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†Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
E-mail: Matej.Pavsic@ijs.si

In a review, W. A. Rodrigues, Jr., wrote that we confused vector and affine spaces, and
that we misunderstood the concept of curvature. We reply to those comments, and
point out, that in our paper there was an explicit expression for the curvature of a
connection. Therefore we were quite aware — contrary to what asserted the reviewer
— that the curvature of a manifold has nothing to do with a choice of a frame field
which, of course, even in a flat manifold can be position dependent.

In 2005 we published a paper entitled The Extended Relativity
Theory in Clifford Spaces [1] which was reviewed by W.A.
Rodrigues, Jr. [2]. A good review, even if critical, is always
welcome, provided that the criticism is correct and relevant.
Unfortunately the reviewer produced some statements which
need a reply. He wrote:

“Two kinds of Clifford spaces are introduced in their
paper, flat and curved. According to their presentation,
which is far from rigorous by any mathematical stand-
ard, we learn that flat Clifford space is a vector space,
indeed the vector space of a Clifford algebra of real
vector space RD equipped with a metric of signature
P +Q=D. As such the authors state that the coordi-
nates of Clifford space are noncommutative Clifford-
valued quantities. It is quite obvious for a mathem-
atician that the authors confuse a vector space with
an affine space. This is clear when we learn their
definition of a curved Clifford space, which is a 16-
dimensional manifold where the tangent vectors are
position dependent and at any point are generators of
a Clifford algebra CP,Q. The authors, as is the case
of many physicists, seem not to be aware that the
curvature of a manifold has to do with the curvature of
a connection that we may define on such a manifold,
and has nothing to do with the fact that we may choose
even in flat manifold a section of the frame bundle
consisting of vectors that depend on the coordinates
of the manifold points in a given chart of the maximal
atlas of the manifold.”

When introducing flat C-space we just said that the
Clifford-valued polyvector denotes the position of a point
in a manifold, called Clifford space, or C-space. It is a com-
mon practice to consider coordinates, e. g., four coordinates
xμ, μ=0, 1, 2, 3, of a point P of a flat spacetime as com-
ponents of a radius vector from a chosen point P0 (“the
origin”) to P . If we did not provide at this point a several
pages course on vector and affine spaces, this by no means

implies that we were not aware of a distinction of the two
kinds of spaces. That position in flat spacetime is described
by radius vector is so common that we do not need to provide
any further explanation in this respect. Our paper is about
physics and not mathematics. We just use the well established
mathematics. Of course a spacetime manifold (including a
flat one) is not the same space as a vector space, but, choosing
an “origin” in spacetime, to every point there corresponds a
vector, so that there is a one-to-one correspondence between
the two spaces. This informal description is true, regardless
of the fact that there exist corresponding rigorous, formal,
mathematical descriptions (to be found in many textbooks
on physics and mathematics).

The correspondence between points and vectors does no
longer hold in a curved space, at least not according to the
standard wisdom practiced in the textbooks on differential
geometry. However, there exists an alternative approach
adopted by Hestenes and Sobcyk in their book [3], according
to which even the points of a curved space are described by
vectors. Moreover, there is yet another possibility, described
in refs. [4, 5], which employs vector fields aμ(x)γμ in a
curved space M, where γμ, μ=0, 1, 2, . . . , n− 1, are the
coordinate basis vector fields. At every point P the vectors
γμ|P span a tangent space TPM which is a vector space.

A particular case can be such that in a given coordinate
system∗ we have aμ(x) = xμ. Then at every point P ∈ M,
the object x(P) = xμ(P)γμ(P) is a tangent vector. So we
have one-to-one correspondence between the points P of M
and the tangent vectors x(P) = xμ(P)γμ(P), shortly xμγμ.
The set of objects x(P) for all point P in a regionR ⊂Mwe
call the coordinate vector field [4]. So although the manifold
is curved, every point in it can be described by a tangent

∗“Coordinate system” or simply “coordinates” is an abbreviation for
“the coordinates of the manifold points in a given chart of the maximal atlas
of the manifold”.
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vector at that point, the components of the tangent vector
being equal to the coordinates of that point.∗ Those tangent
vectors xμ(P)γμ(P) are now “house numbers” assigned to
a point P . We warn the reader not to confuse the tangent
vector x(P) at a point P with the vector pointing from P0 (a
coordinate origin) to a point P , a concept which is ill defined
in a curved manifold.

Analogous holds for Clifford space C. It is a manifold
whose points E can be physically interpreted as extended
“events”. One possible way to describe those points is by
means of a polyvector field A(X)=AM (X)γM (X)=
=XMγM , where γM |E , M =1, 2, . . . , 2n, are tangent poly-
vectors that at every point E ∈ C span a Clifford algebra. At
a given point E ∈ C it may hold [6, 5]

γM = γμ1 ∧ γμ2 ∧ . . . ∧ γμr , r = 0, 1, 2, . . . , n (1)

i. e., γM are defined as wedge product of vectors γμ , μ=0,
1, 2, . . . , n−1. The latter property cannot hold in a general
curved Clifford space [6, 5]. In refs. [7, 1] we considered a
particular subclass of curvedC-spaces, for which it does hold.

If we choose a particular point E0 ∈C, to which we assign
coordinates XM (E0)= 0, then we have a correspondence
between points E ∈ C and Clifford numbers XM (E) γM (E).
In this sense one has to understand the sentence of ref. [1]:

“An element of C-space is a Clifford number, called
also polyvector or Clifford aggregate which we now
write in the formX = sγ+xμγμ+x

μνγμ∧γν+. . . ”

Therefore, a more correct formulation would be, e. g.,

“An element of C-space is an extended event E ,
to which one can assign a Clifford number, called
polyvector, XM (E)γM (E) ≡ XMγM .”

together with an explanation in the sense as given above.
So a rigorous formulation is, not that an element of C-space
is a Clifford number, but that to a point of C-space there
corresponds a Clifford number, and that this holds for all
points within a domain Ω ⊂C corresponding to a given chart
of the maximal atlas of C.

On the one hand we have a 2n-dimensional manifold
C ≡{E} of points (extended events) E , and on the other
hand the 2n-dimensional space {X(E)} of Clifford numbers
X(E)=XM (E) γ (E) for E ∈Ω⊂C. The latter space
{X(E)}, of course, is not a Clifford algebra. It is a subspace
of 2× 2n-dimensional tangent bundle TC of the manifold C.
At every point E ∈ C there is a also another subspace of TC,
namely the 2n-dimensional tangent space TEC, which is a

∗If we change coordinate system, then aμ(x)γμ=xμγμ=
= a′μ(x′)γ′μ(x

′), with a′μ= aν(x)(∂x′μ/∂xν)=xν(∂x′μ/∂xν). In
another coordinate system S′ one can then take another vector field,
such that bμ(x′)=x′μ. Let us stress that bμ(x′)=x′μ is a different
field from a′μ(x′), therefore the reader should not think that we say
x′μ=xν(∂x′μ/∂xν) which is, of course, wrong. What we say is
a′μ(x′)= (∂x′μ/∂xν)aν(x), where, in particular, aν(x)=xν .

Clifford algebra Cn. Since there is a one-to-one correspond-
ence between the spaces {X(E)} and {E}, the space {X(E)}
can be used for description of the space {E}.

It is true that physicists are often sloppy with mathemat-
ical formulations and usage of language, but it is also true that
mathematicians often read physics papers superficially and
see misconceptions, “errors”, erroneous mathematical state-
ments, etc., instead of trying to figure out the true content
behind an informal (and therefore necessarily imprecise) de-
scription, whose emphasis is on physics and not mathematics.

A culmination is when the reviewer writes

“The authors, as is the case of many physicists, seem
not to be aware that curvature. . . has nothing to do
with the fact that we may choose even in flat manifold
a section of the frame bundle consisting of vectors that
depend on coordinates of the manifold points. . . ”

That curvature has nothing to do with coordinate trans-
formations† is clear to everybody who has ever studied the
basis of general relativity. Everyone who has a good faith that
the author(s) of a paper have a minimal level of competence
would interpret a text such as [1]

“In flat C-space the basis polyvectors γM are con-
stant. In a curved C-space this is no longer true. Each
γM is a function of C-space coordinates XM . . . ”

according to

“In flat C-space one can always find coordinates‡ in
which γM are constant. In a curved C-space this is
no longer true. Each γM depends on position in C-
space.” Or equivalently, “Each γM is a function of
the C-space coordinates”.

However, even our formulation as it stands in ref. [1]
makes sense within the context in which we first consider
flat space in which we choose a constant frame field, i. e.,
constant basis polyvectors. We denote the latter polyvectors
as γM . If we then deform§ the flat space into a curved one,
then the same (poly)vector fields γM in general can no longer
be independent of position. In this sense the formulation as
it stands in our paper is quite correct.

We then define a connection on our manifold C, and the
corresponding curvature (see eqs. (77), (78) of ref. [1]). That

†For instance, in flat spacetime one can introduce a curvilinear
coordinate system of coordinates, like the use of polar coordinates in
the plane and spherical coordinates in R3. However, the introduction of
a curvilinear coordinate system does not convert the original flat space into
a curved one. And vice versa, one can introduce a non-Euclidean metric
(non-flat metric) on a two-dim flat surface, for example, like the hyperbolic
Lobachevsky metric of constant negative scalar curvature.

‡We renounce to use here the lengthy formulation provided by the
reviewer. Usage of the term “coordinates” is sufficient, and it actually means
“coordinates of the manifold point in a given chart of the maximal atlas of
the manifold”.

§This is easy to imagine, if we consider a flat surface embedded in
a higher dimensional space, and then deform the surface. In general, we
may deform the surface so that is is curved not only extrinsically, but also
intrinsically.
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the reviewer reproaches us of being ignorant of the fact that
the curvature of a manifold has to do with the curvature of
a connection is therefore completely out of place, to say at
least.

Finally, let us mention that in the review of another paper
[8] the same reviewer ascribed to one of us (M.P) an incorrect
mathematical statement. But I was quite aware of the well
known fact that Clifford algebras associated with vector
spaces of different signatures (p, q), with p+ q=n, are not
all isomorphic (in the sense as stated, e. g., in the book by
Porteous [9]). What I discussed in that paper was something
different. This should be clear from my description, therefore
I did not explicitly warn the reader about the difference
(although I was aware of the danger that at superficial reading
some people might believe me of committing an error).
However, in subsequent ref. [1] we did warn the reader about
the possibility of such a confusion.
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