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I assume that both spacetime and the internal symmetry space of the Standard Model
(SM) of leptons and quarks are discrete. If lepton and quark states represent specific
finite binary rotational subgroups of the SM gauge group, unification with gravitation
is accomplished by combining finite subgroups of the Lorentz group SO(3,1) with
the specific finite SM subgroups. The unique result is a particular finite subgroup
of SO(9,1) in discrete 10-D spacetime related to E8 × E8 of superstring theory. A
physical model of particles based upon the finite subgroups and the discrete geometry
is proposed. Evidence for discreteness might be the appearance of a b’ quark at about
80–100 GeV decaying via FCNC to a b quark plus a photon at the Large Hadron
Collider.

1 Introduction

I consider both spacetime and the internal symmetry space of
the Standard Model (SM) of leptons and quarks to be discrete
instead of continuous. Using specific finite subgroups of
the SM gauge group, a unique finite group in discrete 10-
D spacetime unifies the fundamental interactions, including
gravitation. This finite group is a special subgroup of the
continuous group E8 × E8 that in superstring theory (also
called M-theory) is considered to be the most likely group
for unifying gravitation with the SM gauge group.

This unique result follows directly from two fundamental
assumptions: (1) the internal symmetry space is discrete,
requiring specific finite binary rotational subgroups of the SM
gauge group to dictate the physical properties of the lepton
and quark states, and (2) spacetime is discrete, and therefore
its discrete symmetries correspond to finite subgroups of the
Lorentz group. Presumably, this discreteness must occur as
one approaches the Planck scale of about 10−35 meters.

I suggest a particular physical model of fundamental
fermions based upon these finite subgroups in the discrete
geometry. Further evidence for this discreteness might be
the appearance of a b’ quark at about 80–100 GeV decaying
via FCNC to a b quark plus a photon at the Large Hadron
Collider.

2 Motivation

The Standard Model (SM) of leptons and quarks successfully
describes their electromagnetic, weak and color interactions
in terms of symmetries dictated by the SU(2)L × U(1)Y ×
SU(3)C continuous gauge group. These fundamental fermi-
ons and their antiparticles are defined by their electroweak
isospin states in two distinct but gauge equivalent unitary
planes in an internal symmetry space “attached” at a space-

time point. Consequently, particle states and antiparticle
states have opposite-signed physical properties but their
masses are the same sign.

In an earlier 1994 paper [1] I discussed how the SM
continuous gauge group could be acting like a “cover group”
for its finite binary rotational subgroups, thereby hiding any
important underlying discrete rotational symmetries of these
fundamental particle states. From group theory, one knows
that the continuous SM gauge group contains thousands
of elements of finite order including, for example, all the
elements of the finite binary rotational subgroups in their
3-dimensional and 4-dimensional representations. I showed
that these subgroups were very important because they are
connected to the j-invariant of elliptic modular functions
from which one can predict the mass ratios for the lepton
and quark states.

The mathematical properties of these finite subgroups of
the SM dictate the same physical properties of the leptons
and quarks as achieved by the SM. However, electroweak
symmetry breaking to these specific finite binary rotational
subgroups occurs without a Higgs particle. More importantly,
some additional physical properties are dictated also, such as
their mass ratios, why more than one generation is present,
the important family relationships, and the dimensionalities
of the particle states because they are no longer point part-
icles.

The gravitational interaction is not included explicitly in
the SM gauge group. However, because the finite binary ro-
tational subgroup approach determined the lepton and quark
mass ratios, one suspects that the gravitational interaction
is included already in the discretized version of the gauge
group. Or, equivalently, since mass/energy is the source of the
gravitational interaction, the gravitational interaction arises
from the discrete symmetries associated with the finite rota-
tional subgroups.
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Therefore, I make some conjectures. If leptons and quarks
actually represent the specific discrete symmetries of the
finite subgroups of the SM gauge group as proposed, the
internal symmetry space may be discrete instead of being
continuous. Going one step further, then not only the internal
symmetry space might be discrete but also spacetime itself
may be discrete, since gravitation determines the spacetime
metric. Spacetime would appear to be continuous only at
the low resolution scales of experimental apparatus such as
the present particle colliders. Unification of the fundamental
interactions then requires combining these finite groups
mathematically.

3 4-D internal symmetry space?

I take the internal symmetry space of the SM to be discrete,
but we need to know how many dimensions there are. Do
we need two complex spatial dimensions for a unitary plane
as suggested by SU(2), or do we need three as suggested by
the SU(3) symmetry of the color interaction, or do we need
more?

The lepton and quark particle states are defined as elec-
troweak isospin states by the electroweak part of the SM
gauge group, with particles in the normal unitary plane C2

and antiparticles in the conjugate unitary plane C ′2. Photon,
W+, W−, and Z0 interactions of the electroweak SU(2)L×
U(1)Y gauge group rotate the two particle states (i. e., the
two complex basis spinors in the unitary plane) into one
another. For example, e− + W+→ νe. These electroweak
rotations can be considered to occur also in an equivalent
4-dimensional real euclidean space R4 and in an equivalent
quaternion space Q, both these spaces being useful for a
better geometrical understanding of the SM.

The quark states are defined also by the color symmetries
of SU(3)C , i. e., each quark comes in one of three possible
colors, red R, green G, or blue B, while the lepton states
have no color charge. Normally, one would consider SU(3)C
operating in a space of three complex dimensions, or its
equivalent six real dimensions. In fact, SU(3)C can operate
successfully in the smaller unitary plane C2, because each
SU(3) operation can be written as the product of three specific
SU(2) operations [2]. An alternative geometrical explanation
has the gluon operations of the color interaction rotate one
color state into another in a 4-dimensional real space, as
discussed in my 1994 article. Briefly, real 4-dimensional
space R4 has four orthogonal coordinates (w, x, y, z), and its
4-D rotations occur simultaneously in two orthogonal planes.
There being only three distinct pairs of orthogonal planes,
[wx, yz], [xy, zw], and [yw, xz], each color R, G, or B
is assigned to a specific pair, thereby making color an exact
geometrical symmetry. Consequently, the gluon operations
of SU(3)C occur in the 4-D real space R4 that is equivalent
to the unitary plane. Detailed matrix operations confirm that

hadrons with quark-antiquark pairs, three quarks, or three
antiquarks, are colorless combinations.

Therefore I take the internal symmetry space to be a
discrete 4-dimensional real space because this space is the
minimum dimensional space that allows the SM gauge group
to operate completely. One does not need a larger space, e. g.,
a 6-dimensional real space, for its internal symmetry space.

4 Dimensions of spacetime?

I take physical spacetime to be 4-dimensional with its one
time dimension. Spacetime is normally considered to be
continuous and 4-dimensional, with three spatial dimensions
and one time dimension. However, in the last two decades
several approaches toward unifying all fundamental interact-
ions have considered additional mathematical spatial dimens-
ions and/or more time dimensions. For example, superstring
theory [3] at the high energy regime, i. e., at the Planck
scale, proposes 10 or 11 spacetime dimensions in its present
mathematical formulation, including the one time dimension.
These extra spatial dimensions may correspond to six or
seven dimensions “curled up” into an internal symmetry
space for defining fundamental particle states at each space-
time point in order to accommodate the SM in the low energy
regime. The actual physical spacetime itself may still have
three spatial dimensions and one time dimension.

I take 4-D spacetime to be discrete. We do not know
whether spacetime is continuous or discrete. If the internal
symmetry space is indeed discrete, then perhaps spacetime
itself might be discrete also. Researchers in loop quantum
gravity [4] at the Planck scale divide spacetime into discrete
subunits, considering a discrete 4-D spacetime with its dis-
crete Lorentz transformations to be a viable approach.

The goal now is to combine the finite subgroups of the
gauge group of the SM and the finite group of discrete
Lorentz boosts and discrete spacetime rotations into one uni-
fied group. All four known fundamental interactions would
be unified. Although many unification schemes for the fun-
damental interactions have been attempted over the past three
decades utilizing continuous groups, I believe this attempt is
the first one that combines finite groups. Mathematically, the
result must be unique, otherwise different fundamental laws
could exist in different parts of the universe.

5 Discrete internal space

The most important finite symmetry groups in the 4-D dis-
crete internal symmetry space are the 3-D binary rotational
subgroups [3, 3, 2], [4, 3, 2], and [5, 3, 2] of the SM gauge
group because they are the symmetry groups I have assigned
to the three lepton families. They contain discrete rotations
and inversions and operate in the 3-D subspace R3 of R4

and C2.
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Being subgroups of SU(2)L × U(1)Y , they have group
operations represented by 2×2 unitary matrices or, equiv-
alently, by unit quaternions. Quaternions provide the more
obvious geometrical connection [5], because quaternions per-
form the dual role of being a group operation and of being a
vector in R3 and in R4. One can think visually about the 3-D
group rotations and inversions for these three subgroups as
quaternions operating on the Platonic solids, with the same
quaternions also defining the vertices of regular geometrical
objects in R4.

The two mathematical entities, the unit quaternion q and
the SU(2) matrix, are related by

q = w + x i+ y j+ z k ⇐⇒

(
w + iz x+ iy
−x+ iy w − iz

)

(1)

where the i, j, and k are unit imaginaries, their coefficients
are real, andw2+x2+y2+z2 = 1. The conjugate quaternion
q′ = w− x i− y j− z k and its corresponding matrix would
represent the same group operation in the conjugate unitary
plane for the antiparticles. Recall that Clifford algebra and
Bott periodicity dictate that only R4, R8, and other real
spaces Rn with dimensions divisible by four have two equiv-
alent conjugate spaces, the specific mathematical property
that accommodates both particle states and antiparticle states.
The group U(1)Y for weak hypercharge Y then reduces the
symmetry to being gauge equivalent so that particles and
antiparticles have the same positive mass.

One might expect that we need to analyze each of the
three binary rotational subgroups separately when the dis-
crete internal symmetry space is combined with discrete
spacetime. Fortunately, the largest binary rotational group
[5, 3, 2] of icosahedral symmetries can accommodate the
two other groups, and a discussion of its 120 quaternion
operations is all inclusive mathematically. The elements of
this icosahedral group, rotations and inversions, can be re-
presented by the appropriate unit quaternions.

The direct connection between the 3-D and 4-D spaces is
realized when one equates the 120 group operations on the
regular icosahedron (3, 5) to the vectors for the 120 vertices
of the 600-cell hypericosahedron (3, 3, 5) in 4-D space in
a particular way. These operations of the binary icosahedral
group [5, 3, 2] and the vertices of the hypericosahedron are
defined by 120 special unit quaternions qi known as isosians
[6], which have the mathematical form

qi =
(
e1 + e2

√
5
)
+
(
e3 + e4

√
5
)
i

+
(
e5 + e6

√
5
)
j +

(
e7 + e8

√
5
)
k ,

(2)

where the eight ej are special rational numbers. Specifically,
the 120 icosians are obtained by permutations of

(±1, 0, 0, 0) , (±1/2,±1/2,±1/2,±1/2) ,

(0,±1/2,±g/2,±G/2) ,
(3)

where g = G−1 = G − 1 = (−1 +
√
5)/2. Notice that

in each pair, such as (e3 + e4
√
5), only one of the ej is

nonzero, reminding us that the hypericosahedron is really a
4-D object even though we can now define this object in
terms of icosians that are expressed in the much larger R8

euclidean real space.
So the quaternion’s dual role allows us to identify the 120

group operations of the icosahedron with the 120 vertices
of the hypericosahedron expressed both in R4 and in R8,
essentially telescoping from 3-D rotational operations all the
way to their representations in an 8-D space. These special
120 icosians are to be considered as special octonions, 8-
tuples of rational numbers which, with respect to a particular
norm, form part of a special lattice in R8.

Now consider the two other subgroups. The 24 quatern-
ions of the binary tetrahedral group [3, 3, 2] are contained
already in the above 120 icosians. So we are left with ac-
commodating the binary octahedral group [4, 3, 2] into the
same icosian format. We need 48 special quaternions for its
48 operations, the 24 quaternions defining the vertices of
the 4-D object known as the 24-cell contained already in
the hypericosahedron above and another 24 quaternions for
the reciprocal 24-cell. The 120 unit quaternions reciprocal to
the ones above will meet this requirement as well as define
an equivalent set for the reciprocal hypericosahedron, and
this second set of 120 octonions also forms part of a special
lattice in R8. Together, these two lattice parts of 120 icosians
in each combine to form the 240 octonions of the famous E8
lattice inR8, well known for being the densest lattice packing
of spheres in 8-D.

Recall that the three binary rotation groups above are
assigned to the lepton families because, as subgroups of the
SM gauge group, they predict the correct physical properties
of the lepton states, including the correct mass ratios. There-
fore, the lepton states as I have defined them span only
the 3-D real subspace R3 of the unitary plane. That is why
leptons are color neutral and do not participate in the color
interaction, a physical property that requires the ability to
undergo complete 4-D rotations.

So how do quark states fit into the icosian picture? I
have the quark states in the SM spanning the whole 4-D real
space, i. e., the whole unitary plane, because they are the
basis states of the 4-D finite binary rotational subgroups of
the SM gauge group. But free quarks in spacetime do not
exist because they are confined according to QCD, forming
the colorless quark-antiquark, three-quark, or three-antiquark
combinations called hadrons. Mathematically, these colorless
hadron states span the 3-D subspace only, so their resultant
discrete symmetry group must be isomorphic to one of the
three binary rotational subgroups we have just considered.
Consequently, the icosians enumerated above account for all
the lepton states and for all the quark states in their allowed
hadronic combinations.
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6 Discrete spacetime

Linear transformations in discrete spacetime are the discrete
rotations and the discrete Lorentz boosts. Before considering
these discrete transformations, however, I discuss the contin-
uous transformations of the “heavenly sphere” as a useful
mathematical construct before reducing the symmetry to
discrete transformations in a discrete spacetime.

The continuous Lorentz group SO(3,1) contains all the
rotations and Lorentz boosts, both continuous and discrete,
for the 4-D continuous spacetime with the Minkowski metric.
Its operations are quaternions because there exists the iso-
morphism

SO(3, 1) = PSL (2,C) . (4)

The group PSL(2,C) consists of unit quaternions and is
the quotient group SL(2,C)/Z formed by its center Z, those
elements of SL(2,C) which commute with all the rest of the
group. Its 2×2 matrix representation has complex numbers
as entries.

The continuous Lorentz transformations (including the
spatial rotations) operate on the “heavenly sphere” [7], i. e.,
the famous Riemann sphere formed by augmenting the com-
plex plane C by the “point at infinity”. The Riemann sphere
is also the space of states of a spin-1/2 particle. For the
Lorentz transformations in spacetime, if you are located at
the center of this “heavenly sphere” so that the light rays
from stars overhead each pass through unique points on
a unit celestial sphere surrounding you, then the Lorentz
boost is a conformal transformation of the star locations.
The constellations will look distorted because the apparent
lengths of the lines connecting the stars will change but the
angles between these connecting lines will remain the same.

These conformal transformations are called fractional
linear transformations, or Möbius transformations, of the
Riemann sphere, expressed by the general form [8]

w 7→
αw + β

γw + δ
, (5)

with α, β, γ, and δ complex, and αδ − βγ 6= 0. The 2×2
matrix representation for transformation of a spinor v as the
map v 7→ Mv is

M =

(
α β
γ δ

)

. (6)

Thus, M is the spinor representation of the Lorentz trans-
formation. M acts on a vector A = vv† via A 7→ MAM†

[9]. All these relationships are tied together by the group
isomorphisms in continuous 4-D spacetime

SO(3, 1) = Möbius group = PSL (2,C) . (7)

Discrete spacetime has discrete Lorentz transformations,
not continuous ones. These discrete rotations and discrete
Lorentz boosts are contained already in SO(3,1), and they

tesselate the Riemann sphere. That is, they form regular
polygons on its surface that correspond to the discrete sym-
metries of the binary tetrahedral, binary octahedral, and bina-
ry icosahedral rotation groups [3, 3, 2], [4, 3, 2], and [5, 3, 2],
the same groups I used in the internal symmetry space for the
discrete symmetries. Therefore, the 240 quaternions defined
previously are required also for the discrete rotations and
discrete Lorentz boosts in the discrete 4-D spacetime. Again,
there are the same 240 icosian connections to octonions in
R8 to form a second E8 lattice.

Thus, the Lorentz group SO(3,1) with its linear trans-
formations in a continuous 4-D spacetime, when reduced to
its discrete transformations in a 4-D discrete spacetime, is
connected mathematically by icosians to the E8 lattice in
R8, telescoping the transformations from a smaller discrete
spacetime to a larger one. Hence all linear transformations
for the particles in a 4-D discrete spacetime have become
represented by 240 discrete transformations in the 8-D dis-
crete spacetime.

7 Resultant spacetime

The discrete transformations in the 4-D discrete internal
symmetry space and in the 4-D discrete spacetime are each
represented by an E8 lattice in the 8-D space R8. The finite
group of the discrete symmetries of the E8 lattice is the Weyl
group E8, not to be confused with the continuous exceptional
Lie group E8. Thus, the Weyl E8 is a finite subgroup of
SO(8), the continuous group of all rotations of the unit sphere
in R8 with determinant unity. In this section I combine the
two Weyl E8 groups to form a bigger group that operates in
a discrete spacetime, and then in the next section I suggest a
simple physical model for fundamental fermions that would
fit the geometry.

I have now two sets of 240 icosians each forming E8
lattices in R8, each obeying the symmetry operations of the
finite group Weyl E8. Each finite group of octonions acts as
rotations and as vectors in R8. I identify their direct product
as the elements of a discrete subgroup of the continuous
group PSL(2,O), where O represents all the unit octonions.
That is, if all the unit octonions in each were present, not
just the subset of unit octonions that form the E8 lattice, their
direct product group would be the continuous group of 2×2
matrices in which all matrix entries are unit octonions. So
the spinors in R8 are octonions.

The 8-D result is analogous to the 4-D result but different.
Recall that in the 4-D case, one has PSL(2,C), the group
of 2×2 matrices with complex numbers as entries, with
PSL(2,C) = SO(3,1), the Lorentz group in 4-D spacetime.
Here in 8-D one has a surprise, for the final combined
spacetime is bigger, being isomorphic to a 10-dimensional
spacetime instead of 8-dimensional spacetime because

PSL(2,O) = SO(9, 1) , (8)
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the Lorentz group in 10-D spacetime.
Applied to the discrete case, the combined group is the

finite subgroup

finite PSL(2,O) = finite SO(9, 1) , (9)

that is, the finite Lorentz group in discrete 10-D spacetime.
The same results, expressed in terms of the direct product of
Weyl E8 groups, is

Weyl E8 ×Weyl E8 = “Weyl” SO(9, 1) , (10)

where “Weyl” SO(9,1) is defined by the direct product on
the left and is a finite subgroup of SO(9,1).

Working in reverse, the discrete 10-D spacetime divides
into two parts as a 4-D discrete spacetime plus a 4-D discrete
internal symmetry space. There is a surprise in this result:
combining a discrete 4-D internal symmetry space with a
discrete 4-D spacetime creates a discrete 10-D spacetime,
not a discrete 8-D spacetime. Therefore, a continuous 10-D
spacetime, when “discretized”, is not required to partition
into a 4-D spacetime plus a 6-D “curled up” space as pro-
posed in superstring theory.

8 A physical particle model

In the 1994 paper I proposed originally that leptons have
the symmetries of the 3-D regular polyhedral groups and
that quarks have the symmetries of the 4-D regular polytope
groups. Now that I have combined the discrete 4-D internal
symmetry space with a discrete 4-D spacetime to achieve
mathematically a discrete 10-D spacetime, the fundamental
question arises: Are the leptons and quarks really 3-D and
4-D objects physically, or are they something else, perhaps
8-D or 10-D objects?

In order to answer this question I need to formulate a
reasonable physical model of fundamental particles in this
discrete spacetime environment. The simplest mathematical
viewpoint is that discrete spacetime is composed of identical
entities, call them nodes, which have no measureable phys-
ical properties until they collectively distort spacetime to
form a fundamental particle such as the electron, for example.
The collection of nodes and its distortion of the surrounding
spacetime exhibit the discrete symmetry of the appropriate
finite binary rotation group for the specific particle. For
example, the electron family has the discrete symmetry of
the binary tetrahedral group and the electron is one of its
two possible orthogonal basis states. So the distortion for
the collection of nodes called the electron will exhibit the
discrete symmetries of its [3, 3, 2] group as all of its physical
properties emerge for this specific collection and did not exist
beforehand. The positron forms in the conjugate space.

One can begin with a regular lattice of nodes in both
the normal unitary plane and in its conjugate unitary plane,
or one can consider the equivalent R4 spaces, and then

imagine that a spacetime distortion appears in both to form
a particle-antiparticle pair. Mathematically, one begins with
an isotropic vector, also called a zero length vector, which is
orthogonal to itself, that gets divided into two unit spinors
corresponding to the creation of the particle-antiparticle pair.
No conservations laws are violated because their quantum
numbers are opposite and the sum of the total mass energy
plus their total potential energy is zero. The spacetime dis-
tortion that is the particle and its “field” mathematically
brings the nodes closer together locally with a corresponding
adjustment to the node spacing all the way out to infinite
distance, all the while keeping the appropriate discrete rota-
tional symmetry intact. The gravitational interaction associ-
ated with this discrete symmetry therefore extends to infinite
distance.

This model of particle geometry must treat leptons as
3-D objects and quarks as 4-D objects in a discrete 4-D
spacetime. We know that there are no isolated quarks, for
they immediately form 3-D objects called hadrons. These
lepton states and hadron states are described by quaternions
of the form w+x i+ y j+ z k, so these 3-D objects “live” in
the three imaginary dimensions, and the 4th dimension can be
called time. Therefore, leptons and hadrons each experience
the “passage of time”, while indiviual quarks do not have this
characteristic until they form hadrons in the 3-D subspace.

If this physical model is a reasonable approximation
to describing the world of fundamental particles, why are
superstring researchers working in 10-dimensions or more?
Because one desires a single symmetry group that includes
both the group of spacetime transformations of particles and
the group of internal symmetries for the particle interactions.
At the Planck scale, if one has a continuous group, then
the smallest dimensional continuous spacetime one can use
is 10-D in order to have a viable Lagrangian. Reducing
this 10-D spacetime to the low energy regime of the SM
in 4-D spacetime, the 10-D continuous spacetime has been
postulated to divide into 4-D spacetime plus an additional 6-
dimensional “curled up” space in which to accommodate the
SM. In M-theory, one may be considering an 11-D spacetime
dividing into a 4-D spacetime plus a 7-D “curled up” space.
But this approach using continuous groups to connect back
to the SM has proven difficult, although some significant
advances have been achieved.

The analysis presented above for combining the two finite
Weyl E8 groups shows that the combined group operates
in 10-D discrete spacetime with all the group operations
being discrete. The particles are 3-D objects “traveling” in
spacetime. No separate “curled up” space is required at
the low energy limit corresponding to a distance scale of
about 10−23 meters or larger. The discreteness at the Planck
scale and the “hidden” discreteness postulated for all larger
distance scales is the mathematical feature that permits the
direct unique connection through icosians from the high
energy world to the familiar lower energy world of the SM.
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9 Mathematical connections

The mathematical connections of these binary polyhedral
groups to number theory, geometry, and algebra are too
numerous to list and discuss in this short article. In fact,
according to B. Kostant [10], if one were to choose groups
in mathematics upon which to construct the symmetries of
the universe, one couldn’t choose a better set, for “. . . in a
very profound way, the finite groups of symmetries in 3-space
‘see’ the simple Lie groups (and hence literally Lie theory)
in all dimensions.” Therefore, I provide a brief survey of
a few important connections here and will discuss them in
more detail in future articles.

Geometrical connections are important for these groups.
The continuous group PSL(2,C) defines a torus, as does
PSL(2,O). In the discrete environment, finite PSL(2,C) and
finite PSL(2,O) have special symmetry points on each torus
corresponding to the elements of the finite binary polyhedral
groups. An important mathematical property of the binary
polyhedral groups is their connection to elliptic modular
functions, the doubly periodic functions, and their famous j-
invariant function, which has integer coefficients in its series
expansion related to the largest of the finite simple groups
called the Monster.

The binary tetrahedral, octahedral and icosahedral rota-
tion groups are the finite groups of Mobius transformations
PSL(2,Z3), PSL(2,Z4), and PSL(2,Z5), respectively, where
Zndenotes integers mod (n). PSL (2,Zn) is often called the
modular group Γ(n). PSL(2,Zn) = SL(2,Zn) /{± I}, so
these three binary polyhedral groups (along with the cyclic
and dihedral groups) are the finite modular subgroups of
PSL(2,C) and are also discrete subgroups of PSL(2,R).
PSL(2,Zn) is simple in only three cases: n = 5, 7, 11. And
these three cases are the Platonic groups again: A5 and its
subgroup A4, S4, and A5, respectively [11].

An important mathematical property for physics is that
our binary polyhedral groups, the Γ(n), are generated by the
two transformations

X : τ 7→ −1/τ Y : τ 7→ τ + 1 , (11)

with τ being the lattice parameter for the plane associated
with forming the tesselations of the toroidal Riemann surface.
The j-invariant function j(τ ) of elliptic modular functions
exhibits this transformation behavior. Consequently, funct-
ions describing the physical properties of the fundamental
leptons and quarks will exhibit these same transformation
properties. So here is where the duality theorems of M-theory,
such as the S duality relating the theory at physical coupling
g to coupling at 1/g, arise naturally from mathematical
properties of the finite binary polyhedral groups.

One can show also that octonions and the triality conn-
ection for spinors and vectors in R8 are related to the fun-
damental interactions. In 8-D, the fundamental matrix rep-
resentations both for left- and right-handed spinors and for

vectors are the same dimension, 8×8 [12], leading to many
interesting mathematical properties. For example, an electron
represented by a left-handed octonionic spinor interacting
with a W+ boson represented by an octonionic vector be-
comes an electron neutrino, again an octonionic spinor. Geo-
metrically, this interaction looks like three E8 lattices com-
bining momentarily toform the famous 24-dimensional Leech
lattice!

By using a discrete spacetime, we have begun to suspect
that Nature has established a universe based upon funda-
mental mathematics that dictates unique fundamental physics
principles. Moreover, one might expect that all physical
constants will be shown to arise from fundamental math-
ematical relationships, dictating one universe with unique
constant values for a unique set of fundamental laws.

10 Experimental tests

There is no direct test yet devised for discrete spacetime.
However, my discrete internal symmetry space approach
dictates a fourth quark family with a b’ quark state at about
80 GeV and a t’ quark at about 2600 GeV. The production of
this b’ quark with the detection of its decay to a b quark and a
high energy photon seems at present to be the only attainable
empirical test for discreteness. Its appearance in collider
decays would be an enormously important event in particle
physics, strongly suggesting that the internal symmetry space
and its “surrounding” spacetime are discrete.

However, the b’ quark has remained hidden among the
collision debris at Fermilab because its flavor changing neu-
tral current (FCNC) decay channel has a very low probability
compared to all the other particle decays in this energy
regime. This b’ quark decay may even be confused with
the decay of the Higgs boson, should such a particle exist,
until all the quantum numbers are established. The t’ quark at
around 2600 GeV has too great a mass to have been produced
directly at Fermilab.

I expect the production of b’ quarks at the Large Hadron
Collider in a few years to be the acid test for discreteness
and to verify the close connection of fundamental physics to
the mathematical properties of the finite simple groups.
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