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Via S. Allende, I-84081 Baronissi (SA), Italy

E-mail: demartino@sa.infn.it, tzenov@sa.infn.it

Starting from generic bilinear Hamiltonians, constructed by covariant vector, bivector
or tensor fields, it is possible to derive a general symplectic structure which leads to
holonomic and anholonomic formulations of Hamilton equations of motion directly
related to a hydrodynamic picture. This feature is gauge free and it seems a deep link
common to all interactions, electromagnetism and gravity included. This scheme could
lead toward a full canonical quantization.

1 Introduction

It is well known that a self-consistent quantum field theory
of space-time (quantum gravity) has not been achieved, up
to now, using standard quantization approaches. Specifically,
the request of general coordinate invariance (one of the main
features of General Relativity) gives rise to unescapable
troubles in understanding the dynamics of gravitational field.
In fact, for a physical (non-gravitational) field, one has to
assign initially the field amplitudes and their first time deriv-
atives, in order to determine the time development of such a
field considered as a dynamical entity. In General Relativity,
these quantities are not useful for dynamical determination
since the metric field gαβ can evolve at any time simply by
a general coordinate transformation. No change of physical
observables is the consequence of such an operation since it
is nothing else but a relabelling under which the theory is
invariant. This apparent “shortcoming” (from the quantum
field theory point of view) means that it is necessary a
separation of metric degrees of freedom into a part related to
the true dynamical information and a part related only to the
coordinate system. From this viewpoint, General Relativity
is similar to classical Electromagnetism: the coordinate in-
variance plays a role analogous to the electromagnetic gauge
invariance and in both cases (Lorentz and gauge invariance)
introduces redundant variables in order to insure the main-
tenance of transformation properties. However, difficulties
come out as soon as one try to disentangle dynamical from
gauge variables. This operation is extremely clear in Electro-
magnetism while it is not in General Relativity due to its
intrinsic non-linearity. A determination of independent dyn-
amical modes of gravitational field can be achieved when the
theory is cast into a canonical form involving the minimal

number of degrees of freedom which specify the state of the
system. The canonical formalism is essential in quantization
program since it leads directly to Poisson bracket relations
among conjugate variables. In order to realize it in any
fundamental theory, one needs first order field equations
in time derivatives (Hamilton-like equations) and a (3+1)-
form of dynamics where time has been unambiguously singl-
ed out. In General Relativity, the program has been pursued
using the first order Palatini approach [6], where metric gαβ
is taken into account independently of affinity connections
Γ
γ
αβ (this fact gives rise to first order field equations) and

the so called ADM formalism [7] where (3+1)-dimensional
notation has led to the definition of gravitational Hamiltonian
and time as a conjugate pair of variables. However, the
genuine fundament of General Relativity, the covariance
of all coordinates without the distinction among space and
time, is impaired and, despite of innumerable efforts, the full
quantization of gravity has not been achieved up to now.
The main problems are related to the lack of a well-definite
Hilbert space and a quantum concept of measure for gαβ .
An extreme consequence of this lack of full quantization for
gravity could be related to the dynamical variables: very
likely, the true variables could not be directly related to
metric but to something else as, for example, the connection
Γ
γ
αβ . Despite of this lack, a covariant symplectic structure

can be identified also in the framework of General Relativity
and then also this theory could be equipped with the same
features of other fundamental theories. This statement does
not still mean that the identification of a symplectic structure
immediately leads to a full quantization but it could be a
useful hint toward it.

The aim of this paper is to show that a prominent role
in the identification of a covariant symplectic structure is
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played by bilinear Hamiltonians which have to be conserved.
In fact, taking into account generic Hamiltonian invariants,
constructed by covariant vectors, bivectors or tensors, it is
possible to show that a symplectic structure can be achieved
in any case. By specifying the nature of such vector fields
(or, in general, tensor invariants), it gives rise to intrinsically
symplectic structure which is always related to Hamilton-like
equations (and a Hamilton-Jacobi-like approach is always
found). This works for curvature invariants, Maxwell theory
and so on. In any case, the only basic assumption is that
conservation laws (in Hamiltonian sense) have to be identi-
fied in the framework of the theory.

The layout of the paper is the following. In Sec.II, we
give the generalities on the symplectic structure and the
canonical description of mechanics. Sec.III is devoted to the
discussion of symplectic structures which are also generally
covariant. We show that a covariant analogue of Hamilton
equations can be derived from covariant vector (or tensor)
fields in holonomic and anholonomic coordinates. In Sec. IV,
the covariant symplectic structure is casted into the hydro-
dynamic picture leading to the recovery of the covariant
Hamilton equations. Sec.V is devoted to applications, dis-
cussion and conclusions.

2 Generalities on the Symplectic Structure and the Ca-
nonical description

In order to build every fundamental theory of physics, it is
worth selecting the symplectic structure of the manifold on
which such a theory is formulated. This goal is achieved if
suitable symplectic conjugate variables and even-dimensional
vector spaces are chosen. Furthermore, we need an anti-
symmetric, covariant tensor which is non-degenerate.

We are dealing with a symplectic structure if the couple

{E2n,w} , (1)

is defined, where E2n is a vector space and the tensor w on
E2n associates scalar functions to pairs of vectors, that is

[x,y] = w(x,y), (2)

which is the antiscalar product. Such an operation satisfies
the following properties

[x,y] = −[y,x] ∀x,y ∈ E2n (3)

[x,y + z] = [x,y] + [xz] ∀x,y, z ∈ E2n, (4)

a[x,y] = [ax,y] ∀a ∈ R, x,y ∈ E2n (5)

[x,y] = 0 ∀y ∈ E2n ⇒ x = 0 (6)

[x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0 . (7)

The last one is the Jacobi cyclic identity.

If {ei} is a vector basis in E2n, the antiscalar product is
completely singled out by the matrix elements

wij = [ei, ej ] , (8)

where w is an antisymmetric matrix with determinant differ-
ent from zero. Every antiscalar product between two vectors
can be expressed as

[x,y] = wij xiyj , (9)

where xi and yj are the vector components in the given
basis.

The form of the matrix w and the relation (9) become
considerably simpler if a canonical basis is taken into account
for w. Since w is an antisymmetric non-degenerate tensor,
it is always possible to represent it through the matrix

J =

(
0 I
−I 0

)

, (10)

where I is a (n × n) unit matrix. Every basis where w can
be represented through the form (10) is a symplectic basis.
In other words, the symplectic bases are the canonical bases
for any antisymmetric non-degenerate tensor w and can be
characterized by the following conditions:

[ei, ej ] = 0 , [en+i, en+j ] = 0 , [ei, en+j ] = δij , (11)

which have to be verified for every pair of values i and j
ranging from 1 to n.

Finally, the expression of the antiscalar product between
two vectors, in a symplectic basis, is

[x,y] =

n∑

i=1

(
xn+iyi − xiyn+i

)
, (12)

and a symplectic transformation in E2n leaves invariant the
antiscalar product

S[x,y] = [S(x),S(y)] = [x, y]. (13)

It is easy to see that standard Quantum Mechanics satis-
fies such properties and so it is endowed with a symplectic
structure.

On the other hand a standard canonical description can be
sketched as follows. For example, the relativistic Lagrangian
of a charged particle interacting with a vector field A(q; s) is

L(q, u; s) =
mu2

2
− eu ∙ A(q; s), (14)

where the scalar product is defined as

z ∙ w = zμw
μ = ημνz

μwν , (15)

and the signature of the Minkowski spacetime is the usual
one with

zμ = ημνz
ν , η̂ = diag(1,−1,−1,−1). (16)
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Furthermore, the contravariant vector uμ with compo-
nents u =

(
u0, u1, u2, u3

)
is the four-velocity

uμ =
dqμ

ds
. (17)

The canonical conjugate momentum πμ is defined as

πμ = ημν
∂L
∂uν

= muμ − eAμ , (18)

so that the relativistic Hamiltonian can be written in the form

H(q, π; s) = π ∙ u− L(q, u; s). (19)

Suppose now that we wish to use any other coordinate
system xα as Cartesian, curvilinear, accelerated or rotating
one. Then the coordinates qμ are functions of the xα, which
can be written explicitly as

qμ = qμ(xα). (20)

The four-vector of particle velocity uμ is transformed
according to the expression

uμ =
∂qμ

∂xα
dxα

ds
=
∂qμ

∂xα
vα, (21)

where
vμ =

dxμ

ds
. (22)

is the transformed four-velocity expressed in terms of the
new coordinates. The vector field Aμ is also transformed as
a vector

Aμ =
∂xμ

∂qα
Aα. (23)

In the new coordinate system xα the Lagrangian (14)
becomes

L(x, v; s) = gμν
[m
2
vμvν − evμAν(x; s)

]
, (24)

where
gαβ = ημν

∂qμ

∂xα
∂qν

∂xβ
. (25)

The Lagrange equations can be written in the usual form

d

ds

(
∂L
∂vλ

)

−
∂L
∂xλ

= 0 . (26)

In the case of a free particle (no interaction with an
external vector field), we have

d

ds
(gλμv

μ)−
1

2

∂gμν
∂xλ

vμvν = 0 . (27)

Specifying the covariant velocity vλ as

vλ = gλμv
μ, (28)

and using the well-known identity for connections Γαμν

∂gμν
∂xλ

= Γαλμgαν + Γ
α
λνgαμ , (29)

we obtain
Dvλ
Ds

=
dvλ
ds
− Γμλνv

νvμ = 0 . (30)

Here Dvλ/Ds denotes the covariant derivative of the
covariant velocity vλ along the curve xν(s). Using Eqs.
(28) and (29) and the fact that the affine connection Γλμν
is symmetric in the indices μ and ν, we obtain the equation
of motion for the contravariant vector vλ

Dvλ

Ds
=
dvλ

ds
+ Γλμνv

μvν = 0 . (31)

Before we pass over to the Hamiltonian description, let
us note that the generalized momentum pμ is defined as

pμ =
∂L
∂vμ

= mgμνv
ν , (32)

while, from Lagrange equations of motion, we obtain

dpμ
ds

=
∂L
∂xμ

. (33)

The transformation from (xμ, vμ; s) to (xμ, pμ; s) can be
accomplished by means of a Legendre transformation, and
instead of the Lagrangian (24), we consider the Hamilton
function

H(x, p; s) = pμv
μ − L(x, v; s). (34)

The differential of the Hamiltonian in terms of x, p and
s is given by

dH =
∂H
∂xμ

dxμ +
∂H
∂pμ

dpμ +
∂H
∂s
ds. (35)

On the other hand, from Eq.(34), we have

dH = vμdpμ+pμdv
μ−

∂L
∂vμ

dvμ−
∂L
∂xμ

dxμ−
∂L
∂s
ds. (36)

Taking into account the defining Eq.(32), the second and
the third term on the right-hand-side of Eq.(36) cancel out.
Eq.(33) can be further used to cast Eq.(36) into the form

dH = vμdpμ −
dpμ
ds
dxμ −

∂L
∂s
ds , (37)

Comparison between Eqs.(35) and (37) yields the Hami-
lton equations of motion

dxμ

ds
=
∂H
∂pμ

,
dpμ
ds

= −
∂H
∂xμ

, (38)

where the Hamiltonian is given by

H(x, p; s) =
gμν

2m
pμpν +

e

m
pμA

μ. (39)
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In the case of a free particle, the Hamilton equations can
be written explicitly as

dxμ

ds
=
gμν

m
pν ,

dpλ
ds

= −
1

2m

∂gμν

∂xλ
pμpν . (40)

To obtain the equations of motion we need the expression

∂gμν

∂xλ
= −Γμλαg

αν − Γνλαg
αμ, (41)

which can be derived from the obvious identity

∂

∂xλ
(gμαgαν) = 0 , (42)

and Eq.(29). From the second of Eqs. (40), we obtain

Dpλ
Ds

=
dpλ
ds
− Γμλνv

νpμ = 0 , (43)

similar to equation (30). Differentiating the first of the Hamil-
ton equations (40) with respect to s and taking into account
equations (41) and (43), we again arrive to the equation for
the geodesics (31).

Let us now show that on a generic curved (torsion-free)
manifolds the Poisson brackets are conserved. To achieve
this result, we need the following identities

gμν = gνμ = ηαβ
∂xμ

∂qα
∂xν

∂qβ
, (44)

∂2xλ

∂qα∂qβ
= −Γλμν

∂xμ

∂qα
∂xν

∂qβ
, (45)

� To prove (45), we differentiate the obvious identity

∂xλ

∂qρ
∂qρ

∂xν
= δλν . (46)

As a result, we find

Γλμν =
∂xλ

∂qρ
∂2qρ

∂xμ∂xν
= −

∂qρ

∂xν
∂qσ

∂xμ
∂2xλ

∂qρ∂qσ
.� (47)

The next step is to calculate the fundamental Poisson
brackets in terms of the variables (xμ, pν), initially defined
using the canonical variables (qμ, πν) according to the rela-
tion

[U, V ] =
∂U

∂qμ
∂V

∂πμ
−
∂V

∂qμ
∂U

∂πμ
, (48)

where U(qμ, πν) and V (qμ, πν) are arbitrary functions. Mak-
ing use of Eqs.(18) and (21), we know that the variables

qμ ⇔ πμ = muμ = mημνu
ν = mημν

∂qν

∂xα
vα, (49)

form a canonical conjugate pair. Using Eq.(32), we would
like to check whether the variables

xμ ⇔ pμ = mgμνv
ν = gμνη

αλπλ
∂xν

∂qα
, (50)

form a canonical conjugate pair. We have

[U, V ] =

[
∂U

∂xα
∂xα

∂qμ
+
∂U

∂pσ
ηβλπλ

∂

∂qμ

(

gσν
∂xν

∂qβ

)]

×

×
∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
−

−

[
∂V

∂xα
∂xα

∂qμ
+
∂V

∂pσ
ηβλπλ

∂

∂qμ

(

gσν
∂xν

∂qβ

)]

×

×
∂U

∂pα
gαχη

ρμ ∂x
χ

∂qρ
. (51)

The first and the third term on the right-hand-side of
Eq.(51) can be similarly manipulated as follows

I-st term =
∂U

∂xα
∂V

∂pβ
gβχη

ρμ ∂x
χ

∂qρ
∂xα

∂qμ
=

= gβχg
χα ∂U

∂xα
∂V

∂pβ
=
∂U

∂xα
∂V

∂pα
, (52)

III-rd term = −
∂V

∂xα
∂U

∂pα
. (53)

Next, we manipulate the second term on the right-hand-
side of Eq.(51). We obtain

II-nd term =
∂U

∂pσ

∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
ηβλπλ ×

×

[

gσν
∂2xν

∂qμ∂qβ
+
∂xν

∂qβ
∂gσν
∂xγ

∂xγ

∂qμ

]

=

=
∂U

∂pσ

∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
ηβλπλ ×

×

[

−gσνΓ
ν
γδ

∂xγ

∂qμ
∂xδ

∂qβ
+
∂xδ

∂qβ
∂xγ

∂qμ
(
Γνγσgνδ+Γ

ν
γδgνσ

)
]

=

=
∂U

∂pσ

∂V

∂pα
gαχg

χγηβλπλ
∂xδ

∂qβ
gνδΓ

ν
γσ =

=
∂U

∂pσ

∂V

∂pβ
gμνη

αλπλ
∂xν

∂qα
Γ
μ
βσ = Γ

λ
μνpλ

∂U

∂pν

∂V

∂pμ
. (54)

The fourth term is similar to the second one but with U
and V interchanged

IV-th term = −Γλμνpλ
∂U

∂pμ

∂V

∂pν
. (55)

In the absence of torsion, the affine connection Γλμν is
symmetric with respect to the lower indices, so that the
second and the fourth term on the right-hand-side of Eq.(51)
cancel each other. Therefore,

[U, V ] =
∂U

∂xμ
∂V

∂pμ
−
∂V

∂xμ
∂U

∂pμ
, (56)

which means that the fundamental Poisson brackets are con-
served. On the other hand, this implies that the variables
{xμ, pν} are a canonical conjugate pair.
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As a final remark, we have to say that considering a
generic metric gαβ and a connection Γαμν is related to the fact
that we are passing from a Minkowski-flat spacetime (local
inertial reference frame) to an accelerated reference frame
(curved spacetime). In what follows, we want to show that a
generic bilinear Hamiltonian invariant, which is conformally
conserved, gives always rise to a canonical symplectic struc-
ture. The specific theory is assigned by the vector (or tensor)
fields which define the Hamiltonian invariant.

3 A symplectic structure compatible with general co-
variance

The above considerations can be linked together leading to a
more general scheme where a covariant symplectic structure
is achieved. Summarizing, the main points which we need
are: (i) an even-dimensional vector space E2n equipped
with an antiscalar product satisfying the algebra (3)-(7);
(ii) generic vector fields defined on such a space which have
to satisfy the Poisson brackets; (iii) first-order equations
of motion which can be read as Hamilton-like equations;
(iv) general covariance which has to be preserved.

Such a program can be pursued by taking into account
covariant and contravariant vector fields. In fact, it is possible
to construct the Hamiltonian invariant

H = V αVα , (57)

which is a scalar quantity satisfying the relation

δH = δ(V αVα) = 0 , (58)

being δ a spurious variation due to the transport. It is worth
stressing that the vectors V α and Vα are not specified and
the following considerations are completely general. Eq.(57)
is a so called “already parameterized” invariant which can
constitute the “density” of a parameterized action principle
where the time coordinate is not distinguished a priori from
the other coordinates [8, 9].

Let us now take into account the intrinsic variation of
V α. On a generic curved manifold, we have

DV α = dV α − δV α = ∂βV
αdxβ − δV α, (59)

where D is the intrinsic variation, d the total variation and
δ the spurious variation due to the transport on the curved
manifold. The spurious variation has a very important mean-
ing since, in General Relativity, if such a variation for a
given quantity is equal to zero, this means that the quantity
is conserved. From the definition of covariant derivative,
applied to the contravariant vector, we have

DV α = ∂βV
αdxβ + ΓασβV

σdxβ , (60)

and
∇βV

α = ∂βV
α + ΓασβV

σ, (61)

and then
δV α = −ΓασβV

σdxβ . (62)

Analogously, for the covariant derivative applied to the
covariant vector,

DVα = dVα − δVα = ∂βVαdx
β − δVα , (63)

and then
DVα = ∂βVαdx

β − ΓσαβVσdx
β , (64)

and
∇βVα = ∂βVα − Γ

σ
αβVσ . (65)

The spurious variation is now

δVα = Γ
σ
αβVσdx

β . (66)

Developing the variation (58), we have

δH = VαδV
α + V αδVα , (67)

and
δH
dxβ

= Vα
δV α

dxβ
+ V α

δVα
dxβ

, (68)

which becomes

δH
dxβ

=
δV α

dxβ
∂H
∂V α

+
δVα
dxβ

∂H
∂Vα

, (69)

being
∂H
∂V α

= Vα,
∂H
∂Vα

= V α. (70)

From Eqs.(62) and (66), it is

δV α

dxβ
= −ΓασβV

σ = −Γασβ

(
∂H
∂Vσ

)

, (71)

δVα
dxβ

= ΓσαβVσ = Γ
σ
αβ

(
∂H
∂V σ

)

, (72)

and substituting into Eq.(69), we have

δH
dxβ

= −Γασβ

(
∂H
∂Vσ

)(
∂H
∂V α

)

+ Γσαβ

(
∂H
∂Vα

)(
∂H
∂V σ

)

, (73)

and then, since α and σ are mute indexes, the expression

δH
dxβ

=
(
Γασβ − Γ

α
σβ

)
(
∂H
∂Vσ

)(
∂H
∂V α

)

≡ 0 , (74)

is identically equal to zero. In other words, H is absolutely
conserved, and this is very important since the analogy with
a canonical Hamiltonian structure
is straightforward. In fact, if, as above,

H = H(p, q) (75)

is a classical generic Hamiltonian function, expressed in the
canonical phase-space variables {p, q}, the total variation (in
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a vector space E2n whose dimensions are generically given
by pi and qj with i, j = 1, ..., n) is

dH =
∂H
∂q
dq +

∂H
∂p
dp , (76)

and

dH
dt

=
∂H
∂q
q̇ +

∂H
∂p
ṗ =

=
∂H
∂q

∂H
∂p
−
∂H
∂p

∂H
∂q
≡ 0 , (77)

thanks to the Hamilton canonical equations

q̇ =
∂H
∂p

, ṗ = −
∂H
∂q

. (78)

Such a canonical approach holds also in our covariant
case if we operate the substitutions

V α ←→ p Vα ←→ q (79)

and the canonical equations are

δV α

dxβ
= −Γασβ

(
∂H
∂Vσ

)

←→
dp

dt
= −

∂H
∂q

, (80)

δVα
dxβ

= Γσαβ

(
∂H
∂V σ

)

←→
dq

dt
=
∂H
∂p

. (81)

In other words, starting from the (Hamiltonian) invariant
(57), we have recovered a covariant canonical symplectic
structure. The variation (67) may be seen as the generating
function G of canonical transformations where the generators
of q−, p− and t−changes are dealt under the same standard.

At this point, some important remarks have to be done.
The covariant and contravariant vector fields can be also of
different nature so that the above fundamental Hamiltonian
invariant can be generalized as

H =WαVα , (82)

or, considering scalar smooth and regular functions, as

H = f(WαVα), (83)

or, in general

H = f
(
WαVα, B

αβCαβ , B
αβVαV

′
β , . . .

)
, (84)

where the invariant can be constructed by covariant vectors,
bivectors and tensors. Clearly, as above, the identifications

Wα ←→ p Vα ←→ q (85)

hold and the canonical equations are

δWα

dxβ
= −Γασβ

(
∂H
∂Vσ

)

,
δVα
dxβ

= Γσαβ

(
∂H
∂W σ

)

. (86)

Finally, conservation laws are given by

δH
dxβ

=
(
Γασβ − Γ

α
σβ

)
(
∂H
∂Vσ

)(
∂H
∂Wα

)

≡ 0 . (87)

In our picture, this means that the canonical symplectic
structure is assigned in the way in which covariant and
contravariant vector fields are related. However, if the Ha-
miltonian invariant is constructed by bivectors and tensors,
equations (86) and (87) have to be generalized but the struc-
ture is the same. It is worth noticing that we never used the
metric field but only connections in our derivations.

These considerations can be made independent of the
reference frame if we define a suitable system of unitary vec-
tors by which we can pass from holonomic to anholonomic
description and viceversa. We can define the reference frame
on the event manifoldM as vector fields e(k) in event space
and dual forms e(k) such that vector fields e(k) define an
orthogonal frame at each point and

e(k)
(
e(l)
)
= δ

(k)
(l) . (88)

If these vectors are unitary, in a Riemannian 4-spacetime
are the standard vierbiens [5].

If we do not limit this definition of reference frame by
orthogonality, we can introduce a coordinate reference frame
(∂α, ds

α) based on vector fields tangent to line xα = const.
Both reference frames are linked by the relations

e(k) = e
α
(k)∂α; e(k) = e(k)α dxα. (89)

From now on, Greek indices will indicate holonomic co-
ordinates while Latin indices between brackets, the anholo-
nomic coordinates (vierbien indices in 4-spacetimes). We
can prove the existence of a reference frame using the ortho-
gonalization procedure at every point of spacetime. From the
same procedure, we get that coordinates of frame smoothly
depend on the point. The statement about the existence of a
global reference frame follows from this. A smooth field on
time-like vectors of each frame defines congruence of lines
that are tangent to this field. We say that each line is a world
line of an observer or a local reference frame. Therefore
a reference frame is a set of local reference frames. The
Lorentz transformation can be defined as a transformation of
a reference frame

x′
α
= f

(
x0, x1, x2, x3, . . . , xn

)
, (90)

e′
α
(k) = A

α
βB

(l)
(k)e

β
(l) , (91)

where

Aαβ =
∂x′

α

∂x′β
, δ(i)(l)B

(i)
(j)B

(l)
(k) = δ(j)(k) . (92)

We call the transformation Aαβ the holonomic part and

transformation B(l)(k) the anholonomic part.
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A vector field V has two types of coordinates: holonomic
coordinates V α relative to a coordinate reference frame and
anholonomic coordinates V (k) relative to a reference frame.
For these two kinds of coordinates, the relation

V (k) = e(k)α V α , (93)

holds. We can study parallel transport of vector fields using
any form of coordinates. Because equations (90) and (91) are
linear transformations, we expect that parallel transport in
anholonomic coordinates has the same form as in holonomic
coordinates. Hence we write

DV α = dV α + ΓαβγV
βdxγ , (94)

DV (k) = dV (k) + Γ
(k)
(l)(p)V

(l)dx(p). (95)

Because DV α is also a tensor, we get

Γ
(k)
(l)(p) = e

α
(l)e

β
(p)e

(k)
γ Γ

γ
αβ + e

α
(l)e

β
(p)

∂e
(k)
α

∂xβ
. (96)

Eq.(96) shows the similarity between holonomic and
anholonomic coordinates. Let us introduce the symbol ∂(k)
for the derivative along the vector field e(k)

∂(k) = e
α
(k)∂α . (97)

Then Eq.(96) takes the form

Γ
(k)
(l)(p) = e

α
(l)e

β
(p)e

(k)
γ Γ

γ
αβ + e

α
(l)∂(p)e

(k)
α . (98)

Therefore, when we move from holonomic coordinates
to anholonomic ones, the connection also transforms the way
similarly to when we move from one coordinate system to an-
other. This leads us to the model of anholonomic coordinates.
The vector field e(k) generates lines defined by the differ-
ential equations

eα(l)
∂τ

∂xα
= δ

(k)
(l) , (99)

or the symbolic system

∂τ

∂x(l)
= δ

(k)
(l) . (100)

Keeping in mind the symbolic system (100), we denote
the functional τ as x(k) and call it the anholonomic coordi-
nate. We call the regular coordinate holonomic. Then we can
find derivatives and get

∂x(k)

∂xα
= δ(k)α . (101)

The necessary and sufficient conditions to complete the
integrability of system (101) are

ω
(i)
(k)(l) = e

α
(k)e

β
(l)

(
∂e

(i)
α

∂xβ
−
∂e

(i)
β

∂xα

)

= 0 , (102)

where we introduced the anholonomic object ω(i)(k)(l).
Therefore each reference frame has n vector fields

∂(k) =
∂

∂x(k)
= eα(k)∂α , (103)

which have the commutators

[
∂(i), ∂(j)

]
=
(
eα(i)∂αe

β
(j) − e

α
(j)∂αe

β
(i)

)
e
(m)
β ∂(m) =

= eα(i)e
β
(j)

(
−∂αe

(m)
β + ∂βe

(m)
β

)
∂(m) = ω

(m)
(i)(j)∂(m). (104)

For the same reason, we introduce the forms

dx(k) = e(k) = e
(k)
β dxβ , (105)

and a differential of this form is

d2x(k)=d
(
e(k)α dxα

)
=
(
∂βe

(k)
α −∂αe

(k)
β

)
dxα∧dxβ =

= −ω(m)(k)(l)dx
(k) ∧ dx(l). (106)

Therefore when ω(i)(k)(l) 6= 0, the differential dx(k) is not
an exact differential and the system (101), in general, cannot
be integrated. However, we can consider meaningful objects
which model the solution. We can study how the functions
x(i) changes along different lines. The functions x(i) is a
natural parameter along a flow line of vector fields e(i). It is
defined along any line.

All the above results can be immediately achieved in hol-
onomic and anholonomic formalism considering the equation

H =WαVα =W
(k)V(k) , (107)

and the analogous ones. This means that the results are
independent of the reference frame and the symplectic covar-
iant structure always holds.

4 The hydrodynamic picture

In order to further check the validity of the above approach,
we can prove that it is always consistent with the hydro-
dynamic picture (see also [10] for details on hydrodynamic
covariant formalism).

Let us define a phase space density f(x, p; s) which
evolves according to the Liouville equation

∂f

∂s
+
1

m

∂

∂xμ
(gμνpνf)−

1

2m

∂

∂pλ

(
∂gμν

∂xλ
pμpνf

)

=0 . (108)

Next we define the density %(x; s), the covariant current
velocity vμ(x; s) and the covariant stress tensor Pμν(x; s)
according to the relations

%(x; s) = mn

∫
d4pf(x, p; s) , (109)
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%(x; s)vμ(x; s) = n

∫
d4ppμf(x, p; s) , (110)

Pμν(x; s) =
n

m

∫
d4ppμpνf(x, p; s) . (111)

It can be verified, by direct substitution, that a solution
to the Liouville Eq.(108) of the form

f(x, p; s) =
1

mn
%(x; s)δ4[pμ −mvμ(x; s)] , (112)

leads to the equation of continuity

∂%

∂s
+

∂

∂xμ
(gμνvν%) = 0 , (113)

and to the equation for balance of momentum

∂

∂s
(%vμ) +

∂

∂xλ
(
gλαPαμ

)
+
1

2

∂gαβ

∂xμ
Pαβ = 0 . (114)

Taking into account the fact that for the particular solution
(112), the stress tensor, as defined by Eq.(111), is given by
the expression

Pμν(x; s) = %vμvν , (115)

we obtain the final form of the hydrodynamic equations

∂%

∂s
+

∂

∂xμ
(%vμ) = 0 , (116)

∂vμ
∂s

+ vλ
(
∂vμ
∂xλ

− Γνμλvν

)

=
∂vμ
∂s

+ vλ∇λvμ = 0 . (117)

It is straightforward to see that, through the substitution
vμ → Vμ, Eq.(72) is immediately recovered along a geodesic,
that is our covariant symplectic structure is consistent with

a hydrodynamic picture. It is worth noting that if ∂vμ
∂s

in
Eq.(117), the motion is not geodesic. The meaning of this
term different from zero is that an extra force is acting on
the system.

5 Applications, Discussion and Conclusions

Many applications of the previous results can be achieved
specifying the nature of vector (or tensor) fields which define
the Hamiltonian conserved invariant H. Considerations in
General Relativity and Electromagnetism are particularly
interesting at this point. Let us take into account the Riemann
tensorRρσμν . It comes out when a givenvector V ρ is transpor-
ted along a closed path on a generic curved manifold. It is

[∇μ,∇ν ]V
ρ = RρσμνV

σ, (118)

where ∇μ is the covariant derivative. We are assuming a
Riemannian Vn manifold as standard in General Relativity.
If connection is not symmetric, an additive torsion field
comes out from the parallel transport.

Clearly, the Riemann tensor results from the commutation
of covariant derivatives and it can be expressed as the sum
of two commutators

Rρσμν = ∂[μ,Γ
ρ
ν]σ + Γ

ρ
λ[μ,Γ

λ
ν]σ . (119)

Furthermore, (anti) commutation relations and cyclic
identities (in particular Bianchi’s identities) hold for the
Riemann tensor [5].

All these straightforward considerations suggest the pre-
sence of a symplectic structure whose elements are covariant
and contravariant vector fields, V α and Vα, satisfying the
properties (3)-(7). In this case, the dimensions of vector space
E2n are assigned by V α and Vα. It is important to notice that
such properties imply the connections (Christoffel symbols)
and not the metric tensor.

As we said, the invariant (57) is a generic conserved
quantity specified by the choice of V α and Vα. If

V α =
dxα

ds
, (120)

is a 4-velocity, with α=0, 1, 2, 3, immediately, from Eq.(80),
we obtain the equation of geodesics of General Relativity,

d2xα

ds2
+ Γαμν

dxμ

ds

dxν

ds
= 0 . (121)

On the other hand, being

δV α = RαβμνV
βdx

μ
1dx

ν
2 , (122)

the result of the transport along a closed path, it is easy to
recover the geodesic deviation considering the geodesic (121)
and the infinitesimal variation ξα with respect to it, i. e.

d2(xα+ξα)

ds2
+Γαμν(x+ξ)

d(xμ+ξμ)

ds

d(xν+ξν)

ds
=0, (123)

which gives, through Eq.(119),

d2ξα

ds2
= Rαμλν

dxμ

ds

dxν

ds
ξλ. (124)

Clearly the symplectic structure is due to the fact that
the Riemann tensor is derived from covariant derivatives
either as

[∇μ,∇ν ]V
ρ = RρσμνV

σ, (125)

or
[∇μ,∇ν ]Vρ = R

σ
μνρVσ . (126)

In other words, fundamental equations of General Rela-
tivity are recovered from our covariant symplectic formalism.

Another interesting choice allows to recover the standard
Electromagnetism. If V α=Aα, where Aα is the vector po-
tential and the Hamiltonian invariant is

H = AαAα , (127)
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it is straightforward, following the above procedure, to ob-
tain, from the covariant Hamilton equations, the electro-
magnetic tensor field

Fαβ = ∇αAβ −∇βAα = ∇[αAβ] , (128)

and the Maxwell equations (in a generic empty curved space-
time)

∇αFαβ = 0 , ∇[αFλβ] = 0 . (129)

The standard Lorentz gauge is

∇αAα = 0 , (130)

and electromagnetic wave equation is easily recovered.
In summary, a covariant, symplectic structure can be

found for every Hamiltonian invariant which can be con-
structed by covariant vectors, bivectors and tensor fields.
In fact, any theory of physics has to be endowed with a
symplectic structure in order to be formulated at a fundam-
ental level.

We pointed out that curvature invariants of General Rel-
ativity can show such a feature and, furthermore, they can be
recovered from Hamiltonian invariants opportunely defined.
Another interesting remark deserves the fact that, starting
from such invariants, covariant and contravariant vector fields
can be read as the configurations qi and the momenta pi of
classical Hamiltonian dynamics so then the Hamilton-like
equations of motion are recovered from the application of
covariant derivative to both these vector fields. Besides, the
approach can be formulated in a holonomic and anholonomic
representations, once vector fields (or tensors in general) are
represented in vierbien or coordinate–frames. This feature is
essential to be sure that general covariance and symplectic
structure are conserved in any case.

Specifying the nature of vector fields, we select the partic-
ular theory. For example, if the vector field is the 4-velocity,
we obtain geodesic motion and geodesic deviation. If the
vector is the vector potential of Electromagnetism, Maxwell
equations and Lorentz gauge are recovered. The scheme is
independent of the nature of vector field and, in our opinion,
it is a strong hint toward a unifying view of basic interactions,
gravity included.
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