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Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?
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In the present paper an attempt is made to develop a fractional integral and differen-
tial, deterministic and projective method based on the assumption of the essential
discontinuity observed in real systems (note that more than 99% of the volume occupied
by an atom in real space has no matter). The differential treatment assumes continuous
behaviour (in the form of averaging over the recent past of the system) to predict the
future time evolution, such that the real history of the system is “forgotten”. So it
is easy to understand how problems such as unpredictability (chaos) arise for many
dynamical systems, as well as the great difficulty to connecting Quantum Mechanics
(a probabilistic differential theory) with General Relativity (a deterministic differential
theory). I focus here on showing how the present theory can throw light on crucial
astrophysical problems like dark matter and dark energy.

1 Introduction

In 1999 I published [1] the preliminaries of a new theory: the
General Interactivity. It was a sketched presentation of the
mathematical basis of the theory, i. e. the fractional integral
treatment of time evolution. In the present paper we extend
the ideas of General Interactivity to the fractional derivatives,
and so we can explain the outer flatness of rotation curves,
last measures of SN Ia at high redshifts, the fluctuations in
the CMB radiation and the classical cosmology theory.

In 1933 Zwicky [2] found that the Coma cluster of
galaxies ought to contain more matter than is inferred from
optical observations: many of the thousands of galaxies in
the cluster move at speeds faster than the escape velocity
expected from the amount of visible matter and from the
Newton theory of gravitation. In the 1970’s, many authors
discovered that the speed of stars and clouds of hydrogen
atoms rotating in a galactic disk is nearly constant all the
way out to the edge of the galaxy [3, 4]. Using Newton’s
law of gravitation, this implied that the amount of matter at
increasing radius is not falling away, against the observed
star-light suggests. Over past two decades, the measured
deflection of light from a distant star by a massive object
like a galaxy (gravitational lens) points to a mass-to-light
ratio for the lensing galaxies of about 150, and yet if galaxies
contained only observed stars the expected value would be
between 5 and 10 [5]. From the observed cosmic micro-
wave background (CMB, the relic radiation of the Big Bang
that fills the Universe) fluctuations, we need that 23% of
the Universe is dark matter, and 73% is dark energy
[6, 7, 8, 9, 10]. Recent observations of SN Ia brightness show
that the expansion of the Universe has been speeding up.
This unexpected acceleration is also ascribed to an amount
of dark energy that is very similar than 73% of the Uni-
verse [11].

In Section 2 we show a review of the theory, in Section 3

we apply the theory to account for the observed dark matter
and dark energy, and in Section 4 we develop the conclusions.

2 The model

I start from two hypothesis: (1) the irreversibility in time
of natural systems and (2) the interactivity among all the
systems in the Universe. These hypotheses imply an intricate,
unsettled and discontinuous (and hence non-differentiable)
space-time. The differential treatment projects a variable
X(t), whose value is known at a time t, to a successive
time, t+Δt, through the assumption of a knowledge of
their time derivative, X ′(t), as follows: X(t+Δt)=X(t)+
+X ′(t)Δt. In many cases, to a good approximation, there
is proportionality between X(t) and X ′(t) so that X ′(t) ∝
X(t+Δt). Here I extend this projection, but with two crucial
modifications: (a) I project a complete distribution of real
values (a set of measured values ordered in time) instead
of individual values at one time, and (b) I generalize the
derivative to the Liouville fractional derivative (to take into
account the possibility of the discontinuous space-time of
the system under study). This then gives the fundamental
equation of the new dynamics:

d
β
FRAC

dt
X(tpast) ∝ X(tfuture) . (1)

X(tpast) being a table of values of the variable X until
the present time, X(tfuture) the same number of values of
X but from the present time to the future (a projection), and
β a value between 0 and 1 that includes the key information
about the history of the system.

But for more physical sense, one must take the inverse
of equation (1), i. e.

X(tpast) ∝
1

Γ(β)

∫ T

tpast

X(tfuture)

(tpast − tfuture)1−β
dtfuture (2)
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which is the fractional integration (or the Riemann-Liouville
integral) of X(tfuture), T being a time-period characteristic
of each system. The first hypothesis, irreversibility, suggests
the necessity of projecting the values of X(t), weighted
by a function of time that must be similar to the function
characteristic of critical points, such as observed in the well
known irreversible phase transitions in Thermodynamics; for
example, the form (TE − TEC)−0.64 for the time correlation
length of an infinite set of spins with a temperature TE near
the critical temperature TEC [12]. Compare this with the term
(tpast − tfuture)β−1 in equation (2). I call this weighting
“generalized inertia”; it is characteristic of each system in
the sense of incorporating into the β exponent the history of
all the interactions suffered by the system, including those
interactions avoided by the differential approximation (high
order terms in Taylor expansions) due to its small values.

To use the fundamental equation (1) with maximum effi-
ciency, I invert equation (2) because this is an Abel integral
transform, and there is a technique developed by Simmoneau
et al. [13] to optimize the inversion of Abel transforms. This
technique consists in making a spectral expansion using a
special kind of polynomials whose coefficients are obtained
by means of numerical integration, thus avoiding the basic
problem of amplification of the errors, a problem inherent
in numerical differentiation; in the technique of Simmoneau
et al., measurement errors are incorporated into the coeffi-
cients of the spectral expansion and then propagate with time
without being amplified.

In the present context one can see the time as a critical
variable, each “present” being an origin of time coordinates,
with two time dimensions: the past and the future. We should
note that in Quantum Mechanics two independent wave func-
tions are needed (the real part and the imaginary part of the
total wave function) to describe the state of a system at each
moment in time.

One can view General Interactivity as a third approxima-
tion to reality: the first was the conception of continuous and
flat space-time by Newton, the second was that of continuous
and curved space-time by Einstein. Here I see a discontinuous
space-time whose degree of intricacy measures the essential
cause of changing. As in Newtonian Dynamics, where the
forces are the causes of changing, and in General Relativity,
where modifications of the metric of space-time are the
cause of changes in the motion of all massive systems, in
General Interactivity the exponent β gives us a measure
of the intricacy of the space-time “seen” by each system
through a given variable X. But how can we see Gravity
from the new point of view of General Interactivity? From
(differential) Potential Theory we know that the modulus of
the gravity force per unit mass is the following function of
mass distribution, ρ(x), in space:

FG(x) = G

∫
ρ(x′)

|x′ − x|2
d3x′ (3)

and, comparing with the three-dimensional fractional integra-
tion of ρ(x) we have:

Rβ
[
ρ(x)

]
= πβ−

π
2
Γ
(
3−β
2

)

Γ
(
β
2

)
∫

ρ(x′)

|x− x′|3−β
d3x′; (4)

FG(x) can be identified with the 1-integral of ρ(x) in three-
dimensional space (β=1) except for a constant. So in the
present context the gravity force can be interpreted as a one-
dimensional projection of the three-dimensional continuous
distribution of matter. It is not, then, a complete integral (this
would be β=3) and so the sum (integral) for obtaining the
gravity is more intricate than the mass distribution (contin-
uous by definition), i. e. the real discontinuity of mass distrib-
utions is transferred to the fractional integral instead of
working with a discontinuous ρ(x). Gravity, like the electro-
static force, whose expression is very similar to FG(x),
is seen as an inertial reaction of space-time, which would
tend to its initial (less intricate,i. e. simpler) state, towards a
structure in which the masses were all held together without
relative motions; both forces are seen as reactions against the
action of progressive intricacy in the general expansion of
the Universe following the Big Bang.

We take the total mass-energy of the Universe as the
observable magnitude X(t) to evolve in time using Eq. (2).
The constancy of this variable gives 1 = 1

β2
(T 2 − t2past)

β

(where I take squared variables for simplicity in the use of
Simmoneau et al.’s inversion technique). The greater past-
time variable, tpast, less β indicating that the space-time is
more intricate with time; this is the reason for integrating
more fractionally (less β). So the parameter β can also be
considered as a measure of the entropy of the Universe.

Another key to understand General Interactivity comes
from the classical Gaussian and Planckian distribution func-
tions, to which real systems in equilibrium tend. The equi-
librium distribution function for systems of particles, for col-
lisional and for collisionless systems (in the non-degenerate
limit [14]) is Gaussian; classical Brownian motion is an ex-
ample [15]; the equilibrium distribution function for systems
of waves is a Planckian, and a key example is blackbody
radiation. If both distribution functions evolve in time, then,
using the inversion of equation (2), we have the same final
result: the Planckian distribution. This tells us that whatever
the initial distribution at the beginning of the Big Bang (per-
haps both the Planckian characteristic of interacting waves
and the Gaussian characteristic of interacting particles co-
existed), their time evolution leads to a Planckian distribu-
tion, thereby connecting with the actual observed spectrum
of the Cosmic Microwave Background, which appears to be
almost perfectly Planckian.

But, why is the Planckian more stable than the Gaussian
with the passing of time? The answer I propose is that suc-
cessive critical transitions (at each time), due to the complex-
ity caused by interactions at large distances, tend to amplify
the Gaussian distribution to all range of energies, making it
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flatter. This breaks the thermal homogeneity because of the
very different time evolution of many regions, due to the
delay in the transmission of information from any one zone
to others that are far away (note that the speed of the light
is a constant). This amplification goes preferentially to high
energies because there is no limit, in contrast with lower
energies, for which the limit is the vacuum energy.

In this context, then, the Universe is seen as an expansion
of objects that emitting information (electromagnetic waves)
in all directions, and one can differentiate between two basic
kinds of interactions: (a) at small distances (the distance
travelled by light during a time that is characteristic of
each system) forming coupled systems showing macroscopic
(ensemble) characteristics, such as temperature or density,
well differentiated from those of their surroundings; and
(b) at large distances, interfering one system from another in a
complex manner due to the permanent change in the relative
distances due to the constancy of the speed of light, the
huge number of interactions and the internal variation of the
sources themselves. Note that this distinction between small
and large distances can be extended relative to each physical
system. For instance, a cloud of water vapour (as in the
Earth’s atmosphere) constitutes a system of water molecules
interacting over short distances, while the interaction between
one cloud and another is considered to take place over a large
distance. Inside a galaxy, the stars in a cluster are considered
to interact over short distances, while the interactions between
that cluster and the remaining stars and gas clouds in the
galaxy are considered as interactions over large distances.

In General Relativity there are no point objects; instead,
all the objects in Nature are considered as systems of other
objects, even subatomic particles appearing to be composed
of others yet smaller.

I now focus on one of the most puzzling interpretations of
Quantum Mechanics: the wave-particle duality. In Quantum
Mechanics the objects under study show a double behaviour
depending on what type of experiment one makes. An elect-
ron behaves as a particle in collisions with other electrons,
but the same electron passing through two gaps (enough
small and enough near each other) behaves as a wave in
that the outcoming electrons form an interference pattern.
In General Interactivity each “particle” is considered as a
system, and we know that the equilibrium distribution of
random particles is Gaussian, and that after the time evolution
given by Eq. (2) the distribution transforms into a Planckian
(the interaction with the other systems “drives” the random
set of particles) which is the distribution to which a set of
interacting waves in a cavity naturally tend. Furthermore,
the Planckian can be decomposed into a set of Gaussians,
so that the double nature of matter/energy is ensured. The
fact that a Planckian can be the result of the addition of
Gaussians of different centres and amplitudes is interpreted
as the Planckian representing an ensemble of random motions
in turn represented by Gaussians, which find a series of walls

to which resulting in certain reflexion and certain absorption.
As already demonstrated [15], both processes, reflexion and
absorption by a barrier, are equivalent to the addition and the
subtraction, respectively, of two Gaussians: the main Gaus-
sian and that which emerge as a consequence of the barrier
(by displacing its centre to the other side of the barrier). A
Gaussian, then, converts into a set of several other Gaussians
at progressively smaller amplitudes as a consequence of the
existence of barriers, and the envelope is a Planckian. There
is a partial reflection at each barrier in the direction of higher
energies, while the reflection is total to the lower energies and
the absorption of unreflected part must be added to the left
of the barrier. This argument can be applied to explain the
Planckian distribution observed in the Cosmic Microwave
Background Radiation: the energy barriers can be thought of
as the consequence of the existence of wrinkles in space-time,
caused by the finiteness of the Universe (closed box) and the
uncoupled expansion of the content with respect to the box,
or by breaking of the expansion because of the collision of
the outer parts with another medium, or by the succession of
several bangs at the beginning, instead of only one bang.

3 Dark Matter and Dark Energy

Another example of application of this theory is the generali-
zation of one of the most important theorems in Field Theory,
Gauss’s theorem, leading to a possible solution (as a kind of
Modified Newtonian Dynamics theory) of the well known
problem of the “lost mass” of the Universe and its associated
problem of “dark matter” [16]. Assuming the well known
observation of the infinitesimal volume occupied by matter
relative to holes in Nature (the nucleus of an atom occupy less
than 1% of the atom’s volume, and gas clouds in the inter-
stellar medium have densities of 1 atom per cubic centimeter
or less), one must consider the possibility of relaxing the con-
tinuum hypothesis. The Gauss’s theorem can be expressed,
simplified and for the gravitational field, as

∫

S

gNdS = −4πGM , (5)

where gN is the intensity of the gravity field over a closed
surface, S, which contains the mass, M , which is the origin
of the field, on the assumption of continuity, and G is the uni-
versal gravity constant. So, integrating Eq. (5) on the assump-
tion of gN ' constant over S, we get gN =−4πGM/S, with
S =

∫
S
dS. If we take as the starting point the differential

form of Gauss theorem, and then we take in Eq. (5) the frac-
tional, instead of the full, integral and also assume g' const,
we have

g(r) =
−4πGM

πβ−1Γ( 2−β2 )
Γ( β2 )

∫
S

dX
|S−X|2−β

. (6)

Because β is less than 2, g is greater than gN , and this
result could explain the observational fact of gN being very
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Fig. 1: Rotation curve (kms−1) for NGC3198. Crosses are observ-
ational data points taken from van Albada et al. [17]. Full line is the
prediction of the present theory, and dashed line is the prediction
by the Newton law of gravitation.

small in explaining, for instance, many galactic rotation
curves far from the central regions. For, assuming spherical
simetry one has:

g(r) = gN
4πr2

πβ−1Γ( 2−β2 )
Γ( β2 )

∫ 2π
0

2πr2 sin θdθ
r2−β

. (7)

And taking β=1 one has g(r)= gNr, which introduced
in the classical centrifugal equilibrium identity V 2

r = g leads
to the amazingly V =(GM)1/2' constant as is observed for
flat rotation curves that needs dark matter (see Fig. 1).

More complicated treatment can be made: in the integral
treatment one can consider the basic constituents of matter
(the atoms) and the infinitesimal size of the volume occupied
by the atomic mass (the nucleus) with respect to the size
of the atom, and then one finds the necessity of take into
account that ubiquitous nature of the big holes existing inside
the matter (the atoms and molecules inside the very low
density galactic gas clouds amplify the hole effect respect
to the whole cloud and then amplify the influence in the
macroscopic gravitational (massive) behaviour). So one can
consider the hypothesis of continuity as a first approximation,
and one can re-examine the Gauss’ theorem

∫

S

gdS = −4πG
∫

V

ρdV , (8)

where g is the gravitational field over the surface S, S is
any closed surface containing the massive object which is
the source of the field, G is the gravitational constant, ρ

is the density, and V is the volume contained within the
surface S. And one can generalize Eq. (5) in the sense of take
both integrals as fractional integrals (α and β respectively)
which leads to normal integrals for some especial case. If
one assumes, for simplicity, spherical symmetry for the gas
mass distribution in the galaxy, one has:

ρ = ρ0 e
−(r−r0)

r′ (9)

and assuming g' constant over the now non-necessary conti-
nue surface (the fractional integration takes this into account)
one has:

g = −
16π2Gρ0C2(β)

f(α)r2C1(α)
r2−α

∫
r2rβ−3e−

r−r0
r′ dr , (10)

where f(α) is some function of α,

C2(β) = π
β−3/2Γ

(
3−β
2

)

Γ
(
β
2

) , (11)

C1(α) = π
α−1Γ

(
2−α
2

)

Γ
(
α
2

) , (12)

while

gN = −
4πGρ0
r2

∫
r2e−

r−r0
r′ dr . (13)

So, in the especial case when β = 3 and α = 2 we have
g = gN . Then, expanding rβ−3' 1+(β−3) log r+ . . . as
β→ 3 and r2−α' 1−(α−2) log r+ . . . as α→ 2, and in-
cluding the expansions into Eq. (13) one has

g '
8πC2(β)

f(α)C1(α)

(
1− (α− 2) log r

)
×

×

(

gN −
4πGρ0
r2

∫
(β − 3)(log r)r2e−

r−r0
r′ dr

)

.

(14)

And integrating by parts and taking very large values for
r, we have

g ' gN
8πC2(β)

f(α)C1(α)

(
1 + (α− 2)(3− β) log 2r

)
. (15)

And for typical values of observed flat rotation curves
(5kpc 6 r 6 20kpc) we have that g∝ gNr represents a good
approximation. So, for certain values of α and β (α less than
2 and β greater than 3) one has that outer rotation curves can
be flat as observed.

But the most puzzling problem up-to-date in cosmology
is the necessity of adding “ad hoc” a dark energy or negative
pressure (the so called by Einstein cosmological constant)
to the main equation of General Relativity to account for
the last measures on supernovae Ia and the fluctuations in
the cosmic microwave background radiation which implies
a flat accelerating expanding universe. The field equation
of General Relativity was formulated by Einstein as the
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generalization of the classic Poisson equation which relates
the second derivative of the potential φ associated to the
gravitational field with the assumed continuous mass distrib-
ution represented by the volume density ρ:

Δ2φ+ 4πGρ = 0 . (16)

For comparison, the similar equation in General Rela-
tivity, which relates the mass and energy distribution with
the differential changes in the geometry of the continuum
space-time, is (see e. g. Einstein [18]):

(

Rμν −
1

2
gμνR

)

+ κTμν = 0 . (17)

But for the last equation be coherent with the last inde-
pendent measures of SN Ia and fluctuations of CMB radia-
tion, we need to add a term gμνΛ to the left side of equation
which represents near 73% of all the other terms. This prob-
lem is avoided naturally if we consider a discontinuous
space-time, and then we re-formulate the equations by using
the fractional derivative instead the full derivative. In that
case, the second derivative is less than the full derivative,
and then the cosmological constant is not needed at all to
equilibrate the equations. In fact the μ-fractional derivative
of the function rλ is given by [19]:

Dμrλ =
Γ(λ+ 1)

Γ(λ− μ+ 1)
rλ−μ (18)

for λ greater than −1, μ greater than 0. But as λ→−1,
rλ→∝φ being φ the gravitational potential. And as one can
see, taken a fixed value of λ, as μ increase, the μ-derivative
decrease. Or to be more precise, if we assume that the con-
stant to be added to the left side of Eq. (17) represents the
73% of all the matter and energy in the Universe, one has:

lim
λ→−1

Γ(λ− μ+ 1)R−λ−2

Γ(λ− 2 + 1)R−λ−μ
' 1.73 , (19)

where R is a characteristic scale-length of the Universe.
And the relation (19) works for values of μ greater but
very near 2, being 2 the value corresponding to the usual
second derivative. So we conclude that taking a value, for
the derivatives in the field equations, slightly greater than
the usual 2, we are able of include the cosmological constant
inside the new fractional derivative of the classical field
equations.

4 Conclusions

The new theory of the General Interactivity can be applied
to many fields of natural science and constitutes a new step
forward in the approximation to the real behaviour of Nature.
It assumes the necessity of explicitly taking into account
the real history of a system and projecting to the future.

However, it also takes into account the non-uniformity of the
distribution of holes in the Nature and is therefore a theory
of discontinuity. The new theory can account for naturally
the needed amounts of dark matter and dark energy as a light
modification of classical field equations.
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