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Using General Relativity we study the rotating space of an orbiting body (of the
Earth in the Galaxy, for example). In such a space Einstein’s equations predict that:
(1) the space cannot be empty; (2) it abhors a vacuum (i. e. a pure λ-field), and so it
must also possess a substantive distribution (e. g. gas, dust, radiations, etc.). In order
for Maxwell’s equations to satisfy Einstein’s equations, it is shown that: (1) a free
electromagnetic field along the trajectory of an orbiting body must be present, by
means of purely magnetic “standing” waves; (2) electromagnetic fields don’t satisfy
the Einstein equations in a region of orbiting space bodies if there is no distribution of
another substance (e. g. dust, gas or something else). The braking energy of a medium
pervading space equals the energy of the space non-holonomic field. The energy
transforms into heat and radiations within stars by a stellar energy mechanism due
to the background space non-holonomity, so a star takes energy for luminosity from
the space during the orbit. Employing this mechanism in an Earth-bound laboratory,
we can obtain a new source of energy due to the fact that the Earth orbits in the
non-holonomic fields of the space.

1 If a body undergoes orbital motion in a space, the
space cannot be empty

This paper extends a study begun in Preferred Spatial Dir-
ections in the Universe: a General Relativity Approach [1].
We considered a space-time described by the metric∗

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2−
2ωr2

c
cdtdϕ−

−

(

1+
2GM

c2r

)

dr2−r2dϕ2−
2ωvr2

c2
dϕdz−dz2,

(1)

where G = 6.67×10−8 cm3

g×sec2 is Newton’s gravitational con-
stant, M is the value of an attracting mass around which
a test-body orbits, ω is the cyclic frequency of the orbital
motion, v is the linear velocity at which the body, in common
with the gravitating mass, moves with respect to the observer
and his references.

In fact, this metric describes (in quasi-Newtonian appro-
ximation) the space along the path of a body which orbits
another body and moves in common with it with respect to
the observer’s reference frame (which determine his physical
reference space), for instance, the motion of the Earth in
the Galaxy. So this metric is applicable to bodies orbiting
anywhere in the Universe.

Here we study, using Einstein’s equations, a space de-
scribed by the metric (1). This approach gives a possibility of
answering this question: does some matter (substance and/or
fields) exist along the trajectory of an orbiting body, and
what is that matter (if present there)?

∗The metric is given in the cylindrical spatial coordinates r, ϕ, z. See
[1] for the reason.

The general covariant Einstein equations are†

Rαβ −
1

2
gαβR = −κTαβ − λ gαβ , (2)

where Rαβ is Ricci’s tensor, gαβ is the fundamental metric
tensor, R is the scalar (Riemannian) curvature, κ = 8πG

c2
=

= 1.86×10−27 cm
g is Einstein’s gravitational constant, Tαβ is

the energy-momentum tensor of a distributed matter, λ is the
so-called cosmological term that describes non-Newtonian
forces of attraction or repulsion‡. A space-time is empty if
Rαβ =0. In this case, R=0, Tαβ =0, λ=0, i. e. no sub-
stance and no λ-fields. A space-time is pervaded by vacuum
if Tαβ =0 but λ 6=0 and hence Rαβ 6=0.

The Einstein equations can be applied to a wide variety
of distributions matter, even inside atomic nuclei. We can
therefore, with the use of the Einstein equations, study the
distribution of matter in any scaled part of the Universe —
from atomic nuclei to clusters of galaxies.

We use the Einstein equations in chronometrically invar-
iant form, i. e. expressed in the terms of physical observed
values (chronometric invariants, by A. Zelmanov [3, 4]). In
such a form, the general covariant equations (2) are repre-
sented by the three sorts of their observable (chronometric-
ally invariant) projections: the projection onto an observer’s

†The space-time (four-dimensional) indices are α, β = 0, 1, 2, 3.
‡Depending upon the sign of λ: λ> 0 stands for repulsion, while

λ< 0 stands for attraction. The cosmological term is also known as the λ-
term. The forces described by λ (known as λ-forces) grow in proportional
to distance and therefore reveal themselves in full at a “cosmological”
distance comparable to the size of the Universe. Because the non-Newtonian
gravitational fields (λ-fields) have never been observed, for our Universe in
general the numerical value of λ is expected to be λ< 10−56 cm−2. Read
Chapter 5 in [2] for the details.
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time line, the mixed (space-time) projection, and the projec-
tion onto the observer’s spatial section [3, 4]

∗∂D

∂t
+DjlD

lj + AjlA
lj + ∗∇jF

j −
1

c2
FjF

j =

= −
κ

2

(
ρc2 + U

)
+ λ̃c2 ;

(3)

∗∇j
(
hijD −Dij − Aij

)
+
2

c2
FjA

ij = κJ i ; (4)

∗∂Dik
∂t

− (Dij + Aij)
(
D
j
k + A

∙j
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)
+DDik −

−DijD
j
k + 3AijA

∙j
k∙ +
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2
(∗∇iFk +
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−
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FiFk − c

2Cik =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λ̃c2hik ,

(5)

where ρ=T00
g00

is the observable density of matter, J i= c T i0√
g00

is

the vector of the observable density of impulse, U ik=c2T ik

is the tensor of the observable density of the impulse flow
(the stress tensor), U=hikU ik. We include λ̃ in the equa-
tions because the metric (1) is applicable at any scale, not
only the cosmological large scale∗.

By the theory of physical observable quantities [3, 4], the
quantities Dik, Fi, Aik and Cik are the observable charact-
eristics of the observer’s reference space: the chr.inv.-tensor
of the rates of the space deformation†

Dik =
1

2

∗∂hik
∂t

, (6)

the chr.inv.-vector of the observable gravitational inertial
force

Fi =
c2

c2 − w

(
∂w

∂xi
−
∂vi
∂t

)

, (7)

the chr.inv.-tensor of the angular velocity of the observable
rotation of the space (the space non-holonomity tensor)

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk − Fkvi) , (8)

where hik=−gik+
g0i g0k
g00

=−gik+ 1
c2
vivk is the observ-

able spatial chr.inv.-metric tensor, vi=−
c g0i√
g00

is the linear
velocity of the rotation of the observer’s space reference,
w= c2(1−

√
g00) is the gravitational potential. The quantity

Cik=h
mn Cimkn is built on the tensor of the observable

three-dimensional chr.inv.-curvature of the space

Cimkn = Himkn −
1

c2
(2AmiDnk + AinDmk+

+ AnmDik + AmkDin + AkiDmn) ,
(9)

∗As probable λ̃∼ 1
R2

, where R is the spatial radius of a given region,
so the larger the size of a considered region, the smaller is λ. See [2].

†The spatial (three-dimensional) indices are i, k = 1, 2, 3.

which possesses all the properties of the Riemann-Christoffel
curvature tensor Rαβγδ in the observer’s spatial section, and
constructed with the use Hlkij =hjmH ∙∙∙m

lki ∙ , where H ∙∙∙m
lki ∙ is

the chr.inv-tensor similar to Schouten’s tensor [5]

H ∙∙∙m
lki ∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
lm , (10)

while Δkij are the observable chr.inv.-Christoffel symbols

Δkij =h
kmΔij ,m =

1

2

( ∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)

. (11)

In the formulae
∗∂
∂xi
= ∂

∂xi
− 1

c2

∗∂
∂t

and
∗∂
∂t
= 1√

g00

∗∂
∂t

are
the chr.inv.-spatial derivative and the chr.inv.-time derivative
respectively, while ∗∇i is the spatial chr.inv.-covariant deriv-
ative, for instance, the chr.inv.-divergence of a chr.inv.-vector

is ∗∇i qi=
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qiΔ

j
ji. See [3, 4] or [2]

for the details.
We have obtained [1] for the metric (1) the non-zero

components of the observable chr.inv.-metric tensor

h11 = 1 +
2GM

c2r
, h22 = r

2

(

1 +
ω2r2

c2

)

,

h23 =
ωr2v

c2
, h33 = 1 ,
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2GM

c2r
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1− ω2r2

c2

r2
,

h23 = −
ωv

c2
, h33 = 1 ,

(12)

nonzero components of F i and Aik

F 1 =

(

ω2r −
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r2

)(

1 +
ω2r2

c2

)

,

A12 =
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
,

(13)

and non-zero components of Cik

C11 = −
GM

c2r3
+
3ω2

c2
, C22 = −

GM

c2r
+
3ω2r2

c2
. (14)

Let’s substitute the components of Fi, Aik, Cik and the
chr.inv.-derivatives into the chr.inv.-Einstein equations (3),
(4), and (5). We obtain

ω2+
GM

r3
+
2ω4r2

c2
−
3ω2GM

c2r
=−

κ

2

(
ρc2+U

)
+λ̃c2 ; (15)

κJ1 = 0; κJ2 =
5ωGM

c2r3
; κJ3 = −

2ω2v

c2
; (16)

3GM

r3
+
6ω4r2

c2
−
ω2GM

c2r
+
6G2M2

c2r4
=

=

[
κ

2

(
ρc2 − U

)
+ λ̃c2

](

1 +
2GM

c2r

)

+ κU11 ;
(17)
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9ω4r4
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κ

2

(
ρc2 − U

)
+ λ̃c2

]

r2
(

1 +
ω2r2
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)

+ κU22 ;
(18)

ω3vr2

c2
−
ωvGM

c2r
=

[
κ

2

(
ρc2−U

)
+ λ̃c2

]
ωvr2

c2
+κU23 ; (19)

κ

2

(
ρc2 − U

)
+ λ̃c2 + κU33 = 0 . (20)

Equations (15–20) are written for an arbitrary energy-
momentum tensor Tαβ . As is well known, the left side of the
Einstein equations must have a positive sign. We therefore
conclude, from the first (scalar) chr.inv.-Einstein equation
(15), that the cosmological term λ̃ must be λ̃> 0. (If λ̃ > 0,
the non-Newtonian λ-force is the force of repulsion). So, in
order to have the metric (1) satisfy the Einstein equations,
we can have only the repulsive non-Newtonian forces in the
given region described by the metric (1).

We express the right side of the general covariant Ein-
stein equations (2) as the algebraic sum of two tensors

κ T̃αβ = κTαβ −
λ̃

κ
gαβ , (21)

where the first tensor describes a substance, while the second
describes vacuum (λ-fields). We assume that the given space
is permeated by only λ-fields, i. e. Tαβ =0. In such a case
the observable components of the energy-momentum tensor
of vacuum are

ρ̃ = −
λ̃

κ
, J̃ i = 0 , Ũ ik =

λ̃c2

κ
. (22)

We see that the observable density of vacuum ρ̃=const
is ρ̃ < 0, if λ̃ > 0 and J̃ i=0. So the λ̃-vacuum is a medium
with a negative constant density, and also no flows of mass
(energy) therein.

We obtain from the the second (vector) chr.inv.-Einstein
equation (16): J1=0, J2 6=0, J3 6=0 (J3< 0), so J i 6=0 in
general. Because J i=0 in vacuum, we conclude that:

Any region of space described by the metric specific-
ally along the trajectory of any orbiting body in the
Universe cannot be pervaded solely by vacuum, but
must also be permeated by another distributed sub-
stance.

Orbital motion is the main kind of motion in the
Universe. We therefore conclude that the space of
the Universe must be non-empty; necessarily filled
by a substance (e. g. gas, dust, radiations, etc.). Being
a direct deduction from the Einstein equations, this
is one more fundamental fact predicted by Einstein’s
General Theory of Relativity.

Naturally, as astronomical observations in recent decades
testify, such substances as gas, dust and radiations are found
in any part of that region of the Universe that is access-
ible by modern astronomical techniques. We therefore aim

to describe the medium pervading space, by means of the
algebraical sum of two energy-momentum tensors

Tαβ = T
(g)

αβ + T
(em)

αβ , (23)

where T (em)

αβ is set up for electromagnetic radiations as in [6],
while T (g)

αβ describes an ideal liquid or gas

T (g)

αβ =
(
ρ(g) −

p

c2

)
bαbβ −

p

c2
gαβ , (24)

where ρ(g) is the observable density of the medium, p is the
pressure within it, while bα= dxα

ds is the four-dimensional ve-
locity of the flow of the medium with respect to the reference
space (reference body). Gas is a medium in which particles
move chaotically with respect to each other, and also with
respect to an observer’s reference space. So a reference space
doesn’t accompany to flow of mass (energy) in the gas.

The observable components of T (g)

αβ are

T00
g00

=
ρ(g) −

p
c2

1−
∗u2

c2

−
p

c2
, J i =

ρ(g) −
p
c2

1−
∗u2

c2

∗ui,

U ik =

(
ρ(g) −

p
c2

)
∗ui∗uk

1−
∗u2

c2

+ phik,

(25)

while the trace of the stress-tensor U ik is

U =

(
ρ(g) −

p
c2

)
∗u2

1−
∗u2

c2

+ 3p , (26)

where ∗ui= dxi

dτ is the three-dimensional observable velocity
of the flow of the medium ( ∗u2= ∗ui

∗ui=hik
∗ui ∗uk ).

A reference frame (space) where the flow stream of a
mass is qi= c2J i 6=0, doesn’t accompany the medium. As
seen from (16) and (25), given the case we are considering,
∗u1=0, while ∗u2 6=0 and ∗u3 6=0. Hence:

If a body orbits at a radius r in the z-direction, a sub-
stantive medium that necessarily pervades the space
has motions in the ϕ and z-directions (in the cylindr-
ical spatial coordinates r, ϕ, z).

2 Maxwell’s equations in a rotating space: a body can
orbit only if there is a non-zero interplanetary or in-
terstellar magnetic field along the trajectory

What structure is attributed to an electromagnetic field if the
field fills the local space of an orbiting body? As is well
known, the energy-momentum tensor of an electromagnetic
field has the form [6]

T (em)

αβ =
1

4πc2

(

−FασF
σ∙
∙β +

1

4
FστF

στgαβ

)

, (27)

where Fαβ = 1
2

(∂Aβ
∂xα

− ∂Aα
∂xβ

)
is Maxwell’s electromagnetic

field tensor, while Aα is the four-dimensional electromag-
netic field potential given the observable chr.inv.-projections
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ϕ= A0√
g00

and qi=Ai (the scalar and vector three-dimensional
chr.inv-potentials). The observable chr.inv.-components of
T (em)

αβ obtained in [2] are

ρ(em) =
E2 +H∗2

8πc2
, J i(em) =

1

4πc
εikmEkH∗m ,

U ik(em) = ρ(em)h
ik −

1

4π

(
EiEk +H∗iH∗k

)
,

U(em) = ρ(em) ,

(28)

where Ei and theH∗i are the observable chr.inv.-electric and
magnetic field strengths, which are the chr.inv.-projections of
the electromagnetic field tensor Fαβ (read Chapter 3 in [2]
for the details):

Ei =
∗∂ϕ

∂xi
+
1

c

∗∂qi

∂t
−
ϕ

c2
F i, (29)

H∗i=
1

2
εimnHmn=

1

2
εimn

(∗∂qm
∂xn

−
∗∂qn
∂xm

−
2ϕ

c
Amn

)

. (30)

We consider electromagnetic fields that fill the space as
electromagnetic waves — free fields without the sources that
induced them. By the theory of fields, in such an electro-
magnetic field the electric charge density and the current
density vector are zero. In such a case Maxwell’s equations
have the chr.inv.-form [2]:

∗∇iE
i −

2

c
ΩmH

∗m = 0

εikm ∗∇̃k
(
H∗m

√
h
)
−
1

c
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(
Ei
√
h
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I (31)

∗∇iH
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2

c
ΩmE
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(
Em

√
h
)
+
1

c

∗∂
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(
H∗i

√
h
)
= 0





II (32)

whereHi= 1
2 εimnH

mn, and ∗∇̃k= ∗∇k− 1
c2
Fk denotes the

chr.inv.-physical divergence.
Because of the ambiguity of the four-dimensional potent-

ial Aα, we can choose for ϕ=0 [6]. A space wherein the

metric (1) is stationary, gives
∗∂qi

∂t
=0. Because the com-

ponents of gαβ depend solely on x1= r of the spatial co-
ordinates r, ϕ, z, the components of the energy-momentum
tensor depend only on r. In such a case we obtain, from
formulae (29) and (30), Ei=0, H∗1=H∗1=0, H∗2= 1√

h

∂q3
∂r

andH∗3=− 1√
h

∂q2
∂r

, so the aforementioned chr.inv.-Maxwell
equations take the form

ΩmH
∗m = 0 ,

εikm ∗∇̃k
(
H∗m

√
h
)
= 0 ,

∗∇iH∗i = 0 .

(33)

We substitute into the first of these equations the values
Ω1=0, Ω2= ω2rv

c2
and Ω3= ω

r

(
1− 2GM

c2r
+ ω2r2

2c2

)
we have

calculated for the metric (1). As a result we obtain a correla-
tion between two components of the electromagnetic field
vector chr.inv.-potential qi, that is

q′2 =
ωvr2

c2
q′3 , (34)

where the prime denotes the differentiation with respect to r.
With the use of (30) we obtain H∗2 and H∗3

H∗2 = r

(

1−
GM

c2r
+
ω2r2

2c2

)

q′3 , H∗3 = 0 , (35)

so the second equation of (33) takes the form

rq′′3

(

1−
GM

c2r
+
ω2r2

2c2

)

+ q′3

(

2−
GM

c2r
+
2ω2r2

c2

)

=0 , (36)

while the third equation of (33) is satisfied identically.
Equation (36) has separable variables, and so can be

rewritten as follows

dy

y
= −

dr

r

(

1 +
3ω2r2

2c2

)

, (37)

where y= q′3. Integrating it, we obtain

y = q′3 =
K

r
e−

3ω2r2

4c2 ≈
K

r

(

1−
3ω2r2

4c2

)

, (38)

where K is a constant of integration. Assuming r= r0 and
y0= q3(0) at the initial moment of time, we determine the

constant: K = y0 r0
(
1+

3ω2r20
4c2

)
. Integrating (38), we have

q3 = K

(

ln r −
3ω2r2

8c2

)

+ L , L = const. (39)

Determining the integration constant L from the initial
conditions, we obtain the final expression for q3:

q3 = K

[

ln
r

r0
−
3ω2

8c2
(
r2 − r20

)
]

+ q3(0) , (40)

where q3(0) is the initial value of q3. Substituting (40) into
(34) we obtain the equation

q′2 =
ωvKr

c2
, (41)

which is easily integrated to

q2 =
ωvK

2c2
(
r2 − r20

)
. (42)

Finally, we calculate the non-zero components of the
magnetic strength chr.inv.-vector H∗i. Substituting the ob-
tained formulae for q′3 (38) and q′2 (41) into the definition of
H∗i (30), we obtain

H∗2=
1
√
h
H31= q

′
3(0)

(

1−
GM

c2r
−
ω2r2

2c2
+
3ω2r20
4c2

)

,

H∗3 =
1
√
h
H12 = −

ωvr0
c2

q′3(0) .

(43)
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This is the solution for H∗i, the magnetic strength chr.
inv.-vector, obtained from the chr.inv.-Maxwell equations in
the rotating space of an orbiting body. The solution we have
obtained shows that:

A free electromagnetic field along the trajectory of
an orbiting body (ω 6=0, v 6=0) cannot be zero, and
is represented by purely magnetic “standing” waves
(all components of the electric strength are Ei=0).

This fundamental conclusion is easily obtained from the
solution (43).

The linear velocity v of the orbiting body (the body
moves in the x3=z-direction) produces effects in only the
q2-component of the three-dimensional observable vector
potential (i. e. along the ϕ-direction).

The solution (43) exists only if the initial value of the
derivative with respect to r of the z-component of the three-
dimensional observable vector potential is q′3(0) 6=0.

The z-component H∗3 6=0 if the reference body (in com-
mon with the observer) moves in the x3= z-direction at a
linear velocity v and, at the same time, rotates orthogonally
to it in the x2=ϕ-direction at an angular velocity ω. The
component H∗3 is positive, if v is negative. So H∗3 is
directed opposite to the motion of the observer (and his
reference planet, the Earth for instance). The numerical value
of H∗3 is ∼8×10−8 of H∗2. If the reference planet has its
orbit “stopped” in the z-direction (a purely theoretical case),
only H∗2 6=0 is left because it depends on GM

c2r
and ω2r2

2c2
.

The stationary solution (43) of the chr.inv.-Maxwell eq-
uations describes standing magnetic waves in the ϕ- and
z-directions. In such a case, as follows from the condition
Ei=0, the Pointing vector (the density of the impulse of the
electromagnetic field) is J i(em)=0 (see formula 28). On the
other hand the Einstein equations (15–20) we have obtained
for the rotating space of an orbiting body (the same space
as that used for the Maxwell equation) have the density of
the impulse of matter J i 6=0 (see formula 16 in the Einstein
equations), which should be applicable to any distribution of
matter, including electromagnetic fields. This implies that:

In the rotating space of an orbiting body, electro-
magnetic fields don’t satisfy the Einstein equations
if there is no distribution of another substance (dust,
gas or something else) in addition to the fields.

As follows from (25) we have obtained in the metric con-
sidered, J i 6=0 for an ideal liquid or gas. So, if an electro-
magnetic field is added by a gaseous medium (for instance),
they can together satisfy the Einstein equations in the rotat-
ing space of an orbiting body. We therefore conclude that:

Interplanetary/interstellar space where space bodies
are orbiting, must be necessarily pervaded by elect-
romagnetic fields with a concomitant distribution of
substantial matter, such as a gaseous medium, for
instance.

We have actually shown that space bodies cannot un-
dergo orbital motion in empty space, i. e. if electromagnetic

fields and other substantive media (e. g. dust, gas, etc.) are
not present. What a bizarre result!

It should be noted that we have obtained this startling
conclusion using no preliminary proposition or hypothesis.
This conclusion follows directly from the requirement for
Maxwell’s equations and Einstein’s equations to be both
satisfied in the rotating space of an orbiting body. So this is
the actual condition for orbital motion, according to General
Relativity.

3 Preferred spatial directions as a result of the interac-
tion of the space non-holonomity fields

In this section we have to consider three problems arising
from the specific space structure we have obtained for orbital
motion.

First problem. Refer to the chr.inv.-Einstein equations
(15–20) we have obtained in the rotating space of an orbiting
body. The most significant terms in the left side of the scalar
equation (15) are the first two. They both have a positive
sign. Hence the right side of equation (15) must also be
positive, i. e. the right side must satisfy the condition,

λ̃c2 >
κ

2

(
ρc2 + U

)
. (44)

Let’s apply this condition to a particular case of the orbit-
ing body spaces: the space within the corridor along which
the Earth orbits in the Galaxy. As a matter fact, this space
is governed by the metric (1). In this space we have, ω2=
= 4×10−14 sec−2, M =M�= 2×1033 g, r= 15×1012 cm.
We obtain, ω2+ GM

r3 ' 8×10−14 sec−2. Therefore

λ̃c2 > 8×10−14 cm−2, λ̃ > 10−34 cm−2. (45)

As a result λ̃ > 10−34 cm−2 numerically equals ω2

2c2
—

the quantity which was proven in [7] to be the square of
the dynamical “magnetic” strength of the field of the space
non-holonomity. We therefore conclude that the λ̃-field is
connected to the non-holonomity field of the Earth’s space.

We note that the Earth’s space is non-holonomic due to
the effect of a number of factors such as the daily rotation
of the Earth, its yearly rotation around the Sun, its common
rotation with the solar system around the centre of the Gal-
axy, etc. Each factor produces a field of non-holonomity, the
algebraical sum of which gives the complete field of non-
holonomity of the Earth.

Given the problem statement we are considering, the
obtained numerical value λ̃ > 10−34 cm−2 characterizing the
non-Newtonian force of repulsion is attributed to the non-
holonomity field of the Earth’s space which is caused by the
Earth’s rotation around the Sun. If other problem statements
are considered, we can calculate the numerical values of λ̃
characterizing the other factors of the Earth’s space non-
holonomity. The non-Newtonian forces of repulsion obtained
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therein are expected to be directed according to the acting
factors (in different directions), so the numerical value of
each λ̃ has its own meaning, whilst their sum builds the
common non-Newtonian repulsing force acting in the Earth’s
space.

Second problem. As follows from the scalar Einstein
equation (16), the density of the impulse of the distributed
matter in the x3= z-direction

J3 = −
2ω2v

κc2
(46)

has a negative numerical value. So the flow of the distributed
medium that fills the space is directed opposite to the orbital
motion. In other words, according to the theory, the orbiting
body should meet a counter-flow by the medium: a “relativ-
istic braking” should be expected in orbital motions. Because
the orbiting bodies, e. g. the stars, the planets and the satel-
lites, show no such orbital braking, we propose a mech-
anism that refurbishes the braking energy of the medium
into another sort of energy — heat or radiations, for instance.

This conclusion finds verification in recent theoretical
research which, by means of General Relativity, indicates
that stars produce energy due to the background space non-
holonomity [8, 9]. It is shown in papers [8, 9], that General
Relativity, in common with topology, predicts that the most
probable configuration of the background space of the Uni-
verse is globally non-holonomic. The global anisotropic ef-
fect is expected to manifest as the anisotropy of the Cosmic
Microwave Background Radiation and the anisotropy of the
observable velocity of light. Moreover, if the global non-
holonomic background is perturbed by a local rotation or os-
cillation (local non-holonomic fields), the background field
produces energy in order to compensate for the perturbation
in it. Such an energy producing mechanism is expected to be
operating in stars, in the process of transfer of radiant energy
from the central region to the surface, which has verification
in the data of observational astrophysics [9].

From the standpoint of our theory herein, the aforemen-
tioned mechanism producing stellar energy [8, 9] is due to
a number of factors that build the background space non-
holonomity field in stars, not only the globally non-holo-
nomic field of the Universe. By our theory, the substantive
distribution is also connected to the space non-holonomity
so that the braking energy of the medium is related to the
space non-holonomity field. So a star, being in orbit in the
Galaxy and the group of galaxies, meets the non-holonomity
fields produced by the rotations of the Galactic space, the
Local Group of galaxies, etc. Then the braking energy of
the medium that fills the spaces (the same as for the energy
of the space non-holonomic field) transforms into heat and
radiations within the star by the stellar energy mechanism as
shown in [8, 9]. In other words, a star “absorbs” the energy
of the non-holonomity fields of the spaces wherein it is
orbiting, then transforms the energy into heat and radiations.

Employing this mechanism in an Earth-bound laboratory,
we can obtain a new source of energy due to the fact that
the Earth orbits in the non-holonomic fields of the space.

Third problem. A relative variation of the observable vel-
ocity of light in the z-direction we have obtained in [1] is

Δż

c
= 2×10−4 sin 2 ω̃τ , (47)

where ω̃=ω
(
1+ v

c

)
, whilst given an Earth-bound labora-

tory the space rotation thereof is the sum of the Earth’s
rotations around the Sun and around the centre of the Galaxy.
We see therefore, that we have a relative variation Δż

c 6=0 of
the observable velocity of light only if both ω 6=0 and v 6=0.
Hence the predicted anisotropy of the observable velocity of
light depends on the interaction of two fields of non-holo-
nomity that are represented in the laboratory space (within
the framework of the considered problem statement).

The same is true for the flow of matter distributed
throughout the space (46): J3 6=0 only if both ω 6=0 and
v 6=0. Thus the energy produced in a star due to the back-
ground space non-holonomity should be dependent not only
on the absolute value of the non-holonomity (as the sum of
all acting non-holonomic fields), but also on the interaction
between the non-holonomic fields.
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