′ = dη′aγa (210)

with

dη′a =
∂η′a

∂ηb
dηb . (211)

The transformed vector dη′ is different from the original
vector dη = dηaγa. For the square we find

dη′2 = dη′adη′bgab =
∂η′a

∂ηc
∂η′b

∂ηd
dηcdηdgab , (212)

i. e., the transformed line element dη′2 is different from the
original line element.

Returning now to the coordinate transformation (203)
with the identification η′a=xa, we can interpret eq.-(204)
passively or actively.

In the passive interpretation the metric tensor and the
components dηa change under a transformation, so that in
our particular case the relation (208) becomes

dxa dxb g′ab = α−2(dxμdxν gμν − dα dΛ) =

= dηadηbgab = dημdηνgμν − dκ dλ
(213)

with

g′ab = α−2




gμν 0 0
0 0 − 1

2
0 − 1

2 0



 ,

gab =




gμν 0 0
0 0 − 1

2
0 − 1

2 0



 .

(214)

In the above equation the same infinitesimal distance
squared is expressed in two different coordinates ηa or xa.

In active interpretation, only dηa change, whilst the
metric remains the same, so that the transformed element is

dxa dxb gab = dxμdxν gμν − dα dΛ =

= κ−2 dηadηbgab = κ−2(dημdηνgμν − dκ dλ) .
(215)

The transformed line element dxadxa is physically dif-
ferent from the original line element dηadηa by a factor
α2=κ−2.

A rotation (191) in the plane (η5, η6) i. e. the transforma-
tion (194), (195) of (κ, λ) manifests in the new coordinates
xa as a dilatation of the line element dxadxa=κ−2 dηaηa:

dx′adx′a = ρ2dxadxa . (216)

All this is true in the full space V6. On the cone ηaηa=0
we have Λ=λ−κημημ=0, dΛ=0 so that dxadxa=
= dxμdxμ and we reproduce the relations (202) which is
a dilatation of the 4-dimensional line element. It can be
interpreted either passively or actively. In general, the pseudo
rotations in V6, that is, the transformations of the 15-param-
eter group SO (4, 2) when expressed in terms of coordinates
xa, assume on the cone ηaηa=0 the form of the ordinary
conformal transformations. They all can be given the active
interpretation [27, 28].

We started from the new paradigm that physical phe-
nomena actually occur not in spacetime, but in a larger
space, the so called Clifford space or C-space which is a
manifold associated with the Clifford algebra generated by
the basis vectors γμ of spacetime. An arbitrary element of
Clifford algebra can be expanded in terms of the objects EA,
A=1, 2, . . . , 2D, which include, when D=4, the scalar unit
1, vectors γμ, bivectors γμ ∧ γν , pseudovectors Iγμ and the
pseudoscalar unit I ≡ γ5. C-space contains 6-dimensional
subspace V6 spanned∗ by 1, γμ, and γ5. The metric of
V6 has the signature (+ − − − −+). It is well known
that the rotations in V6, when taken on the conformal cone
ηaηa=0, are isomorphic to the non linear transformations of
the conformal group in spacetime. Thus we have found out
that C-space contains — as a subspace — the 6-dimensional
space V6 in which the conformal group acts linearly. From the
physical point of view this is an important and, as far as we
know, a novel finding, although it might look mathematically
trivial. So far it has not been clear what could be a physical
interpretation of the 6 dimensional conformal space. Now we
see that it is just a subspace of Clifford space. The two extra
dimensions, parameterized by κ and λ, are not the ordinary
extra dimensions; they are coordinates of Clifford space C4
of the 4-dimensional Minkowski spacetime V4.

We take C-space seriously as an arena in which physics
takes place. The theory is a very natural, although not trivial,
extension of the special relativity in spacetime. In special
relativity the transformations that preserve the quadratic form

∗It is a well known observation that the generators Lab of SO (4, 2)
can be realized in terms of 1, γμ, and γ5. Lorentz generators are
Mμν =− i

4
[γμ, γν ], dilatations are generated by D=L65=− 1

2
γ5,

translations by Pμ=L5μ+L6μ= 1
2
γμ(1− iγ5) and the special conform-

al transformations by L5μ−L6μ= 1
2
γμ(1+ iγ5). This essentially means

that the generators are Lab=−
i
4
[ea, eb] with ea=(γμ, γ5,1), where care

must be taken to replace commutators [1, γ5] and [1, γμ] with 2γ5 and 2γμ.
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are given an active interpretation: they relate the objects or
the systems of reference in relative translational motion.
Analogously also the transformations that preserve the qua-
dratic form (185) or (187) in C-space should be given an
active interpretation. We have found that among such trans-
formations (rotations in C-space) there exist the transform-
ations of the group SO (4, 2). Those transformations also
should be given an active interpretation as the transforma-
tions that relate different physical objects or reference frames.
Since in the ordinary relativity we do not impose any con-
straint on the coordinates of a freely moving object so we
should not impose any constraint in C-space, or in the sub-
space V6. However, by using the projective coordinate trans-
formation (203), without any constraint such as ηaηa=0,
we arrived at the relation (215) for the line elements. If
in the coordinates ηa the line element is constant, then
in the coordinates xa the line element is changing by a
scale factor κ which, in general, depends on the evolution
parameter τ . The line element need not be one associated
between two events along a point particle’s worldline: it can
be between two arbitrary (space-like or time-like) events
within an extended object. We may consider the line element
(≡ distance squared) between two infinitesimally separated
events within an extended object such that both events have
the same coordinate label Λ so that dΛ=0. Then the 6-
dimensional line element dxμdxν gμν − dα dΛ becomes the
4-dimensional line element dxμdxν gμν and, because of
(215) it changes with τ when κ does change. This means that
the object changes its size, it is moving dilatationally [27, 28].
We have thus arrived at a very far reaching observation that
the relativity in C-space implies scale changes of physical
objects as a result of free motion, without presence of any
forces or such fields as assumed in Weyl theory. This was
advocated long time ago [27, 28], but without recurse to C-
space. However, if we consider the full Clifford space C and
not only the Minkowski spacetime section through C, then
we arrive at a more general dilatational motion [17] related
to the polyvector coordinates xμν , xμνα and x0123≡ σ̃ (also
denoted s) as reviewed in section 3.

7.3 C-space Maxwell Electrodynamics

Finally, in this section we will review and complement the
proposal of ref. [75] to generalize Maxwell Electrodynamics
to C-spaces, namely, construct the Clifford algebra-valued
extension of the Abelian field strength F = dA associated
with ordinary vectors Aμ. Using Clifford algebraic methods
we shall describe how to generalize Maxwell’s theory of
Electrodynamics associated with ordinary point-charges to
a generalized Maxwell theory in Clifford spaces involving
extended charges and p-forms of arbitrary rank, not unlike
the couplings of p-branes to antisymmetric tensor fields.

Based on the standard definition of the Abelian field
strength F = dA we shall use the same definition in terms

of polyvector-valued quantities and differential operators in
C-space

A = ANE
N = φ1 + Aμγ

μ + Aμνγ
μ ∧ γν + . . . . (217)

The first component in the expansion φ is a scalar field;
Aμ is the standard Maxwell field Aμ, the third component
Aμν is a rank two antisymmetric tensor field. . . and the
last component of the expansion is a pseudo-scalar. The fact
that a scalar and pseudo-scalar field appear very naturally
in the expansion of the C-space polyvector valued field AN
suggests that one could attempt to identify the latter fields
with a dilaton-like and axion-like field, respectively. Once
again, in order to match units in the expansion (217), it
requires the introduction of suitable powers of a length scale
parameter, the Planck scale which is conveniently set to unity.

The differential operator is the generalized Dirac operator

d = EM∂M = 1∂σ + γ
μ∂xμ + γ

μ ∧ γν∂xμν + . . . (218)

the polyvector-valued indicesM,N, . . . range from 1,2 . . . 2D

since a Clifford algebra in D-dim has 2D basis elements. The
generalized Maxwell field strength in C-space is

F = dA = EM∂M (E
NAN ) = EMEN∂MAN =

=
1

2
{EM , EN}∂MAN +

1

2
[EM , EN ]∂MAN =

=
1

2
F(MN){E

M , EN}+
1

2
F[MN ][E

M , EN ] ,

(219)

where one has decomposed the Field strength components
into a symmetric plus antisymmetric piece by simply writing
the Clifford geometric product of two polyvectors EMEN

as the sum of an anticommutator plus a commutator piece
respectively,

F(MN) =
1

2
(∂MAN + ∂NAM ) , (220)

F[MN ] =
1

2
(∂MAN − ∂NAM ) . (221)

Let the C-space Maxwell action (up to a numerical
factor) be given in terms of the antisymmetric part of the
field strength:

I[A] =

∫
[DX]F[MN ]F

[MN ] , (222)

where [DX] is a C-space measure comprised of all the
(holographic) coordinates degrees of freedom

[DX] ≡ (dσ)(dx0dx1 . . .)(dx01dx02 . . .) . . .

. . . (dx012...D) .
(223)

Action (222) is invariant under the gauge transformations

A′M = AM + ∂MΛ . (224)
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The matter-field minimal coupling (interaction term) is:
∫
AMdX

M =

∫
[DX]JMA

M , (225)

where one has reabsorbed the coupling constant, the C-space
analog of the electric charge, within the expression for the
A field itself. Notice that this term (225) has the same form
as the coupling of p-branes (whose world volume is (p+1)-
dimensional) to antisymmetric tensor fields of rank p+ 1.

The open line integral in C-space of the matter-field
interaction term in the action is taken from the polyparticle’s
proper time interval S ranging from −∞ to +∞ and can be
recast via the Stokes law solely in terms of the antisymmetric
part of the field strength. This requires closing off the integ-
ration contour by a semi-circle that starts at S=+∞, goes
all the way to C-space infinity, and comes back to the point
S=−∞. The field strength vanishes along the points of the
semi-circle at infinity, and for this reason the net contribution
to the contour integral is given by the open-line integral.
Therefore, by rewriting the

∫
AMdX

M via the Stokes law
relation, it yields
∫
AMdX

M=

∫
F[MN ]dS

[MN ]=

∫
F[MN ]X

MdXN=

=

∫
dSF[MN ]X

M (dXN/dS) ,
(226)

where in order to go from the second term to the third
term in the above equation we have integrated by parts and
then used the Bianchi identity for the antisymmetric compo-
nent F[MN ].

The integration by parts permits us to go from a C-space
domain integral, represented by the Clifford-value hyper-
surface SMN , to a C-space boundary-line integral

∫
dSMN =

1

2

∫
(XMdXN −XNdXM ) . (227)

The pure matter terms in the action are given by the
analog of the proper time integral spanned by the motion of
a particle in spacetime:

κ

∫
dS = κ

∫
dS

√
dXM

dS

dXM
dS

, (228)

where κ is a parameter whose dimensions are massp+1 and
S is the polyparticle proper time in C-space.

The Lorentz force relation in C-space is directly obtained
from a variation of

∫
dSF[MN ]X

M (dXN/dS) , (229)

and

κ

∫
dS = κ

∫ √
dXMdXM (230)

with respect to the XM variables:

κ
d2XM
dS2

= eF[MN ]
dXN

dS
, (231)

where we have re-introduced the C-space charge e back into
the Lorentz force equation in C-space. A variation of the
terms in the action w. r. t the AM field furnishes the following
equation of motion for the A fields:

∂MF
[MN ] = JN . (232)

By taking derivatives on both sides of the last equation
with respect to the XN coordinate, one obtains due to the
symmetry condition of ∂M∂N versus the antisymmetry of
F [MN ] that

∂N∂MF
[MN ] = 0 = ∂NJ

N = 0 , (233)

which is precisely the continuity equation for the current.
The continuity equation is essential to ensure that the

matter-field coupling term of the action
∫
AMdX

M =
=
∫
[DX]JMAM is also gauge invariant, which can be read-

ily verified after an integration by parts and setting the
boundary terms to zero:

δ

∫
[DX]JMAM =

∫
[DX]JM∂MΛ =

= −
∫
[DX](∂MJ

M )Λ = 0.
(234)

Gauge invariance also ensures the conservation of the
energy-momentum (via Noether’s theorem) defined in terms
of the Lagrangian density variation. We refer to [75] for
further details.

The gauge invariant C-space Maxwell action as given in
eq.-(222) is in fact only a part of a more general action given
by the expression

I[A] =

∫
[DX]F † ∗F =

∫
[DX] < F †F >scalar . (235)

This action can also be written in terms of components,
up to dimension-dependent numerical coefficients, as [75]:

I[A] =

∫
[DX] (F(MN)F

(MN) + F[MN ]F
[MN ]) . (236)

For rigor, one should introduce the numerical coefficients
in front of the F terms, noticing that the symmetric combina-
tion should have a different dimension-dependent coefficient
than the anti-symmetric combination since the former in-
volves contractions of {EM , EN}∗{EM , EN} and the latter
contractions of [EM , EN ]∗[EM , EN ].

The latter action is strictly speaking not gauge invariant,
since it contains not only the antisymmetric but also the
symmetric part of F . It is invariant under a restricted gauge
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symmetry transformations. It is invariant (up to total deriva-
tives) under infinitesimal gauge transformations provided the
symmetric part of F is divergence-free ∂MF (MN)=0 [75].
This divergence-free condition has the same effects as if one
were fixing a gauge leaving a residual symmetry of restricted
gauge transformations such that the gauge symmetry pa-
rameter obeys the Laplace-like equation ∂M∂MΛ=0. Such
residual (restricted) symmetries are precisely those that leave
invariant the divergence-free condition on the symmetric part
of F . Residual, restricted symmetries occur, for example, in
the light-cone gauge of p-brane actions leaving a residual
symmetry of volume-preserving diffs. They also occur in
string theory when the conformal gauge is chosen leaving
a residual symmetry under conformal reparametrizations;
i. e. the so-called Virasoro algebras whose symmetry trans-
formations are given by holomorphic and anti-holomorphic
reparametrizations of the string world-sheet.

This Laplace-like condition on the gauge parameter is
also the one required such that the action in [75] is invariant
under finite (restricted) gauge transformations since under
such restricted finite transformations the Lagrangian changes
by second-order terms of the form (∂M∂NΛ)

2, which are
total derivatives if, and only if, the gauge parameter is re-
stricted to obey the analog of Laplace equation ∂M∂MΛ=0

Therefore the action of eq-(233) is invariant under a
restricted gauge transformation which bears a resemblance
to volume-preserving diffeomorphisms of the p-branes action
in the light-cone gauge. A lesson that we have from these
considerations is that the C-space Maxwell action written in
the form (235) automatically contains a gauge fixing term.
Analogous result for ordinary Maxwell field is known from
Hestenes work [1], although formulated in a slightly different
way, namely by directlty considering the field equations
without employing the action.

It remains to be seen if this construction of C-space
generalized Maxwell Electrodynamics of p-forms can be
generalized to the non-Abelian case when we replace or-
dinary derivatives by gauge-covariant ones:

F = dA→ F = DA = (dA+ A • A). (237)

For example, one could define the graded-symmetric
product EM •EN based on the graded commutator of Super-
algebras:

[A,B] = AB − (−1)sAsBBA , (238)

sA, sB is the grade of A and B respectively. For bosons
the grade is even and for fermions is odd. In this fashion
the graded commutator captures both the anti-commutator
of two fermions and the commutator of two bosons in one
stroke. One may extend this graded bracket definition to the
graded structure present in Clifford algebras, and define

EM • EN = EMEN − (−1)
sMsNENEM , (239)

sM , sN is the grade of EM and EN respectively. Even or
odd depending on the grade of the basis elements.

One may generalize Maxwell’s theory to Born-Infeld
nonlinear Electrodynamics in C-spacesbased on this exten-
sion of Maxwell Electrodynamics in C-spaces and to couple
a C-space version of a Yang-Mills theory to C-space gravity,
a higher derivative gravity with torsion, this will be left for
a future publication. Clifford algebras have been used in
the past [62] to study the Born-Infeld model in ordinary
spacetime and to write a nonlinear version of the Dirac eq-
uation. The natural incorporation of monopoles in Maxwell’s
theory was investigated by [89] and a recent critical analysis
of “unified” theories of gravity with electromagnetism has
been presented by [90]. Most recently [22] has studied the
covariance of Maxwell’s theory from a Clifford algebraic
point of view.

8 Concluding remarks

We have presented a brief review of some of the most im-
portant features of the Extended Relativity theory in Clifford-
spaces (C-spaces). The “coordinates” X are non-commutat-
ing Clifford-valued quantities which incorporate the lines,
areas, volumes, . . . degrees of freedom associated with the
collective particle, string, membrane, . . . dynamics under-
lying the center-of-mass motion and holographic projections
of the p-loops onto the embedding target spacetime back-
grounds. C-space Relativity incorporates the idea of an in-
variant length, which upon quantization, should lead to the
notion of minimal Planck scale [23]. Other relevant features
are those of maximal acceleration [52], [49]; the invariance
of Planck-areas under acceleration boosts; the resolution of
ordering ambiguities in QFT; supersymmetry; holography
[119]; the emergence of higher derivative gravity with tor-
sion; and the inclusion of variable dimensions/signatures that
allows to study the dynamics of all (closed) p-branes, for all
values of p, in one single unified footing, by starting with
the C-space brane action constructed in this work.

The Conformal group construction presented in sect. 7, as
a natural subgroup of the Clifford group in four-dimensions,
needs to be generalized to other dimensions, in particular
to two dimensions where the Conformal group is infinite-
dimensional. Kinani [130] has shown that the Virasoro al-
gebra can be obtained from generalized Clifford algebras.
The construction of area-preserving diffs algebras, like w∞
and su(∞), from Clifford algebras remains an open problem.
Area-preserving diffs algebras are very important in the study
of membranes and gravity since Higher-dim Gravity in
(m+n)-dim has been shown a while ago to be equivalent
to a lower m-dim Yang-Mills-like gauge theory of diffs of
an internal n-dim space [120] and that amounts to another
explanation of the holographic principle behind the AdS/
CFT duality conjecture [121]. We have shown how C-space

C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces 59



Volume 1 PROGRESS IN PHYSICS April, 2005

Relativity involves scale changes in the sizes of physical
objects, in the absence of forces and Weyl’gauge field of
dilations. The introduction of scale-motion degrees of free-
dom has recently been implemented in the wavelet-based
regularization procedure of QFT by [87]. The connection
to Penrose’s Twistors program is another interesting project
worthy of investigation.

The quantization and construction of QFTs in C-spaces
remains a very daunting task since it may involve the con-
struction of QM in Noncommutative spacetimes [136], braid-
ed Hopf quantum Clifford algebras [86], hypercomplex ex-
tensions of QM like quaternionic and octonionic QM [99],
[97], [98], exceptional group extensions of the Standard
Model [85], hyper-matrices and hyper-determinants [88],
multi-symplectic mechanics, the de Donde-Weyl formula-
tions of QFT [82], to cite a few, for example. The quantiza-
tion program inC-spaces should share similar results as those
in Loop Quantum Gravity [111], in particular the minimal
Planck areas of the expectation values of the area-operator.

Spacetime at the Planck scale may be discrete, fractal,
fuzzy, noncommutative. . . The original Scale Relativity the-
ory in fractal spacetime [23] needs to be extended further
to incorporate the notion of fractal “manifolds”. A scale-
fractal calculus and a fractal-analysis construction that are
esential in building the notion of a fractal “manifold” has
been initiated in the past years by [129]. It remains yet to be
proven that a scale-fractal calculus in fractal spacetimes is
another realization of a Connes Noncommutative Geometry.
Fractal strings/branes and their spectrum have been studied
by [104] that may require generalized Statistics beyond the
Boltzmann-Gibbs, Bose-Einstein and Fermi-Dirac, investi-
gated by [105], [103], among others.

Non-Archimedean geometry has been recognized long
ago as the natural one operating at the minimal Planck scale
and requires the use p-adic numbers instead of ordinary
numbers [101]. By implementing the small/large scale,
ultraviolet/infrared duality principle associated with QFTs in
Noncommutative spaces, see [125] for a review, one would
expect an upper maximum scale [23] and a maximum tem-
perature [21] to be operating in Nature. Non-Archimedean
Cosmologies based on an upper scale has been investigated
by [94].

An upper/lower scale can be accomodated simultane-
ously and very naturally in the q-Gravity theory of [114],
[69] based on bicovariant quantum group extensions of the
Poincaré, Conformal group, where the q deformation param-
eter could be equated to the quantity eΛ/L, such that both
Λ=0 and L=∞, yield the same classical q=1 limit. For
a review of q-deformations of Clifford algebras and their
generalizations see [86], [128].

It was advocated long ago by Wheeler and others, that
information theory [106], set theory and number theory,
may be the ultimate physical theory. The important role of
Clifford algebras in information theory have been known

for some time [95]. Wheeler’s spacetime foam at the Planck
scale may be the background source generation of Noise
in the Parisi-Wu stochastic quantization [47] that is very
relevant in Number theory [100]. The pre-geometry cellular-
networks approach of [107] and the quantum-topos views
based on gravitational quantum causal sets, noncommutative
topology and category theory [109], [110], [124] deserves
a further study within the C-space Relativity framework,
since the latter theory also invokes a Category point of view
to the notion of dimensions. C-space is a pandimensional
continuum [14], [8]. Dimensions are topological invariants
and, since the dimensions of the extended objects change in
C-space, topology-change is another ingredient that needs
to be addressed in C-space Relativity and which may shed
some light into the physical foundations of string/M theory
[118]. It has been speculated that the universal symmetries
of string theory [108] may be linked to Borcherds Vertex
operator algebras (the Monstruous moonshine) that underline
the deep interplay between Conformal Field Theories and
Number theory. A lot remains to be done to bridge together
these numerous branches of physics and mathematics. Many
surprises may lie ahead of us. For a most recent discussion on
the path towards a Clifford-Geometric Unified Field theory
of all forces see [138], [140]. The notion of a Generalized
Supersymmetry in Clifford Superspaces as extensions of
M,F theory algebras was recently advanced in [139].
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C. Castro and M. Pavšič. The Extended Relativity Theory in Clifford Spaces 63



Volume 1 PROGRESS IN PHYSICS April, 2005

117. Vasiliev M. Higher spin gauge theories, star product
and AdS spaces. arXiv: hep-th/9910096. Vasiliev M.,
Prokushkin S. Higher-spin gauge theories with matter. arXiv:
hep-th/9812242, hep-th/9806236.

118. Ne’eman Y., Eizenberg E. Membranes and other extendons
(p-branes). World Scientific Lecture Notes in Physics, v. 39,
1995. Polchinski J. Superstrings. Cambridge University Press,
Cambridge, 2000. Green M., Schwarz J. and Witten E.
Superstring Theory. Cambridge University Press, Cambridge,
1986.

119. Maldacena J. Adv. Theor. Math. Phys., v. 2, 1998, 231.

120. Cho Y., Soh K., Park Q., Yoon J. Phys. Letters, v. B286, 1992,
251. Yoon J. Phys. Letters, v. B308, 1993, 240. Yoon J. Phys.
Letters, v. A292, 2001, 166. Yoon J. Class. Quant. Grav.,
v. 16, 1999, 1863.

121. Castro C. Europhysics Letters, v. 61 (4), 2003, 480. Class.
Quant. Gravity, v. 20, No. 16, 2003, 3577.

122. Zamoldchikov A. B. Teor. Fiz., v. 65, 1985, 347. Pope C. et
al. Nucl. Phys., v. B413, 1994, 413–432. Pope C., Romans L.,
Shen X. Nucl. Phys., v. B339, 1990, 191. Pope C., Romans L.,
Shen X. Phys. Letters, v. B236, 1990, 173. Pope C.,
Romans L., Shen X. Phys. Letters, v. B242, 1990, 401.

123. Dolan B., Tchrakian. Phys. Letters, v. B202 (2), 1988, 211.

124. Hawkins E., Markopoulou F. and Sahlmann H. Evolution in
quantum causal histories. arXiv: hep-th/0302111. Markou-
polu F., Smolin L. Quantum theory from Quantum Gravity.
arXiv: gr-qc/0311059.

125. Douglas M., Nekrasov N. Rev. Mod. Phys., v. 73, 2001, 977–
1029.

126. Eguchi T. Phys. Rev. Lett., v. 44, 1980, 126.

127. Castro C. Maximal-acceleration phase space relativity from
Clifford algebras. arXiv: hep-th/0208138.

128. Abramov V., Kerner R. and Le Roy B. J. Math. Phys., v. 38,
1997, 1650–1669

129. Cresson J. Scale calculus and the Schrodinger equation.
arXiv: math.GM/0211071.

130. Kinani E. H. Between quantum Virasoro algebras and
generalized Clifford algebras. arXiv: math-ph/0310044.

131. Capozziello S., Carloni S. and Troisi A. Quintessence without
scalar fields. arXiv: astro-ph/0303041. Carroll S., Duvvuri V.,
Trodden M. and Turner M. Is cosmic speed-up due to
new gravitational physics? arXiv: astro-ph/0306438. Lue A.,
Scoccimarro R. and Strakman G. Differentiating between
Modified Gravity and Dark Energy. arXiv: astro-ph/0307034.

132. Aurilia A., Smailagic A. and Spallucci E. Physical Review,
v. D47, 1993, 2536. Aurilia A. and Spallucci E. Classical and
Quantum Gravity, v. 10, 1993, 1217. Aurilia A., Spallucci E.
and Vanzetta I. Physical Review, v. D50, 1994, 6490.
Ansoldi S., Aurilia A. and Spallucci E. Physical Review,
v. D53, 1996, 870. Ansoldi S., Aurilia A. and Spallucci E.
Physical Review, v. D56, 1997, 2352.

133. Mosna R. A., Miralles D. and Vaz Jr J. Z2-gradings of
Clifford algebras and multivector structures. arXiv: math-
ph/0212020.

134. Castro C. On noncommutative Yang’s space-time algebra,
holography, area quantization and C-space Relativity.
Submitted to Eur. Physics Journal C, see also CERN–CDS
EXT–2004–090. Noncommutative branes in Clifford space
backgrounds and Moyal–Yang star products with UV-IR
cutoffs. Submitted to the Jour. Math. Phys., 2005.

135. Armenta J., Nieto J. A. The de Sitter relativistic top theory.
arXiv: 0405254. Nieto J. A. Chirotope concept in various
scenarios of physics. arXiv: hep-th/0407093. Nieto J. A.
Matroids and p-branes. Adv. Theor. Math. Phys., v. 8, 2004,
177–188.

136. Yang C. N. Phys. Rev., v. 72, 1947, 874. Proc. of the Intern.
Conference on Elementary Particles, Kyoto, 1965, 322–323.

137. Tanaka S. Nuovo Cimento, v. 114B, 1999, 49. Tanaka S.
Noncommutative field theory on Yang’s space-time algebra,
covariant Moyal star products and matrix model. arXiv:
hep-th/0406166. Space-time quantization and nonlocal field
theory. arXiv: hep-th/0002001. Yang’s quantized space-time
algebra and holographic hypothesis. arXiv: hep-th/0303105.

138. Castro C. On Dual Phase Space Relativity, the Machian
Principle and Modified Newtonian Dynamics. Progress in
Physics, 2005, v. 1, 20–30. The Extended Relativity Theory
in Born–Clifford phase spaces with a lower and upper length
scales and Clifford group geometric unification. Submitted to
Foundations of Physics, 2004, see also CERN–CDS EXT–
2004–128.

139. Castro C. Polyvector super-Poincaré algebras, M, F Theory
algebras and generalized supersymmetry in Clifford spaces.
Submitted to the Int. Jour. Mod. Phys. A, 2005.
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