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A new nonlinear Schrödinger equation is obtained explicitly from the (fractal)
Brownian motion of a massive particle with a complex-valued diffusion constant.
Real-valued energy plane-wave solutions and solitons exist in the free particle case.
One remarkable feature of this nonlinear Schrödinger equation based on a (fractal)
Brownian motion model, over all the other nonlinear QM models, is that the quantum-
mechanical energy functional coincides precisely with the field theory one. We finalize
by showing why a complex momentum is essential to fully understand the physical
implications of Weyl’s geometry in QM, along with the interplay between Bohm’s
Quantum potential and Fisher Information which has been overlooked by several
authors in the past.

1 Introduction

Over the years there has been a considerable debate as
to whether linear QM can fully describe Quantum Chaos.
Despite that the quantum counterparts of classical chaotic
systems have been studied via the techniques of linear QM,
it is our opinion that Quantum Chaos is truly a new paradigm
in physics which is associated with non-unitary and nonlinear
QM processes based on non-Hermitian operators (imple-
menting time symmetry breaking). This Quantum Chaotic
behavior should be linked more directly to the Nonlinear
Schrödinger equation without any reference to the nonlinear
behavior of the classical limit. For this reason, we will
analyze in detail the fractal geometrical features underlying
our Nonlinear Schrödinger equation obtained in [6].

Nonlinear QM has a practical importance in different
fields, like condensed matter, quantum optics and atomic
and molecular physics; even quantum gravity may involve
nonlinear QM. Another important example is in the modern
field of quantum computing. If quantum states exhibit small
nonlinearities during their temporal evolution, then quantum
computers can be used to solve NP-complete (non poly-
nomial) and #P problems in polynomial time. Abrams and
Lloyd [19] proposed logical gates based on non linear Schrö-
dinger equations and suggested that a further step in quantum
computing consists in finding physical systems whose evol-
ution is amenable to be described by a NLSE.

On other hand, we consider that Nottale and Ord’s form-
ulation of quantum mechanics [1], [2] from first principles
based on the combination of scale relativity and fractal space-
time is a very promising field of future research. In this work
we extend Nottale and Ord’s ideas to derive the nonlinear
Schrödinger equation. This could shed some light on the
physical systems which could be appropriately described by

the nonlinear Schrödinger equation derived in what follows.
The contents of this work are the following: In section 2

we derive the nonlinear Schrödinger equation by extending
Nottale-Ord’s approach to the case of a fractal Brownian
motion with a complex diffusion constant. We present a
thorough analysis of such nonlinear Schrödinger equation
and show why it cannot linearized by a naive complex scaling
of the wavefunction ψ → ψλ.

Afterwards we will describe the explicit interplay be-
tween Fisher Information, Weyl geometry and the Bohm’s
potential by introducing an action based on a complex mo-
mentum. The connection between Fisher Information and
Bohm’s potential has been studied by several authors [24],
however the importance of introducing a complex moment-
um Pk= pk+ iAk (where Ak is the Weyl gauge field of
dilatations) in order to fully understand the physical impli-
cations of Weyl’s geometry in QM, along with the interplay
between Bohm’s quantum potential and Fisher Information,
has been overlooked by several authors in the past [24], [25].
For this reason we shall review in section 3 the relationship
between Bohm’s Quantum Potential and the Weyl curvature
scalar of the Statistical ensemble of particle-paths (an Abel-
ian fluid) associated to a single particle that was initially
developed by [22]. A Weyl geometric formulation of the
Dirac equation and the nonlinear Klein-Gordon wave equat-
ion was provided by one of us [23]. In the final section 4,
we summarize our conclusions and include some additional
comments.

2 Nonlinear QM as a fractal Brownian motion with
a complex diffusion constant

We will be following very closely Nottale’s derivation of
the ordinary Scrödinger equation [1]. Recently Nottale and
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Celerier [1] following similar methods were able to derive
the Dirac equation using bi-quaternions and after breaking
the parity symmetry dxμ↔−dxμ, see references for details.
Also see the Ord’s paper [2] and the Adlers’s book on
quaternionic QM [16]. For simplicity the one-particle case
is investigated, but the derivation can be extended to many-
particle systems. In this approach particles do not follow
smooth trajectories but fractal ones, that can be described
by a continuous but non-differentiable fractal function ~r (t).
The time variable is divided into infinitesimal intervals dt
which can be taken as a given scale of the resolution.

Then, following the definitions given by Nelson in his
stochastic QM approach (Lemos in [12] p. 615; see also [13,
14]), Nottale define mean backward an forward derivatives

d±~r (t)

dt
= lim

Δt→±0

〈
~r (t+Δt)− ~r (t)

Δt

〉

, (1)

from which the forward and backward mean velocities are
obtained,

d±~r (t)

dt
= ~b± . (2)

For his deduction of Schrödinger equation from this
fractal space-time classical mechanics, Nottale starts by de-
fining the complex-time derivative operator

δ

dt
=
1

2

(
d+
dt
+
d−
dt

)

− i
1

2

(
d+
dt
−
d−
dt

)

, (3)

which after some straightforward definitions and transform-
ations takes the following form,

δ

dt
=

∂

∂t
+ ~V ∙ ~∇− iD∇2, (4)

D is a real-valued diffusion constant to be related to the
Planck constant.

The D comes from considering that the scale dependent
part of the velocity is a Gaussian stochastic variable with
zero mean, (see de la Peña at [12] p. 428)

〈dξ±i dξ±j〉 = ±2Dδijdt . (5)

In other words, the fractal part of the velocity ~ξ, proport-
ional to the ~ζ , amount to a Wiener process when the fractal
dimension is 2.

Afterwards, Nottale defines a set of complex quantities
which are generalization of well known classical quantities
(Lagrange action, velocity, momentum, etc), in order to be
coherent with the introduction of the complex-time derivative
operator. The complex time dependent wave function ψ is
expressed in terms of a Lagrange action S by ψ = eiS/(2mD).
S is a complex-valued action but D is real-valued. The
velocity is related to the momentum, which can be expressed
as the gradient of S, ~p = ~∇S. Then the following known
relation is found,

~V = −2iD~∇ lnψ . (6)

The Schrödinger equation is obtained from the Newton’s
equation (force = mass times acceleration) by using the
expression of ~V in terms of the wave function ψ,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (7)

Replacing the complex-time derivation (4) in the New-
ton’s equation gives us

−~∇U = −2im

(

D
∂

∂t
~∇ lnψ

)

− 2D~∇

(

D
∇2ψ
ψ

)

. (8)

Simple identities involving the ~∇ operator were used by
Nottale. Integrating this equation with respect to the position
variables finally yields

D2∇2ψ + iD
∂ψ

∂t
−

U

2m
ψ = 0 , (9)

up to an arbitrary phase factor which may set to zero. Now
replacing D by ~/(2m), we get the Schrödinger equation,

i~
∂ψ

∂t
+
~2

2m
∇2ψ = Uψ . (10)

The Hamiltonian operator is Hermitian, this equation is
linear and clearly is homogeneous of degree one under the
substitution ψ → λψ.

Having reviewed Nottale’s work [1] we can generalize
it by relaxing the assumption that the diffusion constant is
real; we will be working with a complex-valued diffusion
constant; i. e. with a complex-valued ~. This is our new con-
tribution. The reader may be immediately biased against such
approach because the Hamiltonian ceases to be Hermitian
and the energy becomes complex-valued. However this is
not always the case. We will explicitly find plane wave solu-
tions and soliton solutions to the nonlinear and non-Hermit-
ian wave equations with real energies and momenta. For a
detailed discussion on complex-valued spectral representat-
ions in the formulation of quantum chaos and time-symmetry
breaking see [10]. Nottale’s derivation of the Schrödinger
equation in the previous section required a complex-valued
action S stemming from the complex-valued velocities due
to the breakdown of symmetry between the forwards and
backwards velocities in the fractal zigzagging. If the action
S was complex then it is not farfetched to have a complex
diffusion constant and consequently a complex-valued ~
(with same units as the complex-valued action).

Complex energy is not alien in ordinary linear QM. They
appear in optical potentials (complex) usually invoked to
model the absorption in scattering processes [8] and decay
of unstable particles. Complex potentials have also been
used to describe decoherence. The accepted way to describe
resonant states in atomic and molecular physics is based on
the complex scaling approach, which in a natural way deals
with complex energies [17]. Before, Nottale wrote,

〈dζ± dζ±〉 = ±2Ddt , (11)
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with D and 2mD = ~ real. Now we set

〈dζ± dζ±〉 = ±(D +D
∗)dt , (12)

withD and 2mD = ~ = α+iβ complex. The complex-time
derivative operator becomes now

δ

dt
=

∂

∂t
+ ~V ∙ ~∇−

i

2
(D +D∗)∇2. (13)

In the real case D = D∗. It reduces to the complex-time-
derivative operator described previously by Nottale. Writing
again the ψ in terms of the complex action S,

ψ = eiS/(2mD) = eiS/~, (14)

where S, D and ~ are complex-valued, the complex velocity
is obtained from the complex momentum ~p = ~∇S as

~V = −2iD~∇ lnψ . (15)

The NLSE (non-linear Schröedinger equation) is obtain-
ed after we use the generalized Newton’s equation (force =
mass times acceleration) in terms of the ψ variable,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (16)

Replacing the complex-time derivation (13) in the gen-
eralized Newton’s equation gives us

~∇U = 2im

[

D
∂

∂t
~∇ lnψ − 2iD2(~∇ lnψ ∙ ~∇)×

× (~∇ lnψ)−
i

2
(D +D∗)D∇2 (~∇ lnψ)

]

.

(17)

Now, using the next three identities: (i) ~∇∇2=∇2~∇;
(ii) 2 (~∇ lnψ ∙ ~∇)(~∇ lnψ)= ~∇(~∇ lnψ)2; and (iii) ∇2 lnψ=
=∇2ψ/ψ− (~∇ lnψ)2 allows us to integrate such equation
above yielding, after some straightforward algebra, the NLSE

i~
∂ψ

∂t
= −

~2

2m

α

~
∇2ψ + Uψ − i

~2

2m

β

~

(
~∇ lnψ

)2
ψ . (18)

Note the crucial minus sign in front of the kinematic
pressure term and that ~=α+ iβ=2mD is complex. When
β=0 we recover the linear Schrödinger equation.

The nonlinear potential is now complex-valued in gener-
al. Defining

W =W (ψ) = −
~2

2m

β

~

(
~∇ lnψ

)2
, (19)

and U the ordinary potential, we rewrite the NLSE as

i~
∂ψ

∂t
=

(

−
~2

2m

α

~
∇2 + U + iW

)

ψ . (20)

This is the fundamental nonlinear wave equation of this
work. It has the form of the ordinary Schrödinger equation

with the complex potential U+ iW and the complex ~.
The Hamiltonian is no longer Hermitian and the potential
V =U+ iW (ψ) itself depends on ψ. Nevertheless one could
have meaningful physical solutions with real valued energies
and momenta, like the plane-wave and soliton solutions stud-
ied in the next section. Here are some important remarks.
• Notice that the NLSE above cannot be obtained by a

naive scaling of the wavefunction

ψ = eiS/~0 → ψ′ = eiS/~ = e (iS/~0)(~0/~) =

= ψλ = ψ~0/~, ~ = real
(21)

related to a scaling of the diffusion constant ~0 = 2mD0 →
→ ~ = 2mD. Upon performing such scaling, the ordinary
linear Schrödinger equation in the variable ψ will appear to
be nonlinear in the new scaled wavefunction ψ′

i~
∂ψ′

∂t
= −

~2

2m

~0
~
∇2ψ′ + Uψ′−

−
~2

2m

(
1−
~0
~

)(
~∇ lnψ′

)2
ψ′,

(22)

but this apparent nonlinearity is only an artifact of the change
of variables (the scaling of ψ).

Notice that the latter (apparent) nonlinear equation, de-
spite having the same form as the NLSE, obtained from a
complex-diffusion constant, differs crucially in the actual
values of the coefficients multiplying each of the terms.
The NLSE has the complex coefficients α/~ (in the kinetic
terms), and −iβ/~ (in the nonlinear logarithmic terms) with
~=α+ iβ= complex. However, the nonlinear equation ob-
tained from a naive scaling involves real and different num-
erical coefficients than those present in the NLSE. Therefore,
the genuine NLSE cannot be obtained by a naive scaling
(redefinition) of the ψ and the diffusion constant.

Notice also that even if one scaled ψ by a complex
exponent ψ → ψλ with λ = ~0/~ and ~ = complex, the
actual numerical values in the apparent nonlinear equation,
in general, would have still been different than those present
in the NLSE. However, there is an actual equivalence, if, and
only if, the scaling exponent λ = ~0/~ obeyed the condition:

α = ~0 ⇒ 1−
~0
~
= 1−

α

~
= 1−

~− iβ
~

= i
β

~
(23)

in this very special case, the NLSE would be obtained from
a linear Schrödinger equation after scaling the wavefunction
ψ → ψλ with a complex exponent λ = ~0/~ = α/~. In
this very special and restricted case, the NLSE could be
linearized by a scaling of the wavefunction with complex
exponent.

From this analysis one infers, immediately, that if one
defines the norm of the complex ~: ‖~‖ =

√
α2+β2 = ~0

to coincide precisely with the observed value ~0 of Planck’s
constant, then α 6= ~0, iβ 6= ~− ~0 and, consequently, the
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NLSE cannot be obtained from the ordinary (linear) Schrö-
dinger equations after a naive scaling, with a complex expo-
nent, ψ → ψλ=ψ~0/~. Therefore, a complex diffusion con-
stant 2mD = ~ = α+ iβ, with the condition 2m‖D‖=
= ‖~‖=

√
α2+β2= ~0 (observed value of Planck’s con-

stant) ensures that the NLSE is not a mere artifact of the
scaling of the wavefunction ψ → ψλ=ψ~0/~ in the ordinary
linear Schrödinger equation.

It is important to emphasize that the diffusion constant
is always chosen to be related to Planck constant as follows:
2m‖D‖=‖~‖= ~0 which is just the transition length from a
fractal to a scale-independence non-fractal regime discussed
by Nottale in numerous occasions. In the relativistic scale it
is the Compton wavelength of the particle (say an electron):
λc= ~0/(mc). In the nonrelativistic case it is the de Broglie
wavelength of the electron.

Therefore, the NLSE based on a fractal Brownian motion
with a complex valued diffusion constant 2mD= ~=α+ iβ
represents truly a new physical phenomenon and a hallmark
of nonlinearity in QM. For other generalizations of QM see
experimental tests of quaternionic QM (in the book by Adler
[16]). Equation (18) is the fundamental NLSE of this work.
• A Fractal Scale Calculus description of our NLSE

was developed later on by Cresson [20] who obtained, on a
rigorous mathematical footing, the same functional form of
our NLSE equation above ( although with different complex
numerical coefficients) by using Nottale’s fractal scale-
calculus that obeyed a quantum bialgebra. A review of our
NLSE was also given later on by [25]. Our nonlinear wave
equation originated from a complex-valued diffusion con-
stant that is related to a complex-valued extension of Planck’s
constant. Hence, a fractal spacetime is deeply ingrained with
nonlinear wave equations as we have shown and it was later
corroborated by Cresson [20].
• Complex-valued viscosity solutions to the Navier-

Stokes equations were also analyzed by Nottale leading to
the Fokker-Planck equation. Clifford-valued extensions of
QM were studied in [21] C-spaces (Clifford-spaces whose
enlarged coordinates are polyvectors, i. e. antisymmetric
tensors) that involved a Clifford-valued number extension
of Planck’s constant; i. e. the Planck constant was a hyper-
complex number. Modified dispersion relations were derived
from the underlying QM in Clifford-spaces that lead to faster
than light propagation in ordinary spacetime but without
violating causality in the more fundamental Clifford spaces.
Therefore, one should not exclude the possibility of having
complex-extensions of the Planck constant leading to non-
linear wave equations associated with the Brownian motion
of a particle in fractal spacetimes.
• Notice that the NLSE (34) obeys the homogeneity

condition ψ → λψ for any constant λ. All the terms in the
NLSE are scaled respectively by a factor λ. Moreover, our
two parameters α, β are intrinsically connected to a complex
Planck constant ~ = α+ iβ such that ‖~‖=

√
α2+β2= ~0

(observed Planck’s constant) rather that being ah-hoc con-
stants to be determined experimentally. Thus, the nonlinear
QM equation derived from the fractal Brownian motion with
complex-valued diffusion coefficient is intrinsically tied up
with a non-Hermitian Hamiltonian and with complex-valued
energy spectra [10].
• Despite having a non-Hermitian Hamiltonian we still

could have eigenfunctions with real valued energies and
momenta. Non-Hermitian Hamiltonians (pseudo-Hermitian)
have captured a lot of interest lately in the so-called PT
symmetric complex extensions of QM and QFT [27]. There-
fore these ideas cannot be ruled out and they are the subject
of active investigation nowadays.

3 Complex momenta, Weyl geometry, Bohm’s potential
and Fisher information

Despite that the interplay between Fisher Information and
Bohm’s potential has been studied by several authors [24] the
importance of introducing a complex momentum Pk= pk+
+ iAk in order to fully understand the physical implications
of Weyl’s geometry in QM has been overlooked by several
authors [24], [25]. We shall begin by reviewing the relation-
ship between the Bohm’s Quantum Potential and the Weyl
curvature scalar of the Statistical ensemble of particle-paths
(a fluid) associated to a single particle and that was developed
by [22]. A Weyl geometric formulation of the Dirac equation
and the nonlinear Klein-Gordon wave equation was provided
by one of us [23]. Afterwards we will describe the interplay
between Fisher Information and the Bohm’s potential by
introducing an action based on a complex momentum Pk=
= pk+ iAk.

In the description of [22] one deals with a geometric
derivation of the nonrelativistic Schrödinger Equation by
relating the Bohm’s quantum potential Q to the Ricci-Weyl
scalar curvature of an ensemble of particle-paths associated
to one particle. A quantum mechanical description of many
particles is far more complex. This ensemble of particle
paths resemble an Abelian fluid that permeates spacetime
and whose ensemble density ρ affects the Weyl curvature
of spacetime, which in turn, determines the geodesics of
spacetime in guiding the particle trajectories. See [22], [23]
for details.

Again a relation between the relativistic version of
Bohm’s potential Q and the Weyl-Ricci curvature exists but
without the ordinary nonrelativistic probabilistic connections.
In relativistic QM one does not speak of probability density
to find a particle in a given spacetime point but instead
one refers to the particle number current Jμ= ρdxμ/dτ . In
[22], [23] one begins with an ordinary Lagrangian associated
with a point particle and whose statistical ensemble average
over all particle-paths is performed only over the random
initial data (configurations). Once the initial data is specified
the trajectories (or rays) are completely determined by the
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Hamilton-Jacobi equations. The statistical average over the
random initial Cauchy data is performed by means of the
ensemble density ρ. It is then shown that the Schrödinger
equation can be derived after using the Hamilton-Jacobi
equation in conjunction with the continuity equation and
where the “quantum force” arising from Bohm’s quantum
potential Q can be related to (or described by) the Weyl
geometric properties of space. To achieve this one defines
the Lagrangian

L(q, q̇, t) = LC(q, q̇, t) + γ (~
2/m)R(q, t) , (24)

where γ = (1/6)(d − 2)/(d − 1) is a dimension-dependent
numerical coefficient and R is the Weyl scalar curvature of
the corresponding d-dimensional Weyl spacetime M where
the particle lives.

Covariant derivatives are defined for contravariant vec-
tors V k: V k,ß = ∂iV

k−ΓkimV
m where the Weyl connection

coefficients are composed of the ordinary Christoffel con-
nection plus terms involving the Weyl gauge field of dilatat-
ions Ai. The curvature tensor Rimkn obeys the same sym-
metry relations as the curvature tensor of Riemann geometry
as well as the Bianchi identity. The Ricci symmetric tensor
Rik and the scalar curvature R are defined by the same
formulas also, viz. Rik = Rnink and R = gikRik

RWeyl = R Riemann+

+(d− 1)

[

(d− 2)AiA
i −

2
√
g
∂i(
√
gAi)

]

,
(25)

where R Riemann is the ordinary Riemannian curvature defined
in terms of the Christoffel symbols without the Weyl-gauge
field contribution.

In the special case that the space is flat from the Rie-
mannian point of view, after some algebra one can show that
the Weyl scalar curvature contains only the Weyl gauge field
of dilatations

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1)(∂kA

k) . (26)

Now the Weyl geometrical properties are to be derived
from physical principles so the Ai cannot be arbitrary but
must be related to the distribution of matter encoded by the
ensemble density of particle-paths ρ and can be obtained by
the same (averaged) least action principle giving the motion
of the particle. The minimum is to be evaluated now with
respect to the class of all Weyl geometries having arbitrarily
Weyl-gauge fields but with fixed metric tensor.

A variational procedure [22] yields a minimum for

Ai(q, t)=−
1

d−2
∂k(log ρ)⇒ Fij=∂iAj−∂jAi=0 , (27)

which means that the ensemble density ρ is Weyl-covariantly
constant

Di ρ = 0 = ∂i ρ+ ω(ρ) ρAi = 0 ⇒

⇒ Ai (q, t) = −
1

d− 2
∂i(log ρ) ,

(28)

where ω (ρ) is the Weyl weight of the density ρ. Since Ai
is a total derivative the length of a vector transported from
A to B along different paths changes by the same amount.
Therefore, a vector after being transported along a closed
path does not change its overall length. This is of funda-
mental importance to be able to solve in a satisfactory manner
Einstein’s objections to Weyl’s geometry. If the lengths were
to change in a path-dependent manner as one transports
vectors from point A to point B, two atomic clocks which
followed different paths from A to B will tick at different
rates upon arrival at point B.

The continuity equation is

∂ρ

∂t
+

1
√
g
∂i (
√
gρ vi) = 0 . (29)

In this spirit one goes next to a geometrical derivation of
the Schrödinger equation. By inserting

Ak = −
1

d− 2
∂ log ρ

∂xk
(30)

into

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1) ∂kA

k (31)

one gets for the Weyl scalar curvature, in the special case
that the space is flat from the Riemannian point of view, the
following expression

RWeyl =
1

2γ
√
ρ
(∂i ∂

i√ρ) , (32)

which is precisely equal to the Bohm’s Quantum potential
up to numerical factors.

The Hamilton-Jacobi equation can be written as

∂S

∂t
+HC(q, S, t)− γ

(
~2

2m

)

R = 0 , (33)

where the effective Hamiltonian is

HC − γ

(
~2

m

)

R =
1

2m
gjkpjpk + V − γ

~2

m
R =

=
1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V − γ

~2

m
R .

(34)

When the above expression for the Weyl scalar curvature
(Bohm’s quantum potential given in terms of the ensemble
density) is inserted into the Hamilton-Jacobi equation, in
conjunction with the continuity equation, for a momentum
given by pk= ∂kS, one has then a set of two nonlinear
coupled partial differential equations. After some straight-
forward algebra, one can verify that these two coupled dif-
ferential equations equations will lead to the Schrödinger
equation after the substitution Ψ =

√
ρ eiS/~ is made.

For example, when d=3, γ=1/12 and consequently,
Bohm’s quantum potential Q=−(~2/12m)R (when R Riemann

is zero) becomes

R=
1

2γ
√
ρ
∂i g

ik∂k
√
ρ∼

1

2γ

Δ
√
ρ

√
ρ
⇒Q=−

~2

2m

Δ
√
ρ

√
ρ

(35)

42 C. Castro, J. Mahecha. On Nonlinear Quantum Mechanics, Brownian Motion, Weyl Geometry and Fisher Information



January, 2006 PROGRESS IN PHYSICS Volume 1

as is should be and from the two coupled differential equat-
ions, the Hamilton-Jacobi and the continuity equation, they
both reduce to the standard Schrödinger equation in flat space

i~
∂Ψ(~x, t)

∂t
= −

~2

2m
ΔΨ(~x.t) + VΨ(~x, t) (36)

after, and only after, one defines Ψ=
√
ρ eiS/~.

If one had a curved spacetime with a nontrivial metric one
would obtain the Schrödinger equation in a curved spacetime
manifold by replacing the Laplace operator by the Laplace-
Beltrami operator. This requires, of course, to write the
continuity and Hamilton Jacobi equations in a explicit covar-
iant manner by using the covariant form of the divergence
and Laplace operator [22], [23]. In this way, the geometric
properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the
particle through the quantum force fi = γ (~2/m)∂iR which
depends on the Weyl gauge potential Ai and its derivatives.
It is this peculiar feedback between the Weyl geometry of
space and the motion of the particle which recapture the
effects of Bohm’s quantum potential.

The formulation above from [22] was also developed
for a derivation of the Klein-Gordon (KG) equation. The
Dirac equation and Nonlinear Relativistic QM equations
were found by [23] via an average action principle. The
relativistic version of the Bohm potential (for signature
−,+,+,+) can be written

Q ∼
1

m2

(∂μ∂
μ√ρ)
√
ρ

(37)

in terms of the D’Alambertian operator.
To finalize this section we will explain why the Bohm-

potential/Weyl scalar curvature relationship in a flat space-
time

Q=−
~2

2m

1
√
ρ
gik∂i∂k

√
ρ=

~2gik

8m

(
2∂i∂kρ

ρ
−
∂iρ∂kρ

ρ2

)

(38)

encodes already the explicit connection between Fisher In-
formation and the Weyl-Ricci scalar curvature RWeyl (for
Riemann flat spaces) after one realizes the importance of
the complex momentum Pk= pk+ iAk. This is typical of
Electromagnetism after a minimal coupling of a charged
particle (of charge e) to the U(1) gauge fieldAk is introduced
as follows Πk= pk+ ieAk. Weyl’s initial goal was to unify
Electromagnetism with Gravity. It was later realized that the
gauge field of Weyl’s dilatations A was not the same as the
U(1) gauge field of Electromagnetism A.

Since we have reviewed the relationship between the
Weyl scalar curvature and Bohm’s Quantum potential, it is
not surprising to find automatically a connection between
Fisher information and Weyl Geometry after a complex mo-
mentum Pk = pk+iAk is introduced. A complex momentum
has already been discussed in previous sections within the
context of fractal trajectories moving forwards and back-
wards in time by Nottale and Ord.

If ρ is defined over an d-dimensional manifold with
metric gik one obtains a natural definition of the Fisher
information associated with the ensemble density ρ

I = gikIik =
gik

2

∫
1

ρ

∂ρ

∂yi
∂ρ

∂yk
dny. (39)

In the Hamilton-Jacobi formulation of classical mechan-
ics the equation of motion takes the form

∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V = 0 . (40)

The momentum field pj is given by pj = gjk(∂S/∂xk).
The ensemble probability density of particle-paths ρ (t, xμ)
obeys the normalization condition

∫
dnxρ=1. The conti-

nuity equation is

∂ρ

∂t
+
1

m

1
√
g

∂

∂xj

(
√
g ρgjk

∂S

∂xk

)

= 0 . (41)

These equations completely describe the motion and can
be derived from the action

S =

∫
ρ

(
∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V

)

dtdnx (42)

using fixed endpoint variation in S and ρ.
The Quantization via the Weyl geometry procedure is

obtained by defining the complex momentum in terms of
the Weyl gauge field of dilatations Ak as Pk= pk+ ieAk
and constructing the modified Hamiltonian in terms of the
norm-squared of the complex momentum P kP ∗k as follows

HWeyl =
gjk

2m

[
(pj + ieAj)(pk − ieAk)

]
+ V. (43)

The modified action is now:

SWeyl=

∫
dtdnx

[
∂S

∂t
+
gjk

2m
(pj+ieAj)(pk−ieAk)+V

]

. (44)

The relationship between the Weyl gauge potential and
the ensemble density ρ was

Ak ∼
∂ log(ρ)

∂xk
(45)

the proportionality factors can be re-absorbed into the coupl-
ing constant e as follows Pk= pk+ ieAk= pk+ i ∂k(log ρ).
Hence, when the spacetime metric is flat (diagonal) gjk=δjk,
SWeyl becomes

SWeyl =

∫
dtdnx

∂S

∂t
+
gjk

2m

[(
∂S

∂xj
+ i

∂ log(ρ)

∂xj

)

×

×

(
∂S

∂xk
− i

∂ log(ρ)

∂xk

)]

+ V =

∫
dtdnx

[
∂S

∂t
+ V+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)]

+
1

2m

∫
dtdnx

[
1

ρ

∂ρ

∂xk

]2
.

(46)
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The expectation value of SWeyl is

<SWeyl> = <SC> +S Fisher =

∫
dtdnxρ

[
∂S

∂t
+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)

+V

]

+
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
.

(47)

This is how we have reproduced the Fisher Information
expression directly from the last term of <SWeyl>:

S Fisher ≡
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
. (48)

An Euler variation of the expectation value of the action
<SWeyl> with respect to the ρ yields:

∂S

∂t
+
δ <SWeyl>

δρ
− ∂j

(
δ <SWeyl>

δ(∂j ρ)

)

= 0 ⇒ (49)

∂S

∂t
+ V +

1

2m
gjk
[
∂S

∂xj
∂S

∂xk
+

+

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

= 0 .

(50)

Notice that the last term of the Euler variation

1

2m
gjk
[(

1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

(51)

is precisely the same as the Bohm’s quantum potential ,
which in turn, is proportional to the Weyl scalar curvature. If
the continuity equation is implemented at this point one can
verify once again that the last equation is equivalent to the
Schrödinger equation after the replacement Ψ =

√
ρ eiS/~ is

made.
Notice that in the Euler variation variation of <SWeyl >

w. r. t the ρ one must include those terms involving the
derivatives of ρ as follows

−∂j

(
δ
[
ρ(∂kρ/ρ)

2
]

δ(∂jρ)

)

=−
1

ρ
∂j

(
δ(∂kρ)

2

δ(∂jρ)

)

=−
2

ρ
∂j∂

jρ. (52)

This explains the origins of all the terms in the Euler
variation that yield Bohm’s quantum potential.

Hence, to conclude, we have shown how the last term
of the Euler variation of the averaged action <SWeyl >, that
automatically incorporates the Fisher Information expression
after a complex momentum Pk= pk+ i∂k(log ρ) is intro-
duced via the Weyl gauge field of dilations Ak∼−∂k log ρ,
generates once again Bohm’s potential:

Q ∼

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)

. (53)

To conclude, the Quantization of a particle whose Stati-
stical ensemble of particle-paths permeate a spacetime back-
ground endowed with a Weyl geometry allows to construct a

complex momentum Pk= ∂kS+ i∂k(log ρ) that yields auto-
matically the Fisher Information S Fisher term. The latter Fisher
Information term is crucial in generating Bohm’s quantum
potential Q after an Euler variation of the expectation value
of the <SWeyl> with respect to the ρ is performed. Once
the Bohm’s quantum potential is obtained one recovers the
Schrödinger equation after implementing the continuity eq-
uation and performing the replacement Ψ=

√
ρ eiS/~. This

completes the relationship among Bohm’s potential, the Weyl
scalar curvature and Fisher Information after introducing a
complex momentum.

4 Concluding remarks

Based on Nottale and Ord’s formulation of QM from first
principles; i. e. from the fractal Brownian motion of a massive
particle we have derived explicitly a nonlinear Schrödinger
equation. Despite the fact that the Hamiltonian is not Her-
mitian, real-valued energy solutions exist like the plane wave
and soliton solutions found in the free particle case. The
remarkable feature of the fractal approach versus all the
Nonlinear QM equation considered so far is that the Quantum
Mechanical energy functional coincides precisely with the
field theory one.

It has been known for some time, see Puskarz [8], that the
expression for the energy functional in nonlinear QM does
not coincide with the QM energy functional, nor it is unique.
The classic Gross-Pitaveskii NLSE (of the 1960’s), based
on a quartic interaction potential energy, relevant to Bose-
Einstein condensation, contains the nonlinear cubic terms
in the Schrödinger equation, after differentiation, (ψ∗ψ)ψ.
This equation does not satisfy the Weinberg homogeneity
condition [9] and also the energy functional differs from the
EQM by factors of two.

However, in the fractal-based NLSE there is no dis-
crepancy between the quantum-mechanical energy functional
and the field theory energy functional. Both are given by

H NLSE
fractal = −

~2

2m

α

~
ψ∗∇2ψ + Uψ∗ψ−

− i
~2

2m

β

~
ψ∗(~∇ lnψ)2ψ .

(54)

This is why we push forward the NLSE derived from the
fractal Brownian motion with a complex-valued diffusion
coefficient. Such equation does admit plane-wave solutions
with the dispersion relation E = ~p 2/(2m). It is not hard
to see that after inserting the plane wave solution into the
fractal-based NLSE we get (after setting U = 0),

E =
~2

2m

α

~
~p 2

~2
+ i

β

~
~p 2

2m
=
~p 2

2m

α+ iβ

~
=
~p 2

2m
, (55)

since ~ = α+ iβ. Hence, the plane-wave is a solution to our
fractal-based NLSE (when U = 0) with a real-valued energy
and has the correct energy-momentum dispersion relation.
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Soliton solutions, with real-valued energy (momentum)
are of the form

ψ ∼
[
F (x− vt) + iG(x− vt)

]
eipx/~−iEt/~ , (56)

with F , G two functions of the argument x − vt obeying a
coupled set of two nonlinear differential equations.

It is warranted to study solutions when one turns-on an
external potential U 6= 0 and to generalize this construction
to the Quaternionic Schrödinger equation [16] based on the
Hydrodynamical Nonabelian-fluid Madelung’s formulation
of QM proposed by [26]. And, in particular, to explore
further the consequences of the Non-Hermitian Hamiltonian
(pseudo-Hermitian) associated with our NLSE (34) within
the context of the so-called PT symmetric complex exten-
sions of QM and QFT [27]. Arguments why a quantum theory
of gravity should be nonlinear have been presented by [28]
where a different non-linear Schrödinger equation, but with
a similar logarithmic dependence, was found. This equation
[28] is also similar to the one proposed by Doebner and
Goldin [29] from considerations of unitary representations
of the diffeomorphism group.
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