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By recurring to Geometric Probability methods, it is shown that the coupling constants,
αEM ;αW ;αC associated with Electromagnetism, Weak and the Strong (color) force
are given by the ratios of the ratios of the measures of the Shilov boundaries
Q2 = S1 × RP 1; Q3 = S2 × RP 1; S5, respectively, with respect to the ratios
of the measures μ[Q5]/μN [Q5] associated with the 5D conformally compactified real
Minkowski spacetime M̄5 that has the same topology as the Shilov boundary Q5 of the
5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain
D5 = SO(5, 2)/SO(5)× SO(2) corresponds to the conformal relativistic curved 10
real-dimensional phase space H10 associated with a particle moving in the 5D Anti
de Sitter space AdS5. The geometric coupling constant associated to the gravitational
force can also be obtained from the ratios of the measures involving Shilov boundaries.
We also review our derivation of the observed vacuum energy density based on the
geometry of de Sitter (Anti de Sitter) spaces.

1 The fine structure constant and Geometric Probability

Geometric Probability [21] is the study of the probabilities
involved in geometric problems, e. g., the distributions of
length, area, volume, etc. for geometric objects under stated
conditions. One of the most famous problem is the Buffon’s
Needle Problem of finding the probability that a needle of
length l will land on a line, given a floor with equally
spaced parallel lines a distance d apart. The problem was
first posed by the French naturalist Buffon in 1733. For l < d
the probability is

P =
1

2π

∫ 2π

0

dθ
l| cos(θ)|

d
=

4l

2πd

∫ π/2

0

cos(θ) =

=
2l

πd
=
2ld

πd2
.

(1)

Hence, the Geometric Probability is essentially the ratio
of the areas of a rectangle of length 2d, and width l and
the area of a circle of radius d. For l > d, the solution is
slightly more complicated [21]. The Buffon needle problem
provides with a numerical experiment that determines the
value of π empirically. Geometric Probability is a vast field
with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure con-
stant may be related to π. This is the case as Wyler found long
ago [1]. We will based our derivation of the fine structure
constant based on Feynman’s physical interpretation of the
electron’s charge as the probability amplitude that an electron
emits (or absorbs) a photon. The clue to evaluate this prob-
ability within the context of Geometric Probability theory is
provided by the electron self-energy diagram. Using Feyn-
man’s rules, the self-energy Σ(p) as a function of the el-

ectron’s incoming (outgoing) energy-momentum pμ is given
by the integral involving the photon and electron propagator
along the internal lines

− iΣ(p) = (−ie)2 ×

×
∫

d4k

(2π)4
γμ

i

γρ(pρ − kρ)−m
−igμν
k2

γν .
(2)

The integral is taken with respect to the values of the
photon’s energy-momentum kμ. By inspection one can see
that the electron self-energy is proportional to the fine struc-
ture constant αEM = e2, the square of the probability ampli-
tude (in natural units of ~ = c = 1) and physically represents
the electron’s emission of a virtual photon (off-shell, k2 6=0)
of energy-momentum kρ at a given moment, followed by an
absorption of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy
graph, we will evaluate the Geometric Probability that an
electron emits a photon at t =−∞ (infinite past) and re-
absorbs it at a much later time t=+∞ (infinite future). The
off-shell (virtual) photon associated with the electron self-
energy diagram asymptotically behaves on-shell at the very
moment of emission (t =−∞) and absorption (t =+∞).
However, the photon can remain off-shell in the intermediate
region between the moments of emission and absorption by
the electron.

The topology of the boundaries (at conformal infinity) of
the past and future light-cones are spheres S2 (the celestial
sphere). This explains why the (Shilov) boundaries are es-
sential mathematical features to understand the geometric
derivation of all the coupling constants. In order to describe
the physics at infinity we will recur to Penrose’s ideas [10]
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of conformal compactifications of Minkowski spacetime by
attaching the light-cones at conformal infinity. Not unlike the
one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere.
The conformal group leaves the light-cone fixed and it does
not alter the causal properties of spacetime despite the rescal-
ings of the metric. The topology of the conformal compact-
ification of real Minkowski spacetime M̄4=S

3×S1/Z2=
=S3×RP 1 is precisely the same as the topology of the
Shilov boundary Q4 of the 4 complex-dimensional poly-
disc D4. The action of the discrete group Z2 amounts to an
antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification
of the past timelike infinity i− with the future timelike
infinity, i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces)
complex domains, G/K [7, 8, 9] are not the same as the or-
dinary topological boundaries (except in some special cases).
The reason being that the action of the isotropy group K of
the origin is not necesarily transitive on the ordinary topolo-
gical boundary. Shilov boundaries are the minimal subspaces
of the ordinary topological boundaries which implement the
Maldacena-’T Hooft-Susskind holographic principle [13] in
the sense that the holomorphic data in the interior (bulk)
of the domain is fully determined by the holomorphic data
on the Shilov boundary. The latter has the property that the
maximum modulus of any holomorphic function defined on
a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions
is an 8 real-dim Hyperboloid of constant negative scalar
curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle)
moving in a 4D Anti de Sitter space AdS4. The poly-
disc is a Hermitian symmetric homogeneous coset space
associated with the 4D conformal group SO(4, 2) since
D4=SO(4, 2)/SO(4)×SO(2). Its Shilov boundaryShilov
(D4)=Q4 has precisely the same topology as the 4D con-
formally compactified real Minkowski spacetimeQ4= M̄4=
=S3×S1/Z2=S3×RP 1. For more details about Shilov
boundaries, the conformal group, future tubes and holo-
graphy we refer to the article by Gibbons [12] and [7, 16].

In order to define the Geometric Probability associated
with this process of the electron’s emission of a photon at i−

(t=−∞), followed by an absorption at i+ (t=+∞), we must
take into account the important fact that the photon is on-shell
k2=0 asymptotically (at t=±∞), but it can move off-shell
k2 6= 0 in the intermediate region which is represented by
the interior of the conformally compactified real Minkowski
spacetime Q4= M̄4=S

3×S1/Z2=S3×RP 1.
Denoting by μ̂[Q4] the measure-density (the measure-

current) whose flux through the future and past celestial
spheres S2 (associated with the future/past light-cones) at
timelike infinity i+, i−, respectively, is V (S2)μ̂[Q4]. The net

flux through the two celestial spheres S2 at timelike infinity
i± requires an overall factor of 2 giving then the value of
2V (S2)μ̂[Q4]. The Geometric Probability is defined by the
ratio of the measures associated with the celestial spheres
S2 at i+, i− timelike infinity, where the photon moves on-
shell, relative to the measure of the full interior region of
Q4= M̄4=S

3×S1/Z2=S3×RP 1, where the photon can
move off-shell, as it propagates from i− to i+:

α =
2V (S2) μ̂[Q4]

μ[Q4]
. (3)

The ratio (μ̂[Q4]/μ[Q4] ) can be re-written in terms of
the ratios of the normalized measures of

M̄5 = Q5 = Shilov [D5] = S
4×S1/Z2 = S

4×RP 1, (4)

namely, in terms of the normalized measures of the conform-
ally compactified 5DMinkowski spacetime. This is achieved
as follows [4]

μ̂[Q4]

μ[Q4]
=

1

V (S4)

μN [Q5]

μ[Q5]
, (5)

resulting from the embeddings (inmersions ) of D4 → D5.
The origin of the factor V (S4) in the r. h. s of (5), as

one goes from the ratio of measures in Q4 to the ratio
of the measures in Q5, is due to the reduction from the
action of the isotropy group of the origin SO(5) × SO(2)
on Q5, to the action of the isotropy group of the origin
SO(4)×SO(2) onQ4, furnishing an overall reduction factor
of V [SO(5)/SO(4)] = V (S4). The 5 complex-dimensional
poly-discD5 = SO(5, 2)/SO(5)×SO(2) is the 10 real-dim
Hyperboloid H10 corresponding to the conformal relativistic
curved phase space of a particle moving in 5D Anti de Sitter
Space AdS5. This picture is also consistent with the Kaluza-
Klein compactification procedure of obtaining 4D EM from
pure Gravity in 5D. TheH10 can be embedded in the 11-dim
pseudo-Euclidean R9,2 space, with two-time like directions.
This is where 11-dim lurks into our construction.

Next we turn to the Hermitian metric on D5 constructed
by Hua [8] which is SO(5, 2)-invariant and is based on
the Bergmann kernel [15] involving a crucial normalization
factor of 1/V (D5). However, the standard normalized mea-
sure μN [Q5] based on the Poisson kernel and involving a
normalization factor of 1/V (Q5) is not invariant under the
full group SO(5, 2). It is only invariant under the isotropy
group of the origin SO(5)×SO(2). In order to construct an
invariant measure on Q5 under the full group SO(5, 2) one
requires to introduce a crucial factor related to the Jacobian
measure involving the action of the conformalgroupSO(5, 2)
on the full bulk domain D5. As explained by [4] one has:

μN [Q5]

μ[Q5]
=

1

V (Q5)
||J −1

C || =

=
1

V (Q5)

√
||J −1

C (J ∗
C)

−1|| =
1

V (Q5)

√
||J −1

R || =
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=
1

V (Q5)

√√
|det g|−1 =

1

V (Q5)
[|det(g)|]−

1
4 =

=
1

V (Q5)
[V (D5)]

1
4 ,

(6)

the z dependence of the complex Jacobian is no longer
explicit because the determinant of the SO(5, 2) matrices
is unity.

This explains very clearly the origins of the factor
[V (D5)]

1
4 in Wyler’s formula for the fine structure constant

[1]. This reduction factor of V (Q5) is in this case given by
V (D5)

1
4 . As we shall see below, the power of 1

4 is related
to the inverse of the dim(S4)= 4. This summarizes, briefly,
the role of Bergmann kernel [15] in the construction by Hua
[8], and adopted by Wyler [1], of the Hermitian metric of a
bounded homogenous (symmetric) complex domain. To sum
up, we must perform the reduction from V (Q5)→V (Q5)/

V (D5)
1
4 in the construction of the normalized measure

μN [Q5] . This approach is very different than the interpreta-
tion given by Smith [3] and later adopted by Smilga [5].

Hence, the Geometric Probability ratio becomes

μ̂[Q4]

μ[Q4]
=

1

V (S4)

μN [Q5]

μ[Q5]
=

=
1

V (S4)

1

V (Q5)
[ V (D5) ]

1
4 ≡

1

αG
.

(7a)

This last ratio, for reasons to be explained below, is
nothing but the inverse of the geometric coupling strength of
gravity, 1/αG. The relationship to the gravitational constant
is based on the definition of the coupling appearing in the
Einstein-Hilbert Lagrangian (R/16πG), as follows

(16πG)(m2
Planck) ≡ αEM αG = 8π ⇒

G =
1

16π

8π

m2
Planck

=
1

2m2
Planck

⇒

Gm2
proton =

1

2

(
mproton

mPlanck

)2
∼ 5.9×10−39,

(7b)

and in natural units ~ = c =1 yields the physical force
strength of Gravity at the Planck Energy scale 1.22×1019

GeV. The Planck mass is obtained by equating the Schwarz-
schild radius 2GmPlanck to the Compton wavelength
1/mPlanck associated with the mass; where mPlanck

√
2 =

= 1.22×1019 GeV and the proton mass is 0.938 GeV. Some
authors define the Planck mass by absorbing the factor of√
2 inside the definition of mPlanck=1.22×10

19 GeV.
The role of the conformal group in Gravity in these ex-

pressions (besides the holographic bulk/boundaryAdS/CFT
duality correspondence [13]) stems from the MacDowell-
Mansouri-Chamseddine-West formulation of Gravity based
on the conformal group SO(3, 2) which has the same number
of 10 generators as the 4D Poincare group. The 4D vielbein

eaμ which gauges the spacetime translations is identified with

the SO(3, 2) generator A[a5]μ , up to a crucial scale factor R,
given by the size of the Anti de Sitter space (de Sitter space)
throat. It is known that the Poincare group is the Wigner-
Inonu group contraction of the de Sitter Group SO(4, 1)
after taking the throat size R =∞. The spin-connection ωabμ
that gauges the Lorentz transformations is identified with
the SO(3, 2) generator A[ab]μ . In this fashion, the eaμ, ω

ab
μ

are encoded into the A[mn]μ SO(3, 2) gauge fields, where
m,n run over the group indices 1, 2, 3, 4, 5. A word of
caution, Gravity is a gauge theory of the full diffeomorphisms
group which is infinite-dimensional and which includes the
translations. Therefore, strictly speaking gravity is not a
gauge theory of the Poincare group. The Ogiovetsky theorem
shows that the diffeomorphisms algebra in 4D can be gen-
erated by an infinity of nested commutators involving the
GL(4, R) and the 4D Conformal Group SO(4, 2) generators.

In [17] we have shown why the MacDowell-Mansouri-
Chamseddine-West formulation of Gravity, with a cosmolo-
gical constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-
Simons-Higgs theory based on the conformal SO(3, 2)
group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived to be the geometric-
mean between the UV Planck scale and the IR throat size
of de Sitter (Anti de Sitter) space. Setting the throat size
to coincide with the future horizon scale (of an accelerated
de Sitter Universe) given by the Hubble scale (today) RH ,
the geometric mean relationship yields the observed value of
the vacuum energy density ρ ∼ (LP )−2(RH)−2=(LP )−4×
× (L2P /R

2
H)∼ 10

−122M4
Planck. Nottale [23] gave a different

argument to explain the small value of ρ based on Scale
Relativistic arguments. It was also shown in [17] why the
Euclideanized AdS2n spaces are SO(2n− 1, 2) instantons
solutions of a non-linear sigma model obeying a double self
duality condition.

Therefore, the Geometric Probability αEM for an elec-
tron to emit a photon at t = −∞ and to absorb it at t = +∞
agrees with the Wyler’s celebrated expression for the fine
structure constant

αEM =
2V (S2)μ̂[Q4]

μ[Q4]
= (8π)

1

V (S4)

1

V (Q5)
×

× [V (D5)]
1
4 =

9

8π4

(
π5

24×5!

)1
4

=
1

137.03608
,

(8)

after one inserts the values of the volumes:

V (D5) =
π5

24×5!
, V (Q5) =

8π3

3
, V (S4) =

8π2

3
. (9)

In general

V (Dn) =
πn

2n−1n!
, V (Sn−1) =

2πn/2

Γ(n/2)
, (10a)
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V (Qn)=V (S
n−1×RP 1)=V (Sn−1)×V (RP 1) =

=
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
.

(10b)

Objections were raised to Wyler’s original expression
by Robertson [2]. One of them was that the hyperboloids
(discs) are not compact and whose volumes diverge since
the Lobachevsky metric diverges on the boundaries of the
poly-discs. Gilmore explained [2] why one requires to use
the Euclideanized regularized volumes as Wyler did. Further-
more, in order to resolve the scaling problems of Wyler’s
expression, Gilmore showed why it is essential to use dimen-
sionless volumes by setting the throat sizes of the Anti de
Sitter hyperboloids to r=1, because this is the only choice
for r where all elements in the bounded domains are also
coset representatives, and therefore, amount to honest group
operations. Hence the so-called scaling objections against
Wyler raised by Robertson were satisfactory solved by Gil-
more [2].

The question as to why the value of αEM obtained in
Wyler’s formula is precisely the value of αEM observed
at the scale of the Bohr radius aB , has not been solved,
to my knowledge. The Bohr radius is associated with the
ground ( most stable ) state of the Hydrogen atom [3].
The spectrum generating group of the Hydrogen atom is
well known to be the conformal group SO(4, 2) due to
the fact that there are two conserved vectors, the angular
momentum and the Runge-Lentz vector. After quantization,
one has two commuting SU(2) copies SO(4) = SU(2) ×
SU(2). Thus, it makes physical sense why the Bohr-scale
should appear in this construction. Bars [14] has studied
the many physical applications and relationships of many
seemingly distinct models of particles, strings, branes and
twistors, based on the (super) conformal groups in diverse
dimensions. In particular, the relevance of two-time physics
in the formulation of M,F, S theory has been advanced by
Bars for some time. The Bohr radius corresponds to an energy
of 137.036×2×13.6 eV∼ 3.72×103 eV. It is well known that
the Rydberg scale, the Bohr radius, the Compton wavelength
of electron, and the classical electron radius are all related to
each other by a successive scaling in products of αEM .

2 The fiber bundle interpretation of the Wyler formula

Having found Wyler’s expression from Geometric Probabili-
ty, we shall present a Fiber Bundle interpretation of the Wyler
expression by starting with a Fiber bundle E over the base
curved-space D5 = SO(5, 2)/SO(5) × SO(2). The sub-
group H=SO(5) of the isotropy group K=SO(5)×SO(2)
acts on the Fibers F =S4 (the internal symmetry space).
Locally, and only locally, the Fiber bundle E is the product
D5×S4. However, this is not true globally. On the Shilov
boundary Q5, the restriction of the Fiber bundle E to the

Shilov boundary Q5 is written by E|Q5 and locally is the
product of Q5 × S4, but this is not true globally. For this
reason one has that the volume V (E|Q5) 6= V (Q5 × S

4) =
=V (Q5)×V (S4). But instead, V (E|Q5)=V (S

4)×
(V (Q5)/V (D5)

1/4).
This is the reasoning behind the construction of the

quantity μ̂[Q4]/μ[Q4] that has the units of a density. Its
inverse μ[Q4]/μ̂[Q4] is the volume associated with the re-
striction of the Fiber Bundle E to the Shilov boundary Q5:
V (E|Q5) = V (S

4)× (V (Q5)/V (D5)1/4).
The reason why one embeds D4→D5 and Q4→Q5

is because the space Q4=S3×RP 1 is not large enough
to implement the action of the SO(5) group, the compact
version of the Anti de Sitter Group SO(3, 2) that is required
in the MacDowell-Mansouri-Chamseddine-West formulation
of Gravity. However, the space Q5=S4×RP 1 is large
enough to implement the action of SO(5) via the internal
symmetry space S4=SO(5)/SO(4). This justifies the em-
bedding procedure of D4→D5. This Fiber Bundle inter-
pretation is not very different from Smith’s interpretation
[3]. Following the Fiber Bundle interpretation of the volume
V (E|Q5)=V (S

4)× (V (Q5)/V (D5)1/4), we will now
prove why

2V (S2) =
μ(S1)

μ̂(S1)
= 8π . (11)

The space S1 is associated with the U(1) group action
and naturally encodes the U(1) gauge invariance linked to
Electromagnetism ( EM ). The result of eq-(11) is what will
allow us to define αEM as the ratio of the ratios of suitable
measures in S1 and Q4, respectively,

αEM =
2V (S2) μ̂[Q4]

μ[Q4]
=
(μ(S1)/μ̂(S1))

(μ[Q4]/μ̂[Q4])
. (12)

We may notice that S1 ≡ Q1 (very special case) since the
circle is both the Shilov and ordinary topological boundary of
the disc D1. However, Q2 ≡ S1×S1/Z2 = S1×RP 1. Once
again, we will write the ratio of the measures in Q1=S1

in terms of the ratio of the normalized measures in Q2

via the reduction from S1×S1/Z2 to S1. This requires the
embedding (inmersion) of D1→D2 in order to construct the
measures onD1, Q1 as induced from the measures in D2, Q2
resulting from the embedding (inmersion):

μ̂(S1)

μ(S1)
=
μ̂(Q1)

μ(Q1)
=

1

V (S1/Z2)

μN [Q2]

μ[Q2]
=

=
1

V (S1/Z2)

1

(V (Q2)/V (D2)
.

(13)

Notice that μ̂(S1) as explained before is a measure-
density on S1. Likewise, μ̂(Q4) was a measure-density on
Q4. We should not confuse these measure-densities with the
normalized measures in one-higher dimension.
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By inserting the values of the measures and using

V (S1/Z2) = V (RP
1) = π , V (D2) =

π2

2×2!
,

V (Q2) =
2π2

Γ(1)
= 2π2,

(14)

it yields then

μ(S1)

μ̂(S1)
= (2π2) (π)

1

(π2/2×2!)
= 8π = 2 V (S2) (15)

as claimed. Therefore, 2V (S2) = μ(S1)/μ̂(S1) = 8π is the
crucial factor appearing in Wyler’s formula which admits a
natural Geometric probability explanation which is very dif-
ferent from the different interpretations provided in [3, 4, 5].

The Fiber Bundle interpretation associated with the
U(1) ∼ SO(2) group is the following. The Fiber bundle
E is defined over the curved space D2=SO(2, 2)/SO(2)×
SO(2). The subgroup H =SO(2)∼U(1) of the isotropy
group K =SO(2)×SO(2) acts on the fibers identified with
the symmetry space S1 (where the U(1) group acts). The
Fiber bundle E locally can be written as D2×S1 but not
globally. The restriction of the Fiber bundle E to the Shilov
boundary Q2=S1×S1/Z2=S1×RP 1 is E|Q2 and locally
can be written as Q2 × S1, but not globally. This is why the
volume V (E|Q2) 6= V (Q2) × V (S1) but instead it equals
(V (Q2)/V (D2))× V (S1/Z2) = 2V (S2) = 8π.

Concluding, the Geometric Probability that an electron
emits a photon at t=−∞ and absorbs it at t=+∞ is given
by the ratio of the ratios of measures, and it agrees with
Wheeler’s ideas that one must normalize the couplings with
respect to the geometric coupling strength of Gravity:

αEM =
2V (S2)μ̂[Q4]

μ[Q4]
=
(μ(S1)/μ̂(S1))

(μ[Q4]/μ̂[Q4])
=

= (8π)
1

V (S4)

1

V (Q5)
[V (D5)]

1
4 =

1

137.03608
.

(16)

The second important conclusion that can be derived
from Geometric Probability theory is the general numerical
values of the exponents sn appearing in the factors V (Dn)sn .
The normalization factor V (Q5)/V (D5)1/4 in the construc-
tion of the ratio of measures μN [Q5]/μ[Q5] involves in
this case powers of the type V (D5)1/4. The power of 1

4
is related to the inverse of the dim(S4)= 4 (the internal
symmetry space SO(5)/SO(4)). From eq-(13) we learnt
that the reduction factor of V (Q2)/V (D2) was V (D2); i. e.
the exponent is unity. The power of unity is related to the
inverse of the dim(S1/Z2)= 1. Thus, the arguments based
on Geometric Probability leads to normalized measures by
factors of V (Qn)/V (Dn)sn and whose exponents sn are
given by the inverse of the dimensions of the internal sym-
metry spaces sn=(dim(S

n−1))−1. There is a different in-
terpretation of these factors V (Dn)sn given by Smith [3].

In general, for other homogeneous complex domains, this
power is given by the inverse of the dimension of the internal
symmetry space.

3 The weak and strong coupling constants from Geo-
metric Probability

We turn now to the derivation of the other coupling constants.
The Fiber Bundle picture of the previous section is essential
in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for
a particle to emit and later absorb a SU(2), SU(3) gauge
boson, respectively, can both be obtained by using the main
formula derived from Geometric Probability after one iden-
tifies the suitable homogeneous domains and their Shilov
boundaries to work with. We will show why the weak and
strong couplings are given by

αWeak =
(μ[Q2]/μ̂[Q2])

(μ[Q4]/μ̂[Q4])
=
(μ[Q2]/μ̂[Q2])

αG
=

=
(μ[Q2]/μ̂[Q2])

(8π/αEM )
,

(17)

and

αColor =
(μ[S4]/μ̂[S4])

(μ[Q4]/μ̂[Q4]
=
(μ[S4]/μ̂[S4])

αG
=

=
(μ[S4]/μ̂[S4])

(8π/αEM )
.

(18)

At this point we must emphasize that we define αweak,
αcolor as g2w, g2c instead of the conventional (g2w/4π),
(g2c/4π) definitions used in the Renormalization Group prog-
ram. The Shilov boundary of (D2) is Q2=S

1×RP 1

but is not large enough to accommodate the action of the
isospin group SU(2). One needs a Fiber Bundle over D3=
=SO(3, 2)/SO(3)×SO(2)whose subgroupH =SO(3) of
the isotropy group K =SO(3)×SO(2) acts on the internal
symmetry space S2 (the fibers). Since the coset space
SU(2)/U(1) is a double-cover of the S2 as one goes from
the SO(3) action to the SU(2) action one must take into
account an extra factor of 2. This is the reason why one
jumps to one-dimension higher from Q2 to Q3=S2×RP 1,
because the coset SU(2)/U(1) is a double-cover of the
sphere S2=SO(3)/SO(2) and can accommodate the action
of the SU(2) group.

By following the same procedure as above, i. e. by re-
writing the ratio of the measures (μ̂[Q2]/μ[Q2]) in terms
of the ratio of the measures (μN [Q3]/μ[Q3]) via the em-
beddings of D2→D3, one has

(μ̂[Q2]/μ[Q2]) =
1

V (SU(2)/U(1))

μN [Q3]

μ[Q3]
. (19)

Notice that because SU(2) is a 2− 1 covering of the
SO(3), this implies that the measure

V (SU(2)/U(1))=2V (SO(3)/U(1))=2V (S2)=8π . (20)
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As indicated above, because the dimension of the internal
symmetry space is dim(S2)= 2, the construction of the
normalized measure μN [Q3] will require a reduction of
V (Q3) by a factor of V (D3) raised to the power of
(dim(S2))−1= 1

2 :

μN [Q3]

μ[Q3]
=

1

V (Q3)/V (D3)1/2
=

1

V (Q3)
V (D3)

1/2. (21)

Therefore, the ratio of the measures is

μ̂[Q2]

μ[Q2]
=

1

2V (S2)

1

V (Q3)
V (D3)

1/2, (22)

whose Fiber Bundle interpretation is that the volume of the
Fiber Bundle over D3, but restricted to the Shilov boundary
Q3, and whose structure group is SU(2) (the double cover
of SO(3)), is V (E|Q3) = 2V (S2) × (V (Q3)/V (D3)1/2).
Thus, that the Geometric probability expression is

αWeak =
(μ[Q2]/μ̂[Q2])

(μ[Q4]/μ̂[Q4])
=
(μ[Q2]/μ̂[Q2])

(8π/αEM )
=

= 2V (S2)V (Q3)
1

V (D3)1/2
αEM
8π

= 0.2536,

(23)

that corresponds to the weak geometric coupling constant
αW at an energy of the order of

E =M = 146 GeV ∼
√
M2
W+

+M2
W−

+M2
Z , (24)

after we have inserted the expressions

V (S2) = 4π , V (Q3) = 4π
2 , V (D3) =

π3

24
, (25a)

into the formula (23). The relationship to the Fermi coupling
GFermi goes as follows (after indentifying the energy scale
E =M = 146 GeV):

GF ≡
αW
M2

⇒ GF m
2
proton =

(αW
M2

)
m2
proton =

= 0.2536 ×

( mproton

146 GeV

)2
∼ 1.04×10−5

(25b)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αWeak ob-

tained from Geometric Probability corresponds to the energy
scale related to the W+,W−, Z0 boson mass, after sponta-
neous symmetry breaking.

Finally, we shall derive the value of αColor from eq-
(18). Since S4 is not large enough to accommodate the
action of the color group SU(3) one needs to work with one-
dimension higher S5 , that can be interpreted as the boundary
of the 6D Ball B6=SU(4)/U(3)=SU(4)/SU(3)×U(1).
Thus, the SU(3) group is part of the isotropy group K =
=SU(3)×U(1) that defines the coset space B6. In this

special case the Shilov and ordinary topological boundaries
of B6 coincide with S5 [3]. Hence, following the same
procedures as above, the ratio of the measures in S4 (bound-
ary of B5) can be re-written in terms of the ratio of the
measures in S5 (boundary of B6) via the embeddings of
B5→B6 as follows:

μ̂[S4]

μ[S4]
=

1

V (S4)

μN [S
5]

μ[S5]
=

1

V (S4)

1

V (S5)/V (B6)1/4
=

=
1

V (S4)

1

V (S5)
V (B6)

1/4,

(26)

since the exponent of the reduction factor V (B6)1/4 is given
by (dim(S4))−1= 1

4 . Notice, again, that μ̂[S4] is the measure-
density in S4 and must not be confused with the normalized
measures.

Therefore, one arrives at

αColor = V (S
4) V (S5)

1

V (B6)1/4
αEM
8π

= 0.6286, (27)

that corresponds to the strong coupling constant at an energy
related to the pion masses [3]:

E = 241 MeV ∼
√
m2
π+ +m

2
π− +m

2
π0 (28)

and where we have used the expressions:

V (S4) =
8π2

3
, V (S5) = 4π3 , V (B6) =

π3

6
. (29)

The pions are the known lightest quark/antiquark pairs
that feel the strong interaction [3]. For a detailed analysis of
volumes of compact manifolds (coset spaces) see [24].

Once again, it is unknown why the value of αColor
obtained from Geometric Probability (28) corresponds to
the energy scale related to the masses of the three pions
[3]. Masses of the fundamental particles were derived in [3]
based on the definitions that mass is the probability amplitude
for a particle to change direction.

To conclude, by defining the geometric coupling con-
stants α= g2 as the Geometric Probability to emit (and later
absorb) a gauge boson, all the three geometric coupling
constants, αEM ;αWeak;αColor are given by the ratios of the
ratios of the measures of the Shilov boundaries Q2=S

1×
RP 1; Q3 = S2 ×RP 1; S5, respectively, with respect to the
ratios of the measures μ[Q5]/μN [Q5] associated with the 5D
conformally compactified real Minkowski spacetime M̄5 that
has the same topology as the Shilov boundary Q5 of the 5
complex-dimensional poly-discD5. The latter corresponds to
the conformal relativistic curved 10 real-dimensional phase
space H10 associated with a particle moving in the 5D Anti
de Sitter space AdS5. The ratios of particle masses, like
the proton to electron mass ratio mp/me∼ 6π5 has also
been calculated using the volumes of homogeneous bounded
domains [3, 4].
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It is not known whether this procedure would work for
Grand Unified Theories based on the groups

SU(5), SO(10), E6, E7, E8 . (30)

Beck [6] has obtained all the Standard Model parameters
by studying the numerical minima (and zeros) of certain po-
tentials associated with the Kaneko coupled two-dim lattices
based on Stochastic Quantization methods. The results above
and by Smith [3] are analytical rather than being numerical
[6] and it is not clear if there is any relationship between these
two approaches. Noyes has proposed an iterated numerical
hierarchy based on Mersenne primesMp = 2

p−1 for certain
values of p= primes [18] and obtained many numerical
values for the physical parameters. Pitkanen has developed
methods to calculate the physical masses recurring to a p-adic
hierarchy of scales based on Mersenne primes [19].

An important connection between anomaly cancellation
in string theory and perfect even numbers was found in
[22]. These are numbers which can be written in terms of
sums of its divisors, including unity, like 6 = 1 + 2 + 3,
and are of the form P (p)= 1

2 2
p(2p− 1) if, and only if,

2p − 1 is a Mersenne prime. Not all values of p= prime
yields primes. The number 211− 1 is not a Mersenne prime,
for example. The number of generators of the anomaly free
groups SO(32), E8 × E8 of the 10-dim superstring is 496
which is an even perfect number. Another important group
related to the unique tadpole-free bosonic string theory is the
SO(213) = SO(8192) group related to the bosonic string
compactified on the E8 × SO(16) lattice. The number of
generators of SO(8192) is an even perfect number since
213− 1 is a Mersenne prime. For an introduction to p-adic
numbers in Physics and String theory see [20]. A lot more
work needs to be done to be able to answer the question: Is
all this just a mere numerical coincidence or is it design?

4 Acknowledgements

We are indebted to Frank (Tony) Smith and C. Beck for
numerous discussions about their work. To M. Bowers and
C. Handy (CTSPS) for their kind support.

References

1. Wyler A. Comptes Rendus Acad. Sci. Paris, 1969, v. A269,
743. Comptes Rendus Acad. Sci. Paris, 1971, v. A272, 186.

2. Gilmore R. Phys. Rev. Lett., 1972, v. 28, No. 7, 462. Robert-
son B. Phys. Rev. Lett., 1972, v. 27, 1845.

3. Smith Jr F. D., Int. J. Theor. Phys., 1985, v. 24, 155; Int. J.
Theor. Phys., 1985, v. 25, 355. From sets to quarks. arXiv:
hep-ph/9708379, CERN CDS EXT-2003-087.

4. Gonzalez-Martin G. Physical Geometry. Univ. of Simon Boli-
var Publ., Caracas, 2000. The proton/electron geometric mass
ratio. arXiv: physics/0009052. The fine structure constant from
relativistic groups. arXiv: physics/ 0009051.

5. Smilga W. Higher order terms in the contraction of S0(3, 2).
arXiv: hep-th/0304137.

6. Beck C. Spatio-temporal vacuum fluctuations of quantized
fields. World Scientific, Singapore 2002.

7. Coquereaux R., Jadcyk A. Reviews in Mathematical Physics,
1990, No. 1, v. 2, 1–44.

8. Hua L. K. Harmonic analysis of functions of several complex
variables in the classical domains. Birkhauser, Boston-Basel-
Berlin, 2000.

9. Faraut J., Kaneyuki S., Koranyi A., Qi-Keng Lu and Roos G.
Analysis and geometry on complex homogeneous domains.
Progress in Math., v. 185, Birkhauser, Boston-Basel-Berlin.

10. Penrose R., Rindler W. Spinors and space-time. Cambridge
University Press, 1986.

11. Hugget S.A., Todd K. P. An introduction to twistor theory. Lon-
don Math. Soc. Stud. Texts, v. 4, Cambridge Univ. Press, 1985.

12. Gibbons G. Holography and the future tube. arXiv: hep-th/
9911027.

13. Maldacena J. The large N limit of superconformal theories and
supergravity. arXiv: hep-th/9711200.

14. Bars I. Twistors and two-time physics. arXiv: hep-th/0502065.

15. Bergman S. The kernel function and conformal mapping. Math.
Surveys, 1970, v. 5, AMS, Providence.

16. Odzijewicz A. Int. Jour. of Theor. Phys., 1986, v. 107, 561–575.

17. Castro C. Mod. Phys. Letts., 2002, v. A17, No. 32, 2095–2103.
Class. Quan. Grav., 2003, v. 20, 3577–3592.

18. Noyes P. Bit-strings physics: a discrete and finite approach to
natural philosophy. Series in Knots in Physics, v. 27, Singapore,
World Scientific, 2001.

19. Pitkanen M. Topological Geometrodynamics I, II. Chaos,
Solitons and Fractals, 2002, v. 13, No. 6, 1205, 1217.

20. Vladimorov V., Volovich I. and Zelenov I. p-Adic numbers
in mathematical physics. Singapore, World Scientific, 1994.
Brekke L., Freund P. Physics Reports, 1993, v. 1, 231.

21. Ambartzumian R. V. (Ed.) Stochastic and integral geometry.
Dordrecht (Netherlands), Reidel, 1987. Kendall M. G. and
Moran P. A. P. Geometric probability. New York, Hafner, 1963.
Kendall W.S, Barndorff-Nielson O. and van Lieshout M. C.
Current trends in stochastic geometry: likelihood and compu-
tation. Boca Raton (FL), CRC Press, 1998. Klain D. A. and
Rota G.-C. Introduction to geometric probability. New York,
Cambridge Univ. Press, 1997. Santalo L. A. Integral geometry
and geometric probability. Reading (MA) Addison-Wesley,
1976. Solomon H. Geometric probability. Philadelphia (PA),
SIAM, 1978. Stoyan D., Kendall W. S. and Mecke J. Stochastic
geometry and its applications. New York, Wiley, 1987.
http://mathworld.wolfram.com/GeometricProbability.html

22. Frampton P., Kephart T. Phys. Rev., 1999, v. D60, 08790.

23. Nottale L. Fractal spacetime and microphysics, towards the
theory of scale relativity. World Scientific, Singapore 1992.
Chaos, Solitons and Fractals, 2003, v. 16, 539.

24. Boya L., Sudarshan E. C. G. and Tilma T. Volumes of compact
manifolds. arXiv: math-ph/0210033.

C. Castro. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature 69


