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The new dynamical “quantum foam” theory of 3-space is described at the classical
level by a velocity field. This has been repeatedly detected and for which the dynamical
equations are now established. These equations predict 3-space “gravitational wave”
effects, and these have been observed, and the 1991 DeWitte data is analysed to reveal
the fractal structure of these “gravitational waves”. This velocity field describes the
differential motion of 3-space, and the various equations of physics must be generalised
to incorporate this 3-space dynamics. Here a new generalised Schrödinger equation
is given and analysed. It is shown that from this equation the equivalence principle
may be derived as a quantum effect, and that as well this generalised Schrödinger
equation determines the effects of vorticity of the 3-space flow, or “frame-dragging”,
on matter, and which is being studied by the Gravity Probe B (GP-B) satellite gyroscope
experiment.

1 Introduction

Extensive experimental evidence [1, 2, 3] has shown that a
complex dynamical 3-space underlies reality. The evidence
involves the repeated detection of the motion of the Earth
relative to that 3-space using Michelson interferometers op-
erating in gas mode [3], particularly the experiment by Miller
[4] in 1925/26 at Mt.Wilson, and the coaxial cable RF travel
time measurements by Torr and Kolen in Utah, and the
DeWitte experiment in 1991 in Brussels [3]. All such 7 ex-
periments are consistent with respect to speed and direction.
It has been shown that effects caused by motion relative to
this 3-space can mimic the formalism of spacetime, but that
it is the 3-space that is “real”, simply because it is directly
observable [1].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers,
but the formalism is such that the dynamical equations for
this velocity field must transform covariantly under a change
of observer. As shown herein the experimental data from the
DeWitte experiment shows that v (r, t) has a fractal structure.
This arises because, in the absence of matter, the dynamical
equations for v (r, t) have no scale. This implies that the
differential motion of 3-space manifests at all scales. This
fractal differential motion of 3-space is missing from all the
fundamental equations of physics, and so these equations
require a generalisation. Here we report on the necessary
generalisation of the Schrödinger equation, and which results
in some remarkable results: (i) the equivalence principle
emerges, as well as (ii) the effects of vorticity of this velocity

field. These two effects are thus seen to be quantum-theoretic
effects, i. e. consequences of the wave nature of matter. The
equivalence principle, as originally formulated by Galileo
and then Newton, asserts that the gravitational acceleration
of an object is independent of its composition and speed.
However we shall see that via the vorticity effect, the velocity
of the object does affect the acceleration by causing rotations.

It has been shown [1, 5] that the phenomenon of gravity is
a consequence of the time-dependence and inhomogeneities
of v (r, t). So the dynamical equations for v (r, t) give rise to
a new theory of gravity, when combined with the generalised
Schrödinger equation, and the generalised Maxwell and
Dirac equations. The equations for v (r, t) involve the New-
tonian gravitational constant G and a dimensionless constant
that determines the strength of a new spatial self-interaction
effect, which is missing from both Newtonian Gravity and
General Relativity. Experimental data has revealed [1, 5] the
remarkable discovery that this constant is the fine structure
constant α ≈ 1/137. This dynamics then explains numerous
gravitational anomalies, such as the bore hole g anomaly, the
so-called “dark matter” anomaly in the rotation speeds of
spiral galaxies, and that the effective mass of the necessary
black holes at the centre of spherical matter systems, such as
globular clusters and spherical galaxies, is α/2 times the total
mass of these systems. This prediction has been confirmed
by astronomical observations [6].

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [1] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
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standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal 3-space as a classical approximation to
this “quantum foam”.

While here we investigate the properties of the general-
ised Schrödinger equation, analogous generalisations of the
Maxwell and Dirac equations, and in turn the corresponding
generalisations to the quantum field theories for such sys-
tems, may also be made. In the case of the Maxwell equations
we obtain the light bending effects, including in particular
gravitational lensing, caused by the 3-space differential and
time-dependent flow.

2 The physics of 3-space

Because of the dominance of the spacetime ontology, which
has been the foundation of physics over the last century, the
existence of a 3-space as an observable phenomenon has been
overlooked, despite extensive experimental detection over
that period, and earlier. This spacetime ontology is distinct
from the role of spacetime as a mathematical formalism
implicitly incorporating some real dynamical effects, though
this distinction is rarely made. Consequently the existence
of 3-space has been denied, and so there has never been a
dynamical theory for 3-space. In recent years this situation
has dramatically changed. We briefly summarise the key
aspects to the dynamics of 3-space.

Relative to some observer 3-space is described by a ve-
locity field v (r, t). It is important to note that the coordinate
r is not itself 3-space, rather it is merely a label for an
element of 3-space that has velocity v, relative to some
observer. This will become more evident when we consider
the necessary generalisation of the Schrödinger equation.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by, in the non-relativistic limit,

∇∙

(
∂v

∂t
+ (v∙∇)v

)

+
α

8

(
(trD)2 − tr(D2)

)
=

= −4πGρ ,
(1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g (r, t) ≡ lim
Δt→0

v
(
r+ v (r, t)Δt, t+Δt

)
− v (r, t)

Δt
=

=
∂v

∂t
+ (v∙∇)v .

(3)

These forms are mandated by Galilean covariance under
change of observer∗. This non-relativistic modelling of the
dynamics for the velocity field gives a direct account of
the various phenomena noted above. A generalisation to
include vorticity and relativistic effects of the motion of
matter through this 3-space is given in [1]. From (1) and
(2) we obtain that

∇∙g = −4πGρ− 4πGρDM , (4)

where

ρDM (r) =
α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Law of Gravi-
tation, in differential form. But for a non-zero α we see that
the 3-space acceleration has an additional effect, the ρDM
term, which is an effective “matter density” that mimics the
new self-interaction dynamics. This has been shown to be the
origin of the so-called “dark matter” effect in spiral galaxies.
It is important to note that (4) does not determine g directly;
rather the velocity dynamics in (1) must be solved, and then
with g subsequently determined from (3). Eqn. (4) merely
indicates that the resultant non-Newtonian aspects to g could
be mistaken as being the result of a new form of matter,
whose density is given by ρDM . Of course the saga of “dark
matter” shows that this actually happened, and that there has
been a misguided and fruitless search for such “matter”.

The numerous experimental confirmations of (1) imply
that Newtonian gravity is not universal at all. Rather a key
aspect to gravity was missed by Newton because it so
happens that the 3-space self-interaction dynamics does not
necessarily explicitly manifest outside of spherical matter
systems, such as the Sun. To see this it is only necessary to
see that the velocity field

v (r) = −

√
2GM ′

r
r̂ , (6)

is a solution to (1) external to a spherical mass M , where
M ′ = (1+ α

2 )M+. . . Then (6) gives, using (3), the resultant
external “inverse square law” acceleration

g (r) = −
GM ′

r2
r̂ . (7)

Hence in this special case the 3-space dynamics predicts
an inverse square law form for g, as confirmed in the non-
relativistic regime by Kepler’s laws for planetary motion,
with only a modified value for the effective mass M ′. So
for this reason we see how easy it was for Newton to have
overlooked a velocity formalism for gravity, and so missed
the self-interaction dynamics in (1). Inside a spherical matter

∗However this does not exclude so-called relativistic effects, such as the
length contraction of moving rods or the time dilations of moving clocks.
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system Newtonian gravity and the new gravity theory differ,
and it was this difference that explained the bore hole g
anomaly data [5], namely that g does not decrease down a
bore hole as rapidly as Newtonian gravity predicts. It was
this anomaly that lead to the discovery that α was in fact
the fine structure constant, up to experimental errors. As
well the 3-space dynamics in (1) has “gravitational wave”
solutions [7]. Then there are regions where the velocity
differs slightly from the enveloping region. In the absence of
matter these waves will be in general fractal because there
is no dimensioned constant, and so no natural scale. These
waves were seen by Miller, Torr and Kolen, and by DeWitte
[1, 7] as shown in Fig. 2.

However an assumption made in previous analyses was
that the acceleration of the 3-space itself, in (3), was also
the acceleration of matter located in that 3-space. The key
result herein is to derive this result by using the generalised
Schrödinger equation. In doing so we discover the additional
effect that vorticity in the velocity field causes quantum states
to be rotated, as discussed in sect. 7.

3 Newtonian gravity and the Schrödinger equation

Let us consider what might be regarded as the conventional
“Newtonian” approach to including gravity in the Schrödin-
ger equation [8]. There gravity is described by the Newtonian
potential energy field Φ(r, t), such that g = −∇Φ, and we
have for a “free-falling” quantum system, with mass m,

i~
∂ψ(r, t)

∂t
= −

~2

2m
∇2ψ(r, t) +mΦ(r, t)ψ(r, t) ≡

≡ H(t)ψ ,

(8)

where the hamiltonian is in general now time dependent,
because the masses producing the gravitational acceleration
may be moving. Then the classical-limit trajectory is obtained
via the usual Ehrenfest method [9]: we first compute the time
rate of change of the so-called position “expectation value”

d<r>

dt
≡

d

dt
(ψ, rψ) =

i

~
(Hψ, rψ)−

i

~
(ψ, rHψ) =

=
i

~
(ψ, [H, r]ψ) ,

(9)

which is valid for a normalised state ψ. The norm is time
invariant when H is hermitian (H† = H) even if H itself is
time dependent,

d

dt
(ψ,ψ) =

i

~
(Hψ,ψ)−

i

~
(ψ,Hψ) =

=
i

~
(ψ,H†ψ)−

i

~
(ψ,Hψ) = 0 .

(10)

Next we compute the matter “acceleration” from (9)

d2<r>

dt2
=
i

~
d

dt
(ψ, [H, r]ψ) =

=
( i
~

)2(
ψ,
[
H, [H, r]

]
ψ
)
+
i

~

(

ψ,

[
∂H(t)

∂t
, r

]

ψ

)

=

= −(ψ,∇Φψ) =
(
ψ,g (r, t)ψ

)
=<g (r, t)>,

(11)

where for the commutator
[
∂H(t)

∂t
, r

]

=

[

m
∂Φ(r, t)

∂t
, r

]

= 0 . (12)

In the classical limit ψ has the form of a wavepacket
where the spatial extent of ψ is much smaller than the spatial
region over which g (r, t) varies appreciably. Then we have
the approximation <g (r, t)> ≈g (<r>, t), and finally we
arrive at the Newtonian 2nd-law equation of motion for the
wavepacket,

d2<r>

dt2
≈ g (<r>, t) . (13)

In this classical limit we obtain the equivalence principle,
namely that the acceleration is independent of the mass m
and of the velocity of that mass. But of course that followed
by construction, as the equivalence principle is built into (8)
by having m as the coefficient of Φ. In Newtonian gravity
there is no explanation for the origin of Φ or g. In the new
theory gravity is explained in terms of a velocity field, which
in turn has a deeper explanation within Process Physics.

4 Dynamical 3-space and the generalised Schrödinger
equation

The key insight is that conventional physics has neglected the
interaction of various systems with the dynamical 3-space.
Here we generalise the Schrödinger equation to take account
of this new physics. Now gravity is a dynamical effect arising
from the time-dependence and spatial inhomogeneities of
the 3-space velocity field v (r, t), and for a “free-falling”
quantum system with mass m the Schrödinger equation now
has the generalised form

i~

(
∂

∂t
+ v∙∇+

1

2
∇∙v

)

ψ (r, t) = −
~2

2m
∇2ψ(r, t) , (14)

which we write as

i~
∂ψ(r, t)

∂t
= H(t)ψ(r, t) , (15)

where now

H(t) = −i~

(

v∙∇+
1

2
∇∙v

)

−
~2

2m
∇2 . (16)

This form for H specifies how the quantum system must
couple to the velocity field, and it uniquely follows from two
considerations: (i) the generalised Schrödinger equation must
remain form invariant under a change of observer, i. e. with
t→ t, and r→ r+v t, where v is the relative velocity of the

two observers. Then we compute that ∂
∂t
+ v∙∇+ 1

2
∇∙v→
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→ ∂
∂t
+ v∙∇+1

2
∇∙v, i. e. that it is an invariant operator, and

(ii) requiring thatH(t) be hermitian, so that the wavefunction
norm is an invariant of the time evolution. This implies
that the 1

2 ∇∙v term must be included, as v∙∇ by itself
is not hermitian for an inhomogeneous v (r, t). Then the
consequences for the motion of wavepackets is uniquely
determined; they are fixed by these two quantum-theoretic
requirements.

Then again the classical-limit trajectory is obtained via
the position “expectation value”, first with

vO ≡
d<r>

dt
=

d

dt
(ψ, rψ) =

i

~
(ψ, [H, r]ψ) =

=

(

ψ,

(

v (r, t)−
i~
m
∇

)

ψ

)

=<v (r, t)>−
i~
m
<∇>,

(17)

on evaluating the commutator using H(t) in (16), and which
is again valid for a normalised state ψ.

Then for the “acceleration” we obtain from (17) that∗

d2<r>

dt2
=

d

dt

(
ψ,

(
v −

i~
m
∇

)
ψ

)
=

=

(
ψ,

(
∂v (r, t)

∂t
+
i

~

[
H,

(
v −

i~
m
∇

)])
ψ

)
=

=

(
ψ,
∂v (r, t)

∂t
ψ

)
+

+

(
ψ,

(
v∙∇+

1

2
∇∙v −

i~
2m

∇2

)(
v −

i~
m
∇

)
ψ

)
−

−

(
ψ,

(
v−

i~
m
∇

)(
v∙∇+

1

2
∇∙v−

i~
2m

∇2

))
ψ

)
=

=

(
ψ,

(
∂v(r, t)

∂t
+
(
(v∙∇)v

)
−
i~
m
(∇×v)×∇

)
ψ

)
+

+

(
ψ,

i~
2m

(
∇×(∇×v)

)
ψ

)
≈

≈
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
+

+
i~
2m

(
∇×(∇×v)

)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×vR ,

(18)

where in arriving at the 3rd last line we have invoked the
small-wavepacket approximation, and used (17) to identify

vR ≡ −
i~
m
<∇>= vO − v, (19)

where vO is the velocity of the wavepacket or object “O”
relative to the observer, so then vR is the velocity of the

∗Care is needed to indicate the range of the various ∇’s. Extra
parentheses (. . . ) are used to limit the range when required.

wavepacket relative to the local 3-space. Then all velocity
field terms are now evaluated at the location of the wave-
packet. Note that the operator

−
i~
m
(∇× v)×∇+

i~
2m

(
∇× (∇× v)

)
(20)

is hermitian, but that separately neither of these two operators
is hermitian. Then in general the scalar product in (18) is
real. But then in arriving at the last line in (18) by means
of the small-wavepacket approximation, we must then self-
consistently use that ∇× (∇×v)= 0, otherwise the accel-
eration acquires a spurious imaginary part. This is consistent
with (27) outside of any matter which contributes to the
generation of the velocity field, for there ρ=0. These observ-
ations point to a deep connection between quantum theory
and the velocity field dynamics, as already argued in [1].

We see that the test “particle” acquires the acceleration
of the velocity field, as in (3), and as well an additional vorti-
city induced acceleration which is the analogue of the Helm-
holtz acceleration in fluid mechanics. Hence we find that
the equivalence principle arises from the unique generalised
Schrödinger equation and with the additional vorticity effect.
This vorticity effect depends on the absolute velocity vR
of the object relative to the local space, and so requires a
change in the Galilean or Newtonian form of the equivalence
principle.

The vorticity acceleration effect is the origin of the Lense-
Thirring so-called “frame-dragging” effect† [10] discussed in
sect. 7. While the generation of the vorticity is a relativistic
effect, as in (27), the response of the test particle to that
vorticity is a non-relativistic effect, and follows from the
generalised Schrödinger equation, and which is not present
in the standard Schrödinger equation with coupling to the
Newtonian gravitational potential, as in (8). Hence the gen-
eralised Schrödinger equation with the new coupling to the
velocity field is more fundamental. The Helmholtz term in
(18) is being explored by the Gravity Probe B gyroscope
precession experiment, however the vorticity caused by the
motion of the Earth is extremely small, as discussed in sect. 7.

An important insight emerges from the form of (15)
and (16): here the generalised Schrödinger equation involves
two fields v (r, t) and ψ (r, t), where the coordinate r is
merely a label to relate the two fields, and is not itself
the 3-space. In particular while r may have the form of a
Euclidean 3-geometry, the space itself has time-dependence
and inhomogeneities, and as well in the more general case
will exhibit vorticity ω = ∇×v. Only in the unphysical case
does the description of the 3-space become identified with
the coordinate system r, and that is when the velocity field
v (r, t) becomes uniform and time independent. Then by a
suitable choice of observer we may put v (r, t)= 0, and the
generalised Schrödinger equation reduces to the usual “free”

†In the spacetime formalism it is mistakenly argued that it is
“spacetime” that is “dragged”.
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Schrödinger equation. As we discuss later the experimental
evidence is that v (r, t) is fractal and so cannot be removed
by a change to a preferred observer. Hence the generalised
Schrödinger equation in (15)–(16) is a major development for
fundamental physics. Of course in general other non-3-space
potential energy terms may be added to the RHS of (16). A
prediction of this new quantum theory, which also extends to
a generalised Dirac equation, is that the fractal structure to
space implies that even at the scale of atoms etc there will be
time-dependencies and inhomogeneities, and that these will
affect transition rates of quantum systems. These effects are
probably those known as the Shnoll effects [11].

5 Free-fall minimum proper-time trajectories

The acceleration in (18) also arises from the following ar-
gument, which is the analogue of the Fermat least-time
formalism. Consider the elapsed time for a comoving clock
travelling with the test particle. Then taking account of the
Lamour time-dilation effect that time is given by

τ [r0] =

∫
dt

(

1−
v2R
c2

)1/2
(21)

with vR given by (19) in terms of vO and v. Then this
time effect relates to the speed of the clock relative to the
local 3-space, and that c is the speed of light relative to
that local 3-space. We are using a relativistic treatment in
(21) to demonstrate the generality of the results∗. Under a
deformation of the trajectory

r0(t)→ r0(t) + δr0(t), v0(t)→ v0(t) +
dδr0(t)

dt
, (22)

and then

v
(
r0(t) + δr0(t), t

)
=

= v
(
r0(t), t

)
+
(
δr0(t)∙∇

)
v
(
r0(t), t

)
+ . . .

(23)

Evaluating the change in proper travel time to lowest
order

δτ = τ [r0 + δr0]− τ [r0] =

= −

∫
dt
1

c2
vR∙δvR

(
1−
v2R
c2

)−1/2
+ ∙ ∙ ∙ =

=

∫
dt
1

c2

vR∙(δr0∙∇)v − vR∙
d(δr0)

dt√

1−
v2R
c2

=

=

∫
dt
1

c2






vR∙(δr0∙∇)v√

1−
v2R
c2

+ δr0∙
d

dt

vR√

1−
v2R
c2





 =

∗A non-relativistic analysis may be alternatively pursued by first
expanding (21) in powers of 1/c2.

=

∫
dt
1

c2
δr0∙






(vR∙∇)v+vR×(∇×v)√

1−
v2R
c2

+
d

dt

vR√

1−
v2R
c2





 .

Hence a trajectory r0(t) determined by δτ = 0 to
O
(
δr0(t)

2
)

satisfies

d

dt

vR√

1−
v2R
c2

= −
(vR∇)v + vR×(∇×v)√

1−
v2R
c2

. (24)

Substituting vR(t) = v0(t)− v
(
r0(t), t

)
and using

dv
(
r0(t), t

)

dt
=
∂v

∂t
+ (v0∙∇)v , (25)

we obtain

dv0
dt

=
∂v

∂t
+ (v∙∇)v + (∇× v)× vR−

−
vR

1−
v2R
c2

1

2

d

dt

(
v2R
c2

)

.
(26)

Then in the low speed limit vR� c we may neglect
the last term, and we obtain (18). Hence we see a close
relationship between the geodesic equation, known first from
General Relativity, and the 3-space generalisation of the
Schrödinger equation, at least in the non-relativistic limit. So
in the classical limit, i.e when the wavepacket approximation
is valid, the wavepacket trajectory is specified by the least
propertime geodesic.

The relativistic term in (26) is responsible for the preces-
sion of elliptical orbits and also for the event horizon effect.
Hence the trajectory in (18) is a non-relativistic minimum
travel-time trajectory, which is Fermat’s Principle. The re-
lativistic term in (26) will arise from a generalised Dirac
equation which would then include the dynamics of 3-space.

6 Fractal 3-space and the DeWitte experimental data

In 1991 Roland DeWitte working within Belgacom, the Bel-
gium telecommunications company, accidently made yet an-
other detection of absolute motion, and one which was 1st-
order in v/c. 5 MHz radio frequency (RF) signals were sent
in both directions through two buried coaxial cables linking
the two clusters of cesium atomic clocks.

Changes in propagation times were observed and event-
ually observations over 178 days were recorded. A sample
of the data, plotted against sidereal time for just three days,
is shown in Fig. 1. The DeWitte data was clear evidence
of absolute motion with the Right Ascension for minimum/
maximum propagation time agreeing almost exactly with
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Fig. 1: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a buried coaxial cable between
Rue du Marais and Rue de la Paille, Brussels. An offset has been
used such that the average is zero. The cable has a North-South
orientation, and the data is ± difference of the travel times for
NS and SN propagation. The sidereal time for maximum effect
of ∼5hr (or ∼17hr) (indicated by vertical lines) agrees with the
direction found by Miller[4]. Plot shows data over 3 sidereal days
and is plotted against sidereal time. The main effect is caused by the
rotation of the Earth. The superimposed fluctuations are evidence
of turbulence i.e gravitational waves. Removing the Earth induced
rotation effect we obtain the first experimental data of the fractal
structure of space, and is shown in Fig. 2. DeWitte performed this
experiment over 178 days, and demonstrated that the effect tracked
sidereal time and not solar time[1].

Miller’s direction∗ (α = 5.2hr, δ = −67◦)†, and with speed
420 ± 30 km/s. This local absolute motion is different from
the CMB motion, in the direction (α = 11.20hr, δ = −7.22◦)
with speed of 369 km/s, for that would have given the data
a totally different sidereal time signature, namely the times
for maximum/ minimum would have been shifted by 6hrs.
The CMB velocity is motion relative to the distant early
universe, whereas the velocity measured in the DeWitte and
related experiments is the velocity relative to the local space.
The declination of the velocity observed in this DeWitte
experiment cannot be determined from the data as only three
days of data are available. However assuming exactly the
same declination as Miller the speed observed by DeWitte
appears to be also in excellent agreement with the Miller
speed. The dominant effect in Fig. 1 is caused by the rotation
of the Earth, namely that the orientation of the coaxial cable

∗This velocity arises after removing the effects of the Earth’s orbital
speed about the Sun, 30 km/s, and the gravitational in-flow past the Earth
towards the Sun, 42 km/s, as in (6).

†The opposite direction is not easily excluded due to errors within
the data, and so should also be considered as possible. A new experiment
will be capable of more accurately determining the speed and direction, as
well as the fractal structure of 3-space. The author is constructung a more
compact version of the Torr-Kolen - DeWitte coaxial cable RF travel-time
experiment. New experimental techniques have been developed to increase
atomic-clock based timing accuracy and stability, so that shorter cables can
be used, which will permit 3-arm devices.

Fig. 2: Shows the velocity fluctuations, essentially “gravitational
waves” observed by DeWitte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 1 after removal of the dominant effect caused by
the rotation of the Earth. Ideally the velocity fluctuations are three-
dimensional, but the DeWitte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis shown in Fig. 3.

with respect to the direction of the flow past the Earth
changes as the Earth rotates. This effect may be approx-
imately unfolded from the data, leaving the gravitational
waves shown in Fig. 2. This is the first evidence that the
velocity field describing 3-space has a complex structure,
and is indeed fractal.

The fractal structure, i. e. that there is an intrinsic lack of
scale, to these speed fluctuations is demonstrated by binning
the absolute speeds |v| and counting the number of speeds
p(|v|) within each bin. A least squares fit of the log–log
plot to a straightline was then made. Plotting log[p(|v|)] vs
log |v|, as shown in Fig. 3 we see that the fit gives p(v) ∝
|v|−2.6. With the new experiment considerably more data
will become available.

7 Observing 3-space vorticity

The vorticity effect in (18) can be studied experimentally in
the Gravity Probe B (GP-B) gyroscope satellite experiment
in which the precession of four on-board gyroscopes has
been measured to unprecedented accuracy [12, 13]. In a
generalisation of (1) [1] the vorticity ∇×v is generated by
matter in motion through the 3-space, where here vR is the
absolute velocity of the matter relative to the local 3-space.

∇×(∇×v) =
8πGρ

c2
vR . (27)

We then obtain from (27) the vorticity (ignoring homo-
geneous vortex solutions)

~ω(r, t) =
2G

c2

∫
d3 r′

ρ(r′, t)

|r− r′|3
vR(r

′, t)× (r− r′) . (28)
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Fig. 3: Shows that the velocity fluctuations in Fig. 2 are scale free,
as the probability distribution from binning the speeds has the form
p(v) ∝ |v|−2.6. This plot shows log[p(v)] vs log |v|. This shows
that the velocity field has a fractal structure, and so requiring the
generalisation of the Schrödinger equation, as discussed herein, and
also the Maxwell and Dirac equations (to be discussed elsewhere).

For the smaller Earth-rotation induced vorticity effect
vR(r) = w × r in (28), where w is the angular velocity of
the Earth, giving

~ω (r)rot = 4
G

c2
3(r ∙ L) r− r2L

2r5
, (29)

where L is the angular momentum of the Earth, and r is the
distance from the centre.

In general the vorticity term in (18) leads to a apparent
“torque”, according to a distant observer, acting on the ang-
ular momentum S of the gyroscope,

~τ =

∫
d3rρ(r) r×

(
~ω (r)×vR(r)

)
, (30)

where ρ is its density, and where now vR is used here to
describe the motion of the matter forming the gyroscope
relative to the local 3-space. Then dS = ~τdt is the change in
S over the time interval dt. For a gyroscope vR(r) = s× r,
where s is the angular velocity of the gyroscope. This gives

~τ =
1

2
~ω × S (31)

and so ~ω/2 is the instantaneous angular velocity of precession
of the gyroscope. The component of the vorticity in (29) has

been determined from the laser-ranged satellites LAGEOS
(NASA) and LAGEOS 2 (NASA-ASI) [14], and the data
implies the indicated coefficient on the RHS of (27) to ±10%.
For GP-B the direction of S has been chosen so that this
precession is cumulative and, on averaging over an orbit,
corresponds to some 7.7×10−6 arcsec per orbit, or 0.042
arcsec per year. GP-B has been superbly engineered so that
measurements to a precision of 0.0005 arcsec are possible.

However for the Earth-translation induced precession if
we use vR = 430 km/s (in the direction RA = 5.2hr, Dec =
= −67◦), (28) gives

~ω(r)trans =
2GM

c2
vR×r
r3

, (32)

and then the total vorticity is ~ω = ~ωrot+ ~ωtrans. The maxi-
mum magnitude of the speed of this precession component is
ωtrans/2 = gvC/c

2 = 8×10−6 arcsec/s, where here g is the
usual gravitational acceleration at the altitude of the satellite.
This precession has a different signature: it is not cumulative,
and is detectable by its variation over each single orbit, as
its orbital average is zero, to first approximation.

Essentially then these spin precessions are caused by the
rotation of the “wavepackets” describing the matter forming
the gyroscopes, and caused in turn by the vorticity of 3-space.
The above analysis shows that the rotation is exactly the same
as the rotation of the 3-space itself, just as the acceleration of
“matter” was exactly the same as the acceleration of the 3-
space. We this obtain a much clearer insight into the nature
of motion, and which was not possible in the spacetime
formalism.

8 Conclusions

We have seen herein that the new theory of 3-space has
resulted in a number of fundamental developments, namely
that a complex “quantum foam” dynamical 3-space exists and
has a fractal “flow” structure, as revealed most clearly by the
extraordinary DeWitte coaxial-cable experiment. This fractal
structure requires that the fundamental equations of physics
be generalised to take account of, for the first time, the
physics of this 3-space and, in particular, here the inclusion
of that dynamics within the dynamics of quantum systems.
We saw that the generalisation of the Schrödinger equation
is unique, and that from an Ehrenfest wavepacket analysis
we obtained the equivalence principle, with the acceleration
of “matter” being shown to be identical to the acceleration
of the 3-space; which while not unexpected, is derived here
for the first time. This result shows that the equivalence
principle is really a quantum-theoretic effect. As well we
obtained by that same analysis that any vorticity in the 3-
space velocity field will result in a corresponding rotation
of wavepackets, and just such an effect is being studied in
the GP-B gyroscope experiment. So for the first time we see
that the original Schrödinger equation actually lacked a key
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dynamical ingredient. We saw that self-consistency within
the small-wavepacket approximation imposed restrictions on
the dynamical equations that determine the vorticity, giving
yet another indication of the close connection between quan-
tum theory and the phenomena of 3-space and gravity. As
well because the 3-space is fractal the generalised Schrödin-
ger equation now contains a genuine element of stochasticity.

This research is supported by an Australian Research
Council Discovery Grant.
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