
July, 2006 PROGRESS IN PHYSICS Volume 3

Complexity Science for Simpletons

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, Maryland 21209, USA
E-mail: cafeinst@msn.com

In this article, we shall describe some of the most interesting topics in the subject
of Complexity Science for a general audience. Anyone with a solid foundation in
high school mathematics (with some calculus) and an elementary understanding of
computer programming will be able to follow this article. First, we shall explain the
significance of the P versus NP problem and solve it. Next, we shall describe two
other famous mathematics problems, the Collatz 3n+ 1 Conjecture and the Riemann
Hypothesis, and show how both Chaitin’s incompleteness theorem and Wolfram’s
notion of “computational irreducibility” are important for understanding why no one
has, as of yet, solved these two problems.

1 Challenge

Imagine that you have a collection of one billion lottery
tickets scattered throughout your basement in no particular
order. An official from the lottery announces the number
of the winning lottery ticket. For a possible prize of one
billion dollars, is it a good idea to search your basement
until you find the winning ticket or until you come to the
conclusion that you do not possess the winning ticket? Most
people would think not — even if the winning lottery ticket
were in your basement, performing such a search could take
109/(60× 60× 24× 365.25) years, over thirty work-years,
assuming that it takes you at least one second to examine
each lottery ticket. Now imagine that you have a collection
of only one thousand lottery tickets in your basement. Is
it a good idea to search your basement until you find the
winning ticket or until you come to the conclusion that you
do not possess the winning ticket? Most people would think
so, since doing such would take at most a few hours.

From these scenarios, let us postulate a general rule
that the maximum time that it may take for one person to
search N unsorted objects for one specific object is directly
proportional to N . This is clearly the case for physical
objects, but what about abstract objects? For instance, let
us suppose that a dating service is trying to help n single
women and n single men to get married. Each woman gives
the dating service a list of characteristics that she would
like to see in her potential husband, for instance, handsome,
caring, athletic, domesticated, etc. And each man gives the
dating service a list of characteristics that he would like to
see in his potential wife, for instance, beautiful, obedient,
good cook, thrifty, etc. The dating service is faced with the
task of arranging dates for each of its clients so as to satisfy
everyone’s preferences.

Now there are n! (which is shorthand for n× (n− 1)×
(n − 2) × ∙ ∙ ∙ × 2 × 1) possible ways for the dating service
to arrange dates for each of its clients, but only a fraction of
such arrangements would satisfy all of its clients. If n = 100,
it would take too long for the dating service’s computer

to evaluate all 100! possible arrangements until it finds an
arrangement that would satisfy all of its clients. (100! is too
large a number of possibilities for any modern computer to
handle.) Is there an efficient way for the dating service’s
computer to find dates with compatible potential spouses for
each of the dating service’s clients so that everyone is happy,
assuming that it is possible to do such? Yes, and here is how:

Matchmaker algorithm — Initialize the set M = ∅. Search
for a list of compatible relationships between men and
women that alternates between a compatible relationship
{x1, x2} not contained in set M , followed by a compatible
relationship {x2, x3} contained in set M , followed by a
compatible relationship {x3, x4} not contained in set M ,
followed by a compatible relationship {x4, x5} contained in
set M , and so on, ending with a compatible relationship
{xm−1, xm} not contained in set M , where both x1 and xm
are not members of any compatible relationships contained
in set M . Once such a list is found, for each compatible
relationship {xi, xi+1} in the list, add {xi, xi+1} to M if
{xi, xi+1} is not contained in M or remove {xi, xi+1}
from M if {xi, xi+1} is contained in M . (Note that this
procedure must increase the size of set M by one.) Repeat
this procedure until no such list exists.

Such an algorithm is guaranteed to efficiently find an
arrangement M that will satisfy all of the dating service’s
clients whenever such an arrangement exists [30]. So we
see that with regard to abstract objects, it is not necessarily
the case that the maximum time that it may take for one to
search N unsorted objects for a specific object is directly
proportional to N ; in the dating service example, there are
n! possible arrangements between men and women, yet it is
not necessary for a computer to examine all n! arrangements
in order to find a satisfactory arrangement. One might think
that the problem of finding a satisfactory dating arrangement
is easy for a modern computer to solve because the list of
pairs of men and women who are compatible is relatively
small (of size at most n2, which is much smaller than
the number of possible arrangements n!) and because it is

C. A. Feinstein. Complexity Science for Simpletons 35

Volume 3 PROGRESS IN PHYSICS July, 2006

easy to verify whether any particular arrangement will make
everyone happy. But this reasoning is invalid, as we shall
demonstrate.

2 The SUBSET-SUM problem

Consider the following problem: You are given a set A=
= {a1, . . . , an} of n integers and another integer b which we
shall call the target integer. You want to know if there exists
a subset of A for which the sum of its elements is equal to b.
(We shall consider the sum of the elements of the empty set to
be zero.) This problem is called the SUBSET-SUM problem
[10]. Now, there are 2n subsets of A, so one could naı̈vely
solve this problem by exhaustively comparing the sum of the
elements of each subset of A to b until one finds a subset-
sum equal to b, but such a procedure would be infeasible
for even the fastest computers in the world to implement
when n = 100. Is there an algorithm which can considerably
reduce the amount of work for solving the SUBSET-SUM
problem? Yes, there is an algorithm discovered by Horowitz
and Sahni in 1974 [21], which we shall call the Meet-in-the-
Middle algorithm, that takes on the order of 2n/2 steps to
solve the SUBSET-SUM problem instead of the 2n steps of
the naı̈ve exhaustive comparison algorithm:

Meet-in-the-Middle algorithm — First, partition the set A
into two subsets, A+= {a1, . . . , adn2 e} and A−= {adn2 e+1,
. . . , an}. Let us define S+ and S− as the sets of subset-
sums of A+ and A−, respectively. Sort sets S+ and b−S−

in ascending order. Compare the first elements in both of
the lists. If they match, then stop and output that there is a
solution. If not, then compare the greater element with the
next element in the other list. Continue this process until
there is a match, in which case there is a solution, or until
one of the lists runs out of elements, in which case there is
no solution.

This algorithm takes on the order of 2n/2 steps, since it
takes on the order of 2n/2 steps to sort sets S+ and b−S−

(assuming that the computer can sort in linear-time) and on
the order of 2n/2 steps to compare elements from the sorted
lists S+ and b − S−. Are there any faster algorithms for
solving SUBSET-SUM? 2n/2 is still a very large number
when n=100, even though this strategy is a vast improve-
ment over the naı̈ve strategy. It turns out that no algorithm
with a better worst-case running-time has ever been found
since the Horowitz and Sahni paper [40]. And the reason for
this is because it is impossible for such an algorithm to exist.
Here is an explanation why:

Explanation: To understand why there is no algorithm with a
faster worst-case running-time than the Meet-in-the-Middle
algorithm, let us travel back in time seventy-five years, long
before the internet. If one were to ask someone back then
what a computer is, one would have gotten the answer, “a
person who computes (usually a woman)” instead of the

present day definition, “a machine that computes” [18]. Let
us imagine that we knew two computers back then named
Mabel and Mildred (two popular names for women in the
1930’s [34]). Mabel is very efficient at sorting lists of integers
into ascending order; for instance she can sort a set of ten
integers in 15 seconds, whereas it takes Mildred 20 seconds
to perform the same task. However, Mildred is very efficient
at comparing two integers a and b to determine whether a< b
or a= b or a> b; she can compare ten pairs of integers in 15
seconds, whereas it takes Mabel 20 seconds to perform the
same task.

Let’s say we were to give both Mabel and Mildred the
task of determining whether there exists a subset of some four
element set, A= {a1, a2, a3, a4}, for which the sum of its
elements adds up to b. Since Mildred is good at comparing
but not so good at sorting, Mildred chooses to solve this
problem by comparing b to all of the sixteen subset-sums
of A. Since Mabel is good at sorting but not so good at
comparing, Mabel decides to solve this problem by using the
Meet-in-the-Middle algorithm. In fact, of all algorithms that
Mabel could have chosen to solve this problem, the Meet-
in-the-Middle algorithm is the most efficient for her to use
on sets A with only four integers. And of all algorithms that
Mildred could have chosen to solve this problem, comparing
b to all of the sixteen subset-sums of A is the most efficient
algorithm for her to use on sets A with only four integers.

Now we are going to use the principle of mathematical
induction to prove that the best algorithm for Mabel to use
for solving the SUBSET-SUM problem for large n is the
Meet-in-the-Middle algorithm: We already know that this is
true when n = 4. Let us assume that this is true for n, i. e.,
that of all possible algorithms for Mabel to use for solving the
SUBSET-SUM problem on sets with n integers, the Meet-in-
the-Middle algorithm has the best worst-case running-time.
Then we shall prove that this is also true for n+ 1:

Let S be the set of all subset-sums of the set A=
= {a1, a2, . . . , an}. Notice that the SUBSET-SUM problem
on the set A∪{a′} of n+1 integers and target b is equivalent
to the problem of determining whether (1) b∈S or (2) b′ ∈S
(where b′= b− a′). (The symbol ∈means “is a member of”.)
Also notice that these two subproblems, (1) and (2), are
independent from one another in the sense that the values of
b and b′ are unrelated to each other and are also unrelated
to set S; therefore, in order to determine whether b∈S or
b′ ∈S, it is necessary to solve both subproblems (assuming
that the first subproblem solved has no solution). So it is
clear that if Mabel could solve both subproblems in the
fastest time possible and also whenever possible make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) and whenever possible make
use of information obtained from solving subproblem (2) to
save time solving subproblem (1), then Mabel would be able
to solve the problem of determining whether (1) b ∈ S or (2)
b′ ∈ S in the fastest time possible [15].

36 C. A. Feinstein. Complexity Science for Simpletons

July, 2006 PROGRESS IN PHYSICS Volume 3

We shall now explain why the Meet-in-the-Middle algo-
rithm has this characteristic for sets of size n+ 1: It is clear
that by the induction hypothesis, the Meet-in-the-Middle
algorithm solves each subproblem in the fastest time possible,
since it works by applying the Meet-in-the-Middle algorithm
to each subproblem, without loss of generality sorting and
comparing elements in lists S+ and b−S− and also sorting
and comparing elements in lists S+ and b′−S− as the
algorithm sorts and compares elements in lists S+ and
b− [S− ∪ (S−+ a′)]. There are two situations in which it is
possible for the Meet-in-the-Middle algorithm to make use
of information obtained from solving subproblem (1) to save
time solving subproblem (2) or to make use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). And the Meet-in-the-Middle algorithm takes
advantage of both of these opportunities:

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b−S− and the element
in list S+ turns out to be less than the element in
list b−S−, the algorithm makes use of information
obtained from solving subproblem (1) (the fact that
the element in list S+ is less than the element in
list b−S−) to save time, when n is odd, solving
subproblem (2) (the algorithm does not consider the
element in list S+ again).

• Whenever the Meet-in-the-Middle algorithm compares
two elements from lists S+ and b′−S− and the ele-
ment in list S+ turns out to be less than the element in
list b′−S−, the algorithm makes use of information
obtained from solving subproblem (2) (the fact that
the element in list S+ is less than the element in
list b′−S−) to save time, when n is odd, solving
subproblem (1) (the algorithm does not consider the
element in list S+ again).

Therefore, we can conclude that the Meet-in-the-Middle al-
gorithm whenever possible makes use of information obtain-
ed from solving subproblem (1) to save time solving sub-
problem (2) and whenever possible makes use of information
obtained from solving subproblem (2) to save time solving
subproblem (1). So we have completed our induction step to
prove true for n+ 1, assuming true for n.

Therefore, the best algorithm for Mabel to use for solving
the SUBSET-SUM problem for large n is the Meet-in-the-
Middle algorithm. But is the Meet-in-the-Middle algorithm
the best algorithm for Mildred to use for solving the SUBSET-
SUM problem for large n? Since the Meet-in-the-Middle
algorithm is not the fastest algorithm for Mildred to use
for small n, is it not possible that the Meet-in-the-Middle
algorithm is also not the fastest algorithm for Mildred to use
for large n? It turns out that for large n, there is no algorithm
for Mildred to use for solving the SUBSET-SUM problem
with a faster worst-case running-time than the Meet-in-the-
Middle algorithm. Why?

Notice that the Meet-in-the-Middle algorithm takes on the
order of 2n/2 steps regardless of whether Mabel or Mildred
applies it. And notice that the algorithm of naı̈vely comparing
the target b to all of the 2n subset-sums of set A takes on the
order of 2n steps regardless of whether Mabel or Mildred
applies it. So for large n, regardless of who the computer
is, the Meet-in-the-Middle algorithm is faster than the naı̈ve
exhaustive comparison algorithm — from this example, we
can understand the general principle that the asymptotic
running-time of an algorithm does not differ by more than a
polynomial factor when run on different types of computers
[40, 41]. Therefore, since no algorithm is faster than the
Meet-in-the-Middle algorithm for solving SUBSET-SUM for
large n when applied by Mabel, we can conclude that no
algorithm is faster than the Meet-in-the-Middle algorithm
for solving SUBSET-SUM for large n when applied by
Mildred. And furthermore, using this same reasoning, we
can conclude that no algorithm is faster than the Meet-in-
the-Middle algorithm for solving SUBSET-SUM for large n
when run on a modern computing machine. �

So it doesn’t matter whether the computer is Mabel,
Mildred, or any modern computing machine; the fastest algo-
rithm which solves the SUBSET-SUM problem for large n is
the Meet-in-the-Middle algorithm. Because once a solution
to the SUBSET-SUM problem is found, it is easy to verify
(in polynomial-time) that it is indeed a solution, we say that
the SUBSET-SUM problem is in class NP [5]. And because
there is no algorithm which solves SUBSET-SUM that runs
in polynomial-time (since the Meet-in-the-Middle algorithm
runs in exponential-time and is the fastest algorithm for
solving SUBSET-SUM, as we have shown above), we say
that the SUBSET-SUM problem is not in class P [5]. Then
since the SUBSET-SUM problem is in class NP but not
in class P , we can conclude that P 6=NP , thus solving the
P versus NP problem [15]. The solution to the P versus
NP problem demonstrates that it is possible to hide abstract
objects (in this case, a subset of set A) without an abundance
of resources — it is, in general, more difficult to find a subset
of a set of only one hundred integers for which the sum of
its elements equals a target integer than to find the winning
lottery-ticket in a pile of one billion unsorted lottery tickets,
even though the lottery-ticket problem requires much more
resources (one billion lottery tickets) than the SUBSET-SUM
problem requires (a list of one hundred integers).

3 Does P 6=NP really matter?

Even though P 6=NP , might there still be algorithms which
efficiently solve problems that are in NP but not P in the
average-case scenario? (Since the P 6=NP result deals only
with the worst-case scenario, there is nothing to forbid this
from happening.) The answer is yes; for many problems
which are in NP but not P , there exist algorithms which
efficiently solve them in the average-case scenario [28, 39],

C. A. Feinstein. Complexity Science for Simpletons 37

Volume 3 PROGRESS IN PHYSICS July, 2006

so the statement that P 6=NP is not as ominous as it sounds.
In fact, there is a very clever algorithm which solves almost
all instances of the SUBSET-SUM problem in polynomial-
time [11, 26, 28]. (The algorithm works by converting the
SUBSET-SUM problem into the problem of finding the
shortest non-zero vector of a lattice, given its basis.) But
even though for many problems which are in NP but not
P , there exist algorithms which efficiently solve them in the
average-case scenario, in the opinion of most complexity-
theorists, it is probably false that for all problems which are
in NP but not P , there exist algorithms which efficiently
solve them in the average-case scenario [3].

Even though P 6=NP , might it still be possible that
there exist polynomial-time randomized algorithms which
correctly solve problems in NP but not in P with a high
probability regardless of the problem instance? (The word
“randomized” in this context means that the algorithm bases
some of its decisions upon random variables. The advantage
of these types of algorithms is that whenever they fail to
output a solution, there is still a good chance that they will
succeed if they are run again.) The answer is probably no, as
there is a widely believed conjecture that P =BPP , where
BPP is the class of decision problems for which there are
polynomial-time randomized algorithms that correctly solve
them at least two-thirds of the time regardless of the problem
instance [22].

4 Are quantum computers the answer?

A quantum computer is any computing device which makes
direct use of distinctively quantum mechanical phenomena,
such as superposition and entanglement, to perform operat-
ions on data. As of today, the field of practical quantum
computing is still in its infancy; however, much is known
about the theoretical properties of a quantum computer. For
instance, quantum computers have been shown to efficiently
solve certain types of problems, like factoring integers [35],
which are believed to be difficult to solve on a classical
computer, e. g., a human-computer like Mabel or Mildred or
a machine-computer like an IBM PC or an Apple Macintosh.

Is it possible that one day quantum computers will be
built and will solve problems like the SUBSET-SUM prob-
lem efficiently in polynomial-time? The answer is that it is
generally suspected by complexity theorists to be impossible
for a quantum computer to solve the SUBSET-SUM problem
(and all other problems which share a characteristic with the
SUBSET-SUM problem in that they belong to a subclass
of NP problems known as NP-complete problems [5]) in
polynomial-time. A curious fact is that if one were to solve
the SUBSET-SUM problem on a quantum computer by brute
force, the algorithm would have a running-time on the order
of 2n/2 steps, which (by coincidence?) is the same asymptotic
running-time of the fastest algorithm which solves SUBSET-
SUM on a classical computer, the Meet-in-the-Middle algo-

rithm [1, 4, 19].
In any case, no one has ever built a practical quantum

computer and some scientists are even of the opinion that
building such a computer is impossible; the acclaimed com-
plexity theorist, Leonid Levin, wrote: “QC of the sort that
factors long numbers seems firmly rooted in science fiction. It
is a pity that popular accounts do not distinguish it from much
more believable ideas, like Quantum Cryptography, Quantum
Communications, and the sort of Quantum Computing that
deals primarily with locality restrictions, such as fast search
of long arrays. It is worth noting that the reasons why
QC must fail are by no means clear; they merit thorough
investigation. The answer may bring much greater benefits
to the understanding of basic physical concepts than any
factoring device could ever promise. The present attitude is
analogous to, say, Maxwell selling the Daemon of his famous
thought experiment as a path to cheaper electricity from heat.
If he did, much of insights of today’s thermodynamics might
be lost or delayed” [25].

5 Unprovable conjectures

In the early twentieth century, the famous mathematician,
David Hilbert, proposed the idea that all mathematical facts
can be derived from only a handful of self-evident axioms.
In the 1930’s, Kurt Gödel proved that such a scenario is
impossible by showing that for any proposed finite axiom
system for arithmetic, there must always exist true statements
that are unprovable within the system, if one is to assume
that the axiom system has no inconsistencies. Alan Turing
extended this result to show that it is impossible to design
a computer program which can determine whether any other
computer program will eventually halt. In the latter half of the
20th century, Gregory Chaitin defined a real number between
zero and one, which he calls Ω, to be the probability that a
computer program halts. And Chaitin proved that:

Theorem 1: For any mathematics problem, the bits of Ω,
whenΩ is expressed in binary, completely determine whether
that problem is solvable or not.

Theorem 2: The bits of Ω are random and only a finite num-
ber of them are even possible to know.

From these two theorems, it follows that the very structure
of mathematics itself is random and mostly unknowable! [8]

Even though Hilbert’s dream to be able derive every
mathematical fact from only a handful of self-evident axioms
was destroyed by Gödel in the 1930’s, this idea has still
had an enormous impact on current mathematics research
[43]. In fact, even though mathematicians as of today accept
the incompleteness theorems proven by Gödel, Turing, and
Chaitin as true, in general these same mathematicians also
believe that these incompleteness theorems ultimately have
no impact on traditional mathematics research, and they have
thus adopted Hilbert’s paradigm of deriving mathematical

38 C. A. Feinstein. Complexity Science for Simpletons

July, 2006 PROGRESS IN PHYSICS Volume 3

facts from only a handful of self-evident axioms as a practical
way of researching mathematics. Gregory Chaitin has been
warning these mathematicians for decades now that these
incompleteness theorems are actually very relevant to ad-
vanced mathematics research, but the overwhelming majority
of mathematicians have not taken his warnings seriously [7].
We shall directly confirm Chaitin’s assertion that incomplete-
ness is indeed very relevant to advanced mathematics re-
search by giving very strong evidence that two famous math-
ematics problems, determining whether the Collatz 3n+1
Conjecture is true and determining whether the Riemann
Hypothesis is true, are impossible to solve:

The Collatz 3n+1 Conjecture — Here’s a fun experiment
that you, the reader, can try: Pick any positive integer, n. If
n is even, then compute n/2 or if n is odd, then compute
(3n + 1)/2. Then let n equal the result of this computation
and perform the whole procedure again until n=1. For
instance, if you had chosen n=11, you would have obtain-
ed the sequence (3×11+1)/2=17, (3× 17+1)/2=26,
26/2=13, 20, 10, 5, 8, 4, 2, 1.

The Collatz 3n + 1 Conjecture states that such an algo-
rithm will always eventually reach n=1 and halt [23]. Com-
puters have verified this conjecture to be true for all positive
integers less than 224× 250≈ 2.52× 1017 [33]. Why does
this happen? One can give an informal argument as to why
this may happen [12] as follows: Let us assume that at each
step, the probability that n is even is one-half and the pro-
bability that n is odd is one-half. Then at each iteration, nwill
decrease by a multiplicative factor of about

(
3
2

)1/2(1
2

)1/2
=

=
(
3
4

)1/2
on average, which is less than one; therefore, n will

eventually converge to one with probability one. But such an
argument is not a rigorous mathematical proof, since the
probability assumptions that the argument is based upon are
not well-defined and even if they were well-defined, it would
still be possible (although extremely unlikely, with probabi-
lity zero) that the algorithm will never halt for some input.

Is there a rigorous mathematical proof of the Collatz
3n+1 Conjecture? As of today, no one has found a rigorous
proof that the conjecture is true and no one has found a
rigorous proof that the conjecture is false. In fact, Paul Erdös,
who was one of the greatest mathematicians of the twentieth
century, commented about the Collatz 3n + 1 Conjecture:
“Mathematics is not yet ready for such problems” [23]. We
can informally demonstrate that there is no way to deducti-
vely prove that the conjecture is true, as follows:

Explanation: First, notice that in order to be certain that
the algorithm will halt for a given input n, it is necessary
to know whether the value of n at the beginning of each
iteration of the algorithm is even or odd. (For a rigorous
proof of this, see The Collatz Conjecture is Unprovable
[16].) For instance, if the algorithm starts with input n = 11,
then in order to know that the algorithm halts at one, it is
necessary to know that 11 is odd, (3× 11+1)/2=17 is

odd, (3× 17+1)/2=26 is even, 26/2=13 is odd, 20 is
even, 10 is even, 5 is odd, 8 is even, 4 is even, and 2 is
even. We can express this information (odd, odd, even, odd,
even, even, odd, even, even, even) as a vector of zeroes
and ones, (1, 1, 0, 1, 0, 0, 1, 0, 0, 0). Let us call this vector the
parity vector of n. (If n never converges to one, then its
parity vector must be infinite-dimensional.) If one does not
know the parity vector of the input, then it is impossible to
know what the algorithm does at each iteration and therefore
impossible to be certain that the algorithm will converge to
one. So any proof that the algorithm applied to n halts must
specify the parity vector of n. Next, let us give a definition
of a random vector:

Definition — We shall say that a vector x ∈ {0, 1}m is
random if x cannot be specified in less than m bits in a
computer text-file [6].

Example 1 — The vector of one million concatenations of the
vector (0, 1) is not random, since we can specify it in less
than two million bits in a computer text-file. (We just did.)

Example 2 — The vector of outcomes of one million coin-
tosses has a good chance of fitting our definition of “random”,
since much of the time the most compact way of specifying
such a vector is to simply make a list of the results of each
coin-toss, in which one million bits are necessary.

Now let us suppose that it were possible to prove the
Collatz 3n + 1 Conjecture and let B be the number of bits
in a hypothetical computer text-file containing such a proof.
And let (x0, x1, x2, . . . , xB) be a random vector, as defined
above. (It is not difficult to prove that at least half of all
vectors with B+1 zeroes and ones are random [6].) There is
a mathematical theorem [23] which says that there must exist
a number n with the first B+1 bits of its parity vector equal
to (x0, x1, x2, . . . , xB); therefore, any proof of the Collatz
3n + 1 Conjecture must specify vector (x0, x1, x2, . . . , xB)
(as we discussed above), since such a proof must show
that the Collatz algorithm halts when given input n. But
since vector (x0, x1, x2, . . . , xB) is random, B + 1 bits are
required to specify vector (x0, x1, x2, . . . , xB), contradicting
our assumption that B is the number of bits in a computer
text-file containing a proof of the Collatz 3n+1 Conjecture;
therefore, a formal proof of the Collatz 3n+1 Conjecture
cannot exist [16]. �

The Riemann Hypothesis — There is also another famous
unresolved conjecture, the Riemann Hypothesis, which has a
characteristic similar to that of the Collatz 3n+1 Conjecture,
in that it too can never be proven true. In the opinion of
many mathematicians, the Riemann Hypothesis is the most
important unsolved problem in mathematics [13]. The reason
why it is so important is because a resolution of the Riemann
Hypothesis would shed much light on the distribution of
prime numbers: It is well known that the number of prime
numbers less than n is approximately

∫ n
2

dx
log x . If the Riemann

Hypothesis is true, then for large n, the error in this approxi-

C. A. Feinstein. Complexity Science for Simpletons 39

Volume 3 PROGRESS IN PHYSICS July, 2006

mation must be bounded by cn1/2 logn for some constant
c> 0 [38], which is also a bound for a random walk, i. e., the
sum of n independent random variables, Xk, for k=1, 2,
. . . , n in which the probability that Xk=−c is one-half and
the probability that Xk= c is one-half.

The Riemann-Zeta function ζ (s) is a complex function

which is defined to be ζ (s)= s
s−1 − s

∫∞
1

x−bxc
xs+1 dx when the

real part of the complex number s is positive. The Riemann
Hypothesis states that if ρ=σ+ ti is a complex root of ζ
and 0<σ< 1, then σ=1/2. It is well known that there
are infinitely many roots of ζ that have 0<σ< 1. And just
like the Collatz 3n+1 Conjecture, the Riemann Hypothesis
has been verified by high-speed computers — for all |t|<T
where T ≈ 2.0× 1020 [29]. But it is still unknown whether
there exists a |t|>T such that ζ (σ+ ti)= 0, where σ 6=1/2.
And just like the Collatz 3n+1 Conjecture, one can give a
heuristic probabilistic argument that the Riemann Hypothesis
is true [17], as follows:

It is well known that the Riemann Hypothesis follows
from the assertion that for large n, M(n)=Σnk=1μ(k)
is bounded by cn1/2 logn for some constant c> 0, where
μ is the Möbius Inversion function defined on N in which
μ(k)=−1 if k is the product of an odd number of distinct
primes, μ(k)= 1 if k is the product of an even number of
distinct primes, and μ(k)= 0 otherwise. If we were to assume
thatM(n) is distributed as a random walk, which is certainly
plausible since there is no apparent reason why it should
not be distributed as a random walk, then by probability
theory, M(n) is bounded for large n by cn1/2 logn for
some constant c> 0, with probability one; therefore, it is
very likely that the Riemann Hypothesis is true. We shall
now explain why the Riemann Hypothesis is unprovable,
just like the Collatz 3n+1 Conjecture:

Explanation: The Riemann Hypothesis is equivalent to the
assertion that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number
of roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}. It
is well known that there exists a continuous real function
Z(t) (called the Riemann-Siegel function) such that |Z(t)|=
= |ζ (1/2+ ti)|, so the real roots t of ζ (1/2+ ti) are the
same as the real roots t of Z(t). (The formula for Z(t) is
ζ (1/2+ ti)eiϑ(t), where ϑ(t)= arg

[
Γ(14 +

1
2 it)

]
− 1

2 t lnπ.)
Then because the formula for the real roots t of ζ (1/2+ ti)
cannot be reduced to a formula that is simpler than the
equation, ζ (1/2+ ti)= 0, the only way to determine the
number of real roots t of ζ (1/2+ ti) in which 0<t<T is
to count the changes in sign of the real function Z(t), where
0<t<T [31].

So in order to prove that the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T}, which
can be computed via a theorem known as the Argument
Principle without counting the changes in sign of Z(t),

where 0<t<T [27, 31, 32], it is necessary to count the
changes in sign of Z(t), where 0<t<T . (Otherwise, it
would be possible to determine the number of real roots t of
ζ (1/2+ ti), where 0<t<T , without counting the changes
in sign of Z(t) by computing the number of roots of ζ (s) in
{s=σ+ ti : 0<σ< 1, 0<t<T} via the Argument Prin-
ciple.) As T becomes arbitrarily large, the time that it takes
to count the changes in sign of Z(t), where 0<t<T , ap-
proaches infinity for the following reasons: (1) There are
infinitely many changes in sign of Z(t). (2) The time that
it takes to evaluate the sign of Z(t) approaches infinity as
t → ∞ [31]. Hence, an infinite amount of time is required
to prove that for each T > 0, the number of real roots t
of ζ (1/2+ ti), where 0<t<T , is equal to the number of
roots of ζ (s) in {s=σ+ ti : 0<σ< 1, 0<t<T} (which
is equivalent to proving the Riemann Hypothesis), so the
Riemann Hypothesis is unprovable. �

Chaitin’s incompleteness theorem implies that mathemat-
ics is filled with facts which are both true and unprovable,
since it states that the bits of Ω completely determine whether
any given mathematics problem is solvable and only a finite
number of bits of Ω are even knowable [8]. And we have
shown that there is a very good chance that both the Collatz
3n+1 Conjecture and the Riemann Hypothesis are examples
of such facts. Of course, we can never formally prove that
either one of these conjectures is both true and unprovable,
for obvious reasons. The best we can do is prove that they are
unprovable and provide computational evidence and heuristic
probabilistic reasoning to explain why these two conjectures
are most likely true, as we have done. And of course, it is
conceivable that one could find a counter-example to the Col-
latz 3n+ 1 Conjecture by finding a number n for which the
Collatz algorithm gets stuck in a nontrivial cycle or a counter-
example to the Riemann Hypothesis by finding a complex
root, ρ=σ+ ti, of ζ for which 0<σ< 1 and σ 6=1/2. But
so far, no one has presented any such counter-examples.

The theorems that the Collatz 3n+1 Conjecture and the
Riemann Hypothesis are unprovable illustrate a point which
Chaitin has been making for years, that mathematics is not so
much different from empirical sciences like physics [8, 14].
For instance, scientists universally accept the law of gravity
to be true based on experimental evidence, but such a law
is by no means absolutely certain — even though the law
of gravity has been observed to hold in the past, it is not
inconceivable that the law of gravity may cease to hold in
the future. So too, in mathematics there are conjectures like
the Collatz 3n + 1 Conjecture and the Riemann Hypothesis
which are strongly supported by experimental evidence but
can never be proven true with absolute certainty.

6 Computational irreducibility

Up until the last decade of the twentieth century, the most
famous unsolved problem in all of mathematics was to prove

40 C. A. Feinstein. Complexity Science for Simpletons

July, 2006 PROGRESS IN PHYSICS Volume 3

the following conjecture:

Fermat’s Last Theorem (FLT) — When n > 2, the equation
xn + yn = zn has no nontrivial integer solutions.

After reading the explanations in the previous section, a
skeptic asked the author what the difference is between
the previous argument that the Collatz 3n+1 Conjecture is
unprovable and the following argument that Fermat’s Last
Theorem is unprovable (which cannot possibly be valid,
since Fermat’s Last Theorem was proven by Wiles and Taylor
in the last decade of the twentieth century [37]):

Invalid Proof that FLT is unprovable: Suppose that we have
a computer program which computes xn+ yn− zn for each
x, y, z ∈ Z and n> 2 until it finds a nontrivial (x, y, z, n)
such that xn+ yn− zn=0 and then halts. Obviously,
Fermat’s Last Theorem is equivalent to the assertion that
such a computer program can never halt. In order to be
certain that such a computer program will never halt, it is
necessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n). Since this would take an infinite amount of time,
Fermat’s Last Theorem is unprovable. �

This proof is invalid, because the assertion that “it is ne-
cessary to compute xn+ yn− zn for each x, y, z ∈Z and
n> 2 to determine that xn+ yn− zn 6=0 for each nontrivial
(x, y, z, n)” is false. In order to determine that an equation is
false, it is not necessary to compute both sides of the equation
— for instance, it is possible to know that the equation
6x+9y=74 has no integer solutions without evaluating
6x+9y for every x, y ∈Z, since one can see that if there
were any integer solutions, the left-hand-side of the equation
would be divisible by three but the right-hand-side would
not be divisible by three.

Question — So why can’t we apply this same reasoning to
show that the proof that the Collatz 3n + 1 Conjecture is
unprovable is invalid? Just as it is not necessary to compute
xn+ yn− zn in order to determine that xn+ yn− zn 6=0,
is it not possible that one can determine that the Collatz
algorithm will converge to one without knowing what the
algorithm does at each iteration?

Answer — Because what the Collatz algorithm does at each
iteration is what determines whether or not the Collatz se-
quence converges to one [16], it is necessary to know what
the Collatz algorithm does at each iteration in order to de-
termine that the Collatz sequence converges to one. Because
the exact values of xn+ yn− zn are not relevant to knowing
that xn+ yn− zn 6=0 for each nontrivial (x, y, z, n), it is
not necessary to compute each xn+ yn− zn in order to de-
termine that xn+yn−zn 6=0 for each nontrivial (x, y, z, n).

Exercise — You are given a deck of n cards labeled 1, 2, 3,
. . . , n. You shuffle the deck. Then you perform the following
“reverse-card-shuffling” procedure: Look at the top card lab-
eled k. If k=1, then stop. Otherwise, reverse the order of

the first k cards in the deck. Then look at the top card again
and repeat the same procedure. For example, if n=7 and
the deck were in order 5732416 (where 5 is the top card),
then you would obtain 4237516→ 7324516→ 6154237→
→3245167→4235167→5324167→1423567. Now, we pre-
sent two problems:

• Prove that such a procedure will always halt for any n
and any shuffling of the n cards.
• Find a closed formula for the maximum number of

iterations that it may take for such a procedure to
halt given the number of cards in the deck, or prove
that no such formula exists. (The maximum number
of iterations for n=1, 2, 3, . . . , 16 are 0, 1, 2, 4, 7, 10,
16, 22, 30, 38, 51, 65, 80, 101, 113, 139 [36].)

It is easy to use the principle of mathematical induction to
solve the first problem. As for the second problem, it turns out
that there is no closed formula; in other words, in order to find
the maximum number of iterations that it may take for such a
procedure to halt given the number of cards n in the deck, it
is necessary to perform the reverse-card-shuffling procedure
on every possible permutation of 1, 2, 3, . . . , n. This property
of the Reverse-Card-Shuffling Problem in which there is no
way to determine the outcome of the reverse-card-shuffling
procedure without actually performing the procedure itself
is called computational irreducibility [42]. Notice that the
notion of computational irreducibility also applies to the
Collatz 3n+1 Conjecture and the Riemann Hypothesis in that
an infinite number of irreducible computations are necessary
to prove these two conjectures.

Stephen Wolfram, who coined the phrase “computational
irreducibility”, argues in his famous book, A New Kind of Sci-
ence [42], that our universe is computationally irreducible,
i.e., the universe is so complex that there is no general method
for determining the outcome of a natural event without either
observing the event itself or simulating the event on a com-
puter. The dream of science is to be able to make accurate
predictions about our natural world; in a computationally
irreducible universe, such a dream is only possible for very
simple phenomena or for events which can be accurately
simulated on a computer.

7 Open problems in mathematics

In the present year of 2006, the most famous unsolved
number theory problem is to prove the following:

Goldbach’s Conjecture — Every even number greater than
two is the sum of two prime numbers.

Just like the Collatz 3n + 1 Conjecture and the Riemann
Hypothesis, there are heuristic probabilistic arguments which
support Goldbach’s Conjecture, and Goldbach’s Conjecture
has been verified by computers for a large number of even
numbers [20]. The closest anyone has come to proving Gold-
bach’s Conjecture is a proof of the following:

C. A. Feinstein. Complexity Science for Simpletons 41

Volume 3 PROGRESS IN PHYSICS July, 2006

Chen’s Theorem — Every sufficiently large even integer is
either the sum of two prime numbers or the sum of a prime
number and the product of two prime numbers [9].

Although the author cannot prove it, he believes the following:
Conjecture 1 — Goldbach’s Conjecture is unprovable.
Another famous conjecture which is usually mentioned along
with Goldbach’s Conjecture in mathematics literature is the
following:
The Twin Primes Conjecture — There are infinitely many
prime numbers p for which p+ 2 is also prime [20].
Just as with Goldbach’s Conjecture, the author cannot prove
it, but he believes the following:
Conjecture 2 — The Twin Primes Conjecture is undecidable,
i. e., it is impossible to know whether the Twin Primes
Conjecture is true or false.

8 Conclusion

The P 6=NP problem, the Collatz 3n+1 Conjecture, and the
Riemann Hypothesis demonstrate to us that as finite human
beings, we are all severely limited in our ability to solve
abstract problems and to understand our universe. The author
hopes that this observation will help us all to better appreciate
the fact that there are still so many things which G-d allows
us to understand.

Acknowledgements

I thank G-d, my parents, my wife, and my children for their
support.

References

1. Aaronson S. NP-complete problems and physical reality.
SIGACT News, Complexity Theory Column, March 2005.

2. Belaga E. Reflecting on the 3x + 1 mystery: Outline of a
scenario. Univ. Strasbourg preprint, 10 pages, 1998.

3. Ben-David S., Chor B., Goldreich O., and Luby M. Journal of
Computer and System Sciences, 1992, v. 44, No. 2, 193–219.

4. Bennett C., Bernstein E., Brassard G., and Vazirani U. SIAM
J. Comput., 1997, v. 26(5), 1510–1523.

5. Bovet P. B. and Crescenzi P. Introduction to the theory of
complexity. Prentice Hall, 1994.

6. Chaitin G. J. Algorithmic information theory. Rev. 3rd ed.,
Cambridge University Press, 1990.

7. Chaitin G. J. arXiv: math/0306042.

8. Chaitin G. J. Meta Math! Pantheon, October 2005.

9. Chen J. R. Kexue Tongbao, 1966, v. 17, 385–386.

10. Cormen T. H., Leiserson C. E., and Rivest R. L., Introduction
to algorithms. McGraw-Hill, 1990.

11. Coster M. J., Joux A., LaMacchia B. A., Odlyzko A. M.,
Schnorr C. P., and Stern J. Computational Complexity, 1992,
No. 2, 111–128.

12. Crandall R. E. Math. Comp., 1978, v. 32, 1281–1292.

13. Derbyshire J. Prime obsession. Joseph Henry Press, 2003.

14. Dombrowski K. Progress in Physics, 2005, v. 1, 65–67.

15. Feinstein C. A. arXiv: cs/0310060.

16. Feinstein C. A. arXiv: math/0312309.

17. Good I. J. and Churchhouse R. F. Math. Comp., 1968, v. 22,
857–861.

18. Grier D. A. When computers were human. Princeton University
Press, 2005.

19. Grover L. K. Proc. 28th Annual ACM Symp. on the Theory of
Computing, May 1996, 212–219.

20. Guy R. K. Unsolved problems in number theory. 3rd ed., New
York, Springer-Verlag, 2004.

21. Horowitz E. and Sahni S. Journal of the ACM, 1974, v. 2l,
No. 2, 277–292.

22. Impagliazzo R. and Wigderson A. Proc. of the Twenty-Ninth
Annual ACM Symp. on Theory of Computing, 1997, 220–229.

23. Lagarias J. C. Amer. Math. Monthly, 1985, v. 92, 3–23. Repr. in:
Conf. on Organic Math., Canad. Math. Soc. Conf. Proc., v. 20,
1997, 305–331; http://www.cecm.sfu.ca/organics/papers.

24. Lagarias J. C. arXiv: math/0309224.

25. Levin L. A. Probl. Inform. Transmis., 2003, v. 39(1), 92–103.

26. Menezes A., van Oorschot P., and Vanstone S. Handbook of
applied cryptography. CRC Press, 1996.

27. Odlyzko A. M. Math. of Computation 1943-1993, W. Gautschi
(ed.), AMS, Proc. Symp. Appl. Math., v. 48, 1994, 451–463.

28. Odlyzko A. M. Cryptol. and Comput. Num. Theory, C. Pome-
rance (ed.), AMS, Proc. Symp. Appl. Math., 1990, v. 42, 75–88.

29. Odlyzko A.M. Supercomputing’89, Conf. Proc., L.P. Kartashev
and S.I. Kartashev (eds.), Int. Supercomp. Inst., 1989, 348–352.

30. Papadimitriou C. H. and Steiglitz K. Combinatorial optimi-
zation: Algorithms and complexity. Prentice-Hall, Englewood
Cliffs, NJ, 1982.

31. Pugh G. R. Master’s thesis, Univ. of British Columbia, 1998.

32. Rao M. and Stetkaer H. Complex analysis. World Sci., 1991.

33. Roosendaal E. http://personal.computrain.nl/eric/wondrous/.

34. Shackleford M. W. Actuarial Note 139, Social Security Ad-
min., May 1998; http://www.ssa.gov/OACT/babynames/.

35. Shor P. Proc. 35th Ann. Symp. on Found. of Computer Sci.,
Santa Fe, NM, USA, 1994, IEEE Comp. Soc. Press, 124–134.

36. Sloane N.J.A. Online Enc. of Integer Seq., No. A000375, 2005.

37. Weisstein E. W. Fermat’s last theorem. Concise Enc. of Math.,
2nd ed., CRC Press, Boca Raton (FL), 2003, 1024–1027.

38. Weisstein E. W. Riemann Hypothesis. Ibid., 2550–2551.

39. Wilf H. S. Inform. Proc. Lett., 1984, v. 18, 119–122.

40. Woeginger G. J. Lecture Notes in Computer Sci., Springer-
Verlag Heidelberg, 2003, v. 2570, 185–207.

41. Wolfram S. Phys. Rev. Lett., 1985, v. 54, 735–738.

42. Wolfram S. A new kind of science. Wolfram Media, Cham-
paign, IL, 2002.

43. Zach R. arXiv: math/0508572.

42 C. A. Feinstein. Complexity Science for Simpletons

