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We discuss a recently predicted mechanism whereby energy is produced by the back-
ground space non-holonomic field (the global space rotation) in Thomson dispersion
of light in free electrons. We compare the mechanism to the relations of observational
astrophysics — the mass-luminosity relation and the stellar energy relation. We show
that by such a mechanism generating energy in a star, the luminosity of a star L is
proportional to its volume, with a progression associated with increasing radius. The
obtained relation L∼R3.4 explains why there are no stars of a size close to that of the
bulky planets. This also explains the extremely high thermal flow from within Jupiter,
which most probably has the same energy sources as those within a star, but with a
power much less than that required to radiate like a star. The theory, being applied to
a laboratory condition, suggests new energy sources, working much more effectively
and safely than nuclear energy.

1 The mechanism that generates energy in stars

By way of introduction, a brief account of my theory of the
mechanism producing energy in stars [1] built within the
framework of General Relativity, is presented. Then, in the
next section, we analyse consequences of the theory in com-
parison with the correlations of observational astrophysics.

Given a non-holonomic space∗, time lines piercing the
spatial section (our proper three-dimensional space) are not
orthogonal to the spatial section therein, which manifests
as the three-dimensional space rotation. If all time lines
have the same inclination to the spatial section at each of
its points, there is a field of the background space non-
holonomity. Such a non-holonomic background field, if per-
turbed by a local rotation, can produce a force and energy
flow in order to compensate for the perturbation in itself.
Such a force and energy flow were deduced on the basis
of the equations of motion in a non-holonomic space: they
manifest as additions to the total force Ф i

(0) driving a par-
ticle and the total power W(0) spent on the motion
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where v̄i is the constant linear velocity of the background
space rotation, while v̄i is the linear velocity of a local rota-
tion perturbing the background. As obtained within the fra-
mework of General Relativity [1], the value of v̄i is the fun-
damental constant v̄= 2.187 671×108 cm/sec connected to the
value v̄ = v̄

2π = 3.481787×107 cm/sec of a dipole-fit velocity
v̄i characterizing the anisotropy of the rotating background
(which is similar to a global gyro). The analytical value v̄ is

∗A four-dimensional pseudo-Riemannian space, which is the basic
space-time of General Relativity.

in close agreement with the dipole-fit velocity 365±18km/sec
extracted from the recently discovered anisotropy of the Cos-
mic Microwave Background Radiation.

Such an additional factor should appear in Thomson dis-
persion of light in free electrons in stars. When a light wave
of average energy density B encounters a free electron, the
flow of the wave energy cσB is stopped in the electron’s
square σ= 6.65×10−25 cm2 (the Thomson square of disper-
sion). As a result the electron gains an acceleration σB,
directed orthogonally to the wave front. With this process the
electron oscillates in the plane of the wave at the frequency ω
of the wave’s electric strength Ei oscillating in the plane. Let
the wave travel in the x1-direction, so E2=E, E1=E3=0.
The oscillation equation gives the linear velocity ṽi of the
local space rotation, caused by the oscillating electron,

ṽ2 =
eE

meω
, ṽ1 = 0 , ṽ3 = 0 . (3)

Because the density of energy in an isotropic electro-
magnetic field is B= 1

4πEiE
i, the additional force and the

power produced in the Thomson process by the global non-
holonomic background should be
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so the output of energy ε produced by the non-holonomic
background in the process (within one cm3 per second) is

ε =
ṽ

v̄
cneσB =

cσe
√
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neB
3/2

ω
. (6)

In other words, our equation (6) is the formula for stellar
energy. The factor cσe

√
4π

me v̄
is constant, while the second fac-
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Fig. 1: Diagram of stellar energy: the productivity of stellar energy
sources. The abscissa is the logarithm of the density of matter, the
ordinate is the logarithm of the radiant energy density (both are
taken at the centre of stars in multiples of the corresponding values
at the centre of the Sun). Reproduced from [2]. Stars in the diagram
are distributed along a straight line that runs from the right upper
region to the left lower region, with a ball-like concentration at
the centre of the diagram. The equation of the main direction is
B
ne
= 1.4×10−11 erg (ne is the concentration of free electrons).

tor depends mainly on the radiant energy density B in a star∗.
Given the frequency ν= ω

2π ≈ 5×1014 Hz (by the spectr-
al class of the Sun), ṽ reaches the background space rotation
v̄' 2.2×108 cm/sec (so the additional energy flow fully com-
pensates for the radiation) at B= 1.4×1011 erg/cm3, which is
close to the average value of B in the Sun. The theoretical
result coincides with the phenomenological data [2] by which
energy is generated throughout the whole volume of a star
with some concentration at the centre (in contrast to thermo-
nuclear reactions working exclusively in the central region).

Besides the main direction B
ne
= const, along which stars

are distributed in the stellar energy diagram, Fig. 1 testifies
that the power of a mechanism that generates energy in stars
is regulated by the density of radiant energy, i. e. by the
energy loss by radiation. So the real mechanism producing
stellar energy works similar to a self-regulated machine and
is independent of the inner resources reserved in stars.

Our formula for stellar energy (6) satisfies this condition,
because the energy output is regulated by the radiant energy
density B. So a mechanism that works by formula (6) at
an oscillation velocity ṽ close to v̄' 2.2×108 cm/sec behaves
as an universal self-regulating generator of energy: the out-

∗And, to a much smaller extent, on ω, which has changes within 1
order of magnitude along the whole range of the spectral classes of stars.

Fig. 2: The mass-luminosity relation. Here points are visual binar-
ies, circles are spectral-binaries and eclipse variable stars, crosses
are stars in Giades, squares are white dwarfs, the crossed circle is
the satellite of ε Aurigae. Reproduced from [2].

put of energy ε the non-holonomic background produces in
order to compensate for a perturbation ṽ in itself is regulated
by the density of radiant energy B in the system, while the
perturbation in the background ṽ= e

√
4π

me v̄

√
B
ω is caused by

the oscillation of free electrons, also regulated by the radiant
energy density B. If the average oscillation velocity of elec-
trons ṽ in a star becomes larger than that of the background
v̄' 2.2×108 cm/sec, temperature increases, and so the star ex-
pands until a new state of thermal equilibrium is reached,
with a larger luminosity that compensates for the increased
generation of energy within. If the average oscillation vel-
ocity of electrons becomes less than v̄' 2.2×108 cm/sec, the
star contracts until a new thermal equilibrium with lower
luminosity is attained.

If there were no other active factors slowly discharging
the inner resources of a star (e. g. nuclear transformations of
a different kind, etc), such a mechanism could generate stel-
lar energy eternally, keeping stars in a stable radiating state.

2 Comparing the theory of stellar energy to observa-
tional data. The “volume-luminosity” correlation

We now analyse the implications of our formula (6) for
stellar energy in comparison to the phenomenological data of
observational astrophysics: the stellar energy relation (Fig. 1)
and the mass-luminosity relation (Fig. 2).

We consider characteristics of a star in multiples of the
corresponding values of the parameters for the Sun. We
therefore operate with dimensionless characteristics: mass
M̄ = M

M�
, radius R̄= R

R�
, luminosity L̄= L

L�
, productivity

of energy ε̄= ε
ε�

, etc. Using this notation, our formula (6)
for stellar energy takes the form

ε̄ =
n̄eB̄

3/2

ω̄
' n̄eB̄

3/2, (7)
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or, considering the hydrogen constitution of most stars, so
that ne=

ρ
mp

(i. e. n̄e= ρ̄ ),

ε̄ =
ρ̄ B̄3/2

ω̄
' ρ̄ B̄3/2. (8)

By the stellar energy relation B
ne
= const from the stellar

energy diagram (see Fig. 1), we have B̄= n̄e= ρ̄ throughout
the whole range of stars. We can therefore write the stellar
energy formula (8) in the final form

ε̄ = ρ̄ B̄3/2 = B̄5/2. (9)

By the data of observational astrophysics, stars obey
the principles of an ideal gas, except for the white dwarfs
wherein the gas is in a state on the boundary of degeneration.
We therefore obtain by the equation for an ideal gas p= <Tρ

μ
(where < is Clapeyron’s constant, μ is the molecular weight),
p̄= T̄ ρ̄

μ̄ , or, with a similar molecular composition throughout

the whole range of stars, p̄= T̄ ρ̄. The gaseous pressure p is
determined by the state of mechanical equilibrium in a star,
according to which the pressure from within is equal to the
pressure of a column of the star’s contents, so we obtain
p̄= M̄

R̄2
ρ̄ R̄= M̄

R̄2
M̄
R̄3
R̄= M̄2

R̄4
. Therefore the density of radi-

ant energy in a star is B̄= T̄ 4= M̄4

R̄4
. So the stellar energy

formula takes the final form,

ε̄ = B̄5/2 =
M̄10

R̄10
. (10)

We analyze this result, taking the mass-luminosity rela-
tion into account. According to well verified data of observ-
ational astrophysics, stars satisfy the mass-luminosity rela-
tion L̄= M̄ 10/3' M̄3.3 (see Fig. 2). The relation L̄= M̄3

can be deduced from theory. Here is how. Thermal equi-
librium in a star is characterized by the equation [2]

ε = −
c

κρ

dB

dr
, (11)

which means that the flow of energy generated in a star
is balanced by the flow of radiant energy therein (κ is the
coefficient of absorption). In other words, this formula is the
condition of energy drainage in a star — the condition of
radiation. From this formula we have, for stars of approxi-
mately the same chemical composition,

ε̄=
B̄

ρ̄R̄
=
M̄3

R̄2
, (12)

and hence, because the luminosity of a star is L̄= ε̄R̄2, we
obtain the mass-luminosity relation L̄= M̄3.

As a matter of fact, ε determined by the energy drainage
condition in a star should coincide with ε determined by the
mechanism producing stellar energy — an energy production
condition. In our theory of stellar energy, such an energy
production condition is represented by the stellar energy for-

Fig. 3: Diagram of “mass–radius” devised by N. A. Kozyrev, the
famous astronomer and experimental physicist, in the late 1970’s.
The arcs are isoergs of stellar matter. (Courtesy of V. V. Nassonov,
Kozyrev’s assistant, who had frequent meetings with the author in
1984–1985.)

mula ε̄= n̄eB̄
3/2= ρ̄ B̄3/2= B̄5/2.

We therefore substitute the observed mass-luminosity re-
lation L̄ = M̄ 10/3 and the theoretical relation L̄ = M̄3 into
our formula for stellar energy reduced to the absolute mass
and radius of a star ε̄= B̄5/2= M̄10

R̄10
(10). Because L̄= ε̄R̄2,

our formula for stellar energy, in common with the observed
mass-luminosity relation L̄= M̄ 10/3, gives

L̄ = R̄4, (13)

while with the theoretical relation L̄= M̄3 our formula gives
a slightly smaller exponent,

L̄ = R̄3.4. (14)

In other words, for both the observed and theoretical mass-
luminosity relation, our formula for stellar energy says that,

On the basis of stellar energy being generated by the
background space non-holonomity field, in Thomson
dispersion of light in free electrons, the luminosity
L of a star is proportional to its volume V = 4

3
πR3,

with a small progression with an increase of radius.
We will refer to the newly discovered correlation as
the volume-luminosity relation.

The predicted volume-luminosity relation L̄= R̄4–R̄3.4

is derived from the condition of energy production by the
non-holonomic space background in Thomson dispersion of
light in stars (our theory of stellar energy). If such a correla-
tion (the condition of energy production) is true, the correla-
tion, in common with the energy drainage condition (the
mass-luminosity relation L̄= M̄ 3–M̄ 10/3), should produce
another correlation; mass-radius M̄ = R̄1.1–R̄1.2. Fig. 3
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shows a diagram devised by Kozyrev in the 1970’s on the
basis of observational data, along with many other diagrams
within the framework of his extensive phenomenological
research into stellar energy and the internal constitution of
stars. As seen from the diagram, stars are distributed along
the average direction M̄ ∼ R̄, which perfectly verifies the
expected correlation M̄ = R̄1.1–R̄1.2 predicted on the basis
of our formula for stellar energy. Hence the relation M̄ ∼ R̄
verifies as well the whole theory of the stellar energy mech-
anism we have built here and in [1].

The deduced volume-luminosity relation clearly depends
upon the chemical composition of stars. Naturally, because
the gravitational pressure in a star p̄= M̄

R̄2
ρ̄ R̄= M̄2

R̄4
is bal-

anced by the gaseous pressure calculated by the equation for
an ideal gas p̄= T̄ ρ̄

μ̄ , we have B̄= T̄ 4= μ̄4 M̄
4

R̄4
. On the other

hand, Kozyrev has found, from the stellar energy diagram
(Fig. 1), that “The main direction wonderfully traces an
angle of exactly 45◦. Hence, all stars are concentrated along
the line, determined by the equation B∼ρμ4 ” [2]. We there-
fore substitute n̄e= ρ̄ = B̄

μ̄4
and B̄= μ̄4 M̄

4

R̄4
into our initial

formula for stellar energy ε̄= n̄eB̄
3/2 (7). As a result we

obtain the formula for stellar energy in the form, where the
molecular weight of the stellar contents is taken into account,

ε̄ = μ̄6
M̄10

R̄10
, (15)

from which, because L̄= ε̄R̄2, we obtain, with the observed
mass-luminosity relation L̄= M̄ 10/3,

L̄ =
1

μ̄3
R̄4, (16)

while with the theoretical relation L̄= M̄3 our updated for-
mula (8) gives

L̄ =
1

μ̄2.6
R̄3.4. (17)

As is clearly seen, our deduced relation — the proportion-
ality of the luminosity of a star to its volume L∼V ∼R3 — is
inversely proportional to ∼3 orders of the molecular weight
of the gas consisting a star. The greater the molecular weight
of the gaseous contents of a star, the smaller its luminosity
for the same volume. For instance, for a star consisting,
instead of Hydrogen, of Helium or other heavy elements,
the luminosity of such a star should be many times less than
a completely hydrogen star of the same size.

3 The same stellar energy formula applied to brown
dwarfs and the bulky planets

So the mass-luminosity relation L̄= M̄3 is derived from the
energy drainage condition ε̄= B̄

ρ̄R̄
= M̄3

R̄2
. The necessary coin-

cidence with the energy production condition, the stellar en-
ergy formula ε̄= n̄eB̄

3/2= ρ̄ B̄3/2= B̄5/2, gives a new re-
lation between the observable characteristics of stars — the

Table 1: Brown dwarfs

L̄= M̄
10/3

L̄= M̄3 L̄= R̄4 L̄= R̄3.4

L̄= 10−4 M̄ = 0.06 M̄ = 0.05 R̄= 0.1 R̄= 0.07

L̄= 10−5 M̄ = 0.03 M̄ = 0.02 R̄= 0.06 R̄= 0.03

volume-luminosity relation: L̄= R̄3.4 for the theoretical re-
lation L̄= M̄3, or L̄= R̄4 for the observed L̄= M̄10/3.

In this section we shall look at how our stellar energy
formula can be applied to space objects of extremely small
luminosity — recently discovered brown dwarfs, and also the
bulky planets (Jupiter, Saturn, Uranus, and Neptune) whose
radiated energy exceeds that received from the Sun (so they
have their own internal sources of energy).

Brown dwarfs

These have masses M̄ 6 0.08, luminosity L̄= 10−4–10−5,
and temperature at the surface T ≈ 700 K, which determines
their observed brown colour.

Proceeding from the luminosity L̄ of brown dwarfs, we
calculate: (1) their masses M̄ by the mass-luminosity rela-
tion (the energy drainage condition), and also (2) their radii
R̄ by the volume-luminosity relation (the energy production
condition) that characterizes the generation of stellar energy
by the background space non-holonomity in Thomson dis-
persion of light. The results are given in Table 1.

By the observed mass-luminosity relation L̄= M̄10/3, we
obtained the masses in the range M̄ = 0.03–0.06 that satisfies
the masses M̄ 6 0.08 required for stars of such class. Brown
dwarfs therefore satisfy the condition of energy drainage.

The radii of brown dwarfs R̄= 0.06–0.1 we calculated by
the condition of energy production — the volume-luminosity
relation L̄=R̄4 — are within the range of the bulky planets
(from R̄= 0.034 for Uranus to R̄= 0.10 for Jupiter). Hence,
from our calculations we conclude that:

Brown dwarfs are stars of a size similar to Jupiter
or Saturn. Their energy source is the same as that
in stars of other kinds — the background space non-
holonomity that generates energy in Thomson disper-
sion of light in free electrons. However, in contrast
to the bulky planets, the radii of brown dwarfs satisfy
the volume-luminosity relation, so the physical condi-
tions therein are such that the stellar energy mechan-
ism produces enough energy to compensate for the
radiation from the surface.

The bulky planets

By direct measurements made by NASA’s space missions
(Pioneer, Voyager, Galileo, Cassini), the bulky planets have
∼75–90% hydrogen content (see http://www.nasa.gov for
the details). So, because of the huge pressure in the central
region, enough to ionize hydrogen, we propose the same
energy source as that in any star. We can therefore calculate
a table similar to that herein for brown dwarfs.
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Table 2: The bulky planets

R̄ M̄ Teff Tac Beff Bac L̄p L̄= M̄ x L̄= R̄y L̄= R̄4

JUPITER: 0.10 9.5×10−4 125 K 105 K 1.3×104 0.69×104 1.0×10−9 x= 3.0 y= 9.0 R= 4,000 km

SATURN: 0.086 2.9×10−4 95 K 74 K 4.6×103 1.7×103 3.4×10−10 x= 2.7 y= 8.9 R= 3,000 km

URANUS: 0.034 4.4×10−5 57 K 55 K 6.0×102 5.2×102 1.5×10−12 x= 2.7 y= 7.8 R= 770 km

NEPTUNE: 0.036 5.2×10−5 59 K 38 K 6.9×102 1.2×102 1.2×10−11 x= 2.5 y= 7.4 R= 1,300 km

In Table 2 we use the effective temperature Teff and the
temperature Tac acquired from the Sun, determined from the
direct measurements made by the NASA satellites. The proper
luminosity of each planet Lp=4πR2Bp is calculated through
the density of the proper radiant energy Bp=Beff −Bac=
=σ

(
T 4eff −T

4
ac

)
, where σ= 5.67×10−5 erg/cm2

×sec×deg.
As seen from Table 2, the bulky planets have the lumino-

sity L̄= M̄ 2.5–M̄ 3.0. Many stars have a greater deviation
from the average mass-luminosity relation L̄= M̄ 10/3 (see
Fig. 2), than the planets. We therefore conclude that,

The bulky planets satisfy the mass-luminosity rela-
tion, which is the condition of energy drainage, so
they radiate energy similar to stars.

Another result is provided by the volume-luminosity re-
lation L̄∼ R̄y , which characterizes the condition of energy
production. The bulky planets have L̄= R̄7.4–R̄9.0, while
the coincidence of the energy drainage with the energy pro-
duction in stars requires L̄= R̄3.4–R̄4.0. The last column in
Table 2 gives the values of the radii which should result if the
energy loss is completely balanced by the energy produced
within. So the bulky planets would be like stars. As seen, in
such a case the bulky planets would be a bit smaller than the
Earth: Jupiter and Saturn would have a size similar to Mars,
Neptune would be similar to the Moon, while Uranus would
be half the Moon. The obtained result implies that:

The real radii of the bulky planets are so large that the
energy produced within the planets is substantially
less than that radiated from the surface: the planets
are cooling down, in contrast to stars whose tempera-
ture is stable on the average.

So there is no crucial difference between stars and the
bulky planets built on the gaseous contents. Looking at the
evolution of the bulky planets, we see that as soon as the gra-
vitational pressure compresses the planets down to radii sa-
tisfying the volume-luminosity relation L̄= R̄3.4–R̄4.0, the
energy output within the planets becomes balanced by the ra-
diation from the surface, so the planets become stars. In such
a case the density of the planets would become enormous.

Such high densities are conceivable, along the whole
range of known stars, only within white dwarfs, which are
mostly satellites of the most bulky stars. Compare Sirius’
satellite (R̄= 0.025) and Procyon’s satellite (R̄= 0.013),
typical white dwarfs, which have a density ρ ≈ 104. We
there therefore conclude that:

Table 3: The bulky planets, if becoming stars

Radius, R̄ Radius, km Average density

JUPITER: 0.0057 4,000 km 7.1×103 g/cm3

SATURN: 0.0043 3,000 km 5.0×103 g/cm3

URANUS: 0.0011 770 km 4.6×104 g/cm3

NEPTUNE: 0.0019 1,300 km 1.1×104 g/cm3

White dwarfs were formerly bulky planets like Jupiter
and the great jovian planets, which, containing mostly
hydrogen, were compressed by gravitational pressure
to such a state that the energy produced within is the
same as that radiated from the surface.

So Jupiter and the jovian planets are stars in an
early stage of their evolution. As soon as the gravita-
tional pressure compresses each of them to the ap-
propriate radius, they become white dwarfs — star-
satellites of the Sun, so that the solar system becomes
a multiple-star system.

4 A perspective for the new energy source

Accordingly, our theory that stellar energy is generated by
the background space in Thomson dispersion of light in free
electrons is readily verified. All that we need to reproduce
the mechanism is ionized hydrogen: even if the temperature
is much lower than in stars, we should obtain some energy
output if the theory is correct. The ionization energy of a
hydrogen atom is 13.6 eV; suitable equipment is accessible in
even a junior college laboratory. Moreover, proceeding from
the above theory, we can predict additional forces and energy
output produced by the non-holonomic space background in
phenomena other than Thomson dispersion of light. So the
stellar energy theory herein, applied to laboratory conditions,
predicts new energy sources working much more effectively
and safely than nuclear energy.
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