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Many Worlds interpretation of Quantum Mechanics can be related to a General Con-
servation Principle in the framework of the so called Open Quantum Relativity.
Specifically, conservation laws in phase space of physical systems (e. g. minisuper-
space) give rise to natural selection rules by which it is possible to discriminate among
physical and unphysical solutions which, in the specific case of Quantum Cosmology,
can be interpreted as physical and unphysical universes. We work out several examples
by which the role of conservation laws is prominent in achieving the solutions and
their interpretation.

1 Introduction

The issue to achieve a unified field theory cannot overcome
to take into account the role and meaning of conservation
laws and dynamical symmetries which have always had a
fundamental role in physics. From a mathematical view-
point, their existence allows to “reduce” the dynamics and
then to obtain first integrals of motion, which often allow the
exact solution of the problem of motion. Noether theorem is
a prominent result in this sense, since it establishes a deep
link between conservation laws and symmetries. Moreover,
conservation laws can play a deep role in the definition of
physical theories and, in particular, to define space-times
which are of physical interest. The underlying philosophy is
the fact that the violation of conservation laws (and then the
symmetry breaking) could be nothing else but an artificial
tool introduced in contemporary physics in order to solve
phenomenologically some puzzles and problems, while ef-
fective conservation laws are never violated [1]. The absolu-
te validity of conservation laws, instead, allows the solution
of a wide variety of phenomena ranging from entanglement
of physical systems [2], to the rotation curves of spiral gal-
axies [4]. Such results do not come from some a priori
request of the theory, but is derived from the existence of
a General Conservation Law (in higher dimensional space-
time) where no violation is allowed [5]. This approach natur-
ally leads to a dynamical unification scheme (the so called
Open Quantum Relativity [1]) which can be, as a minimal
extension, formulated in 5D [6]. In this context, it is worth
stressing the deep relations among symmetries and first in-
tegrals of motion, conservation laws with the number and
dimensionality of configuration spaces. In fact, phenomena,
which in standard physics appear as due to symmetry break-
ings can be encompassed in a multi-space formulation as
previously shown by Smarandache [7, 8]. On the other hand,
the need of a multi-space formulation of the theory gives rise

to a direct application of the “Many Worlds” Interpretation
of Quantum Mechanics [9, 10], in the sense that multi-
spaces are nothing else but many worlds in the framework
of Quantum Cosmology [11]. This is the argument of this
paper: we want to show that configuration spaces derived
from the request of integrability of the dynamical systems
(and then from the presence of conservation laws) are phys-
ical universes, (i. e. observable universes) where cosmolo-
gical parameters can be observed. On the other hand, if
conservation laws are not present, in universes which come
out in a Many Worlds interpretation are “unphysical” that
is, it is not possible to label them by a set of observable
cosmological parameters (technically they are “instanton-
solutions”). In Sect. 2, we develop mathematical considera-
tions on conservation laws showing how the presence of
symmetries allows the integration of the dynamical systems,
which means that the phase-space (and general solution)
can be “split” in a multi-space of “integrated” components.
Sect. 3 is devoted to the discussion of Many Worlds interpre-
tation of Quantum Cosmology and, in particular, to the fact
that multi-spaces related to the phase-space of conservation
laws can be interpreted as “minisuperspaces” thanks to the
Hartle criterion. Many Worlds-solutions from conservation
laws are obtained in Sect. 4 by integrating the Wheeler-
DeWitt (WDW) equation of Quantum Cosmology. Conclu-
sions are drawn in Sect. 5.

2 Conservation laws and multi-spaces

Before considering multi-spaces and how they can be inter-
preted as the Many Worlds of Quantum Cosmology, let us
discuss the reduction problem of dynamics connected sym-
metries and conservation laws. Our issue is to show that
the total phase-space of a given dynamical system can be
split in many subspaces, each of them related to a specific
conserved quantity. As a general remark, it is possible to

G. Basini, S. Capozziello. Multi-Spaces and Many Worlds from Conservation Laws 65



Volume 4 PROGRESS IN PHYSICS October, 2006

show that if the Lie derivative of a given geometric quantity
(e. g. vector, tensor, differential form) is zero, such a quantity
is conserved. This property is covariant and specifies the
number of dimensions and the nature of configuration space
(and then of the phase-space) where the given dynamical
system is defined. Furthermore, the existence of conserved
quantities always implies a reduction of dynamics which
means that the order of equations of motion is reduced thanks
to the existence of first integrals. Before considering specific
systems, let us remind some properties of the Lie derivative
and how conservation laws are related to it. Let LX be the
Lie derivative

(LX ω) ξ =
d

dt
ω (gt∗ ξ) , (1)

where ω is a differential form of Rn defined on the vector
field ξ, gt∗ is the differential of the phase flux {gt} given
by the vector field X on a differential manifold M. The
discussion can be specified by considering a Lagrangian L
which is a function defined on the tangent space of config-
urations TQ≡{qi, q̇i}, that is L : TQ→<. In this case, the
vector field X is

X = αi(q)
∂

∂qi
+ α̇i(q)

∂

∂q̇i
, (2)

where the dot denotes the derivative with respect to t, and
we have

LXL = XL = αi (q)
∂L

∂qi
+ α̇i (q)

∂L

∂q̇i
. (3)

It is important to note that t is simply a parameter which
specifies the evolution of the system. The condition

LXL = 0 (4)

implies that the phase flux is conserved along X: this means
that a constant of motion exists for L and a conservation law
is associated to the vector X . In fact, by taking into account
the Euler-Lagrange equations, it is easy to show that

d

dt

(

αi
∂L

∂q̇i

)

= LXL . (5)

If (4) holds, the relation Σ0=α
i ∂L

∂q̇i
identifies a cons-

tant of motion. Alternatively, using a generalized differential

for the Lagrangian L, the Cartan one–form, θL ≡
∂L

∂q̇i
dqi

and defining the inner derivative iXθL=〈θL, X〉, we get

iXθL = Σ0 (6)

if, again, condition (4) holds. This representation identifies
cyclic variables. Using a point transformation on vector field
(2), it is possible to get

X̃ = (iXdQ
k)

∂

∂Qk
+

[
d

dt
(iXdQ

k)

]
∂

∂Q̇k
. (7)

From now on, Lagrangians and vector fields transformed
by the non–degenerate transformation

Qi = Qi(q) , Q̇i(q) =
∂Qi

∂q j
q̇ j (8)

will be denoted by a tilde. If X is a symmetry for the
Lagrangian L, also X̃ is a symmetry for the Lagrangian L̃
giving rise to a conserved quantity, thus it is always possible
to choose a coordinate transformation so that

iXdQ
1 = 1 , iXdQ

i = 0 , i 6= 1 , (9)

and then

X̃ =
∂

∂Q1
,

∂L̃

∂Q1
= 0 . (10)

It is evident that Q1 is a cyclic coordinate because dyn-
amics can be reduced. Specifically, the “reduction” is con-
nected to the existence of the second of (10). However, the
change of coordinates is not unique and an opportune choice
of coordinates is always important. Furthermore, it is pos-
sible that more symmetries are existent. In this case more
cyclic variables must exist. In general, a reduction procedure
by cyclic coordinates can be achieved in three steps: (i) we
choose a symmetry and obtain new coordinates as above
and after this first reduction, we get a new Lagrangian L̃
with a cyclic coordinate; (ii) we search for new symmetries
in this new space and iterate the reduction technique until
it is possible; (iii) the process stops if we select a pure
kinetic Lagrangian where all coordinates are cyclic. In such
a case, the dynamical system is completely integrable and
integration can be achieved along every coordinate of con-
figuration space (or every generalized coordinate-conjugate
momentum couple of phase space). In this case, the total
phase-space is split in subspaces, each one labelled by a
conserved quantity. Technically, every symmetry selects a
constant conjugate momentum since, by the Euler–Lagrange
equations we get

∂L̃

∂Qi
= 0⇐⇒

∂L̃

∂Q̇i
= Σi , (11)

and the existence of a constant conjugate momentum means
that a cyclic variable (a symmetry) exists.

However, The Lagrangian L=L(qi, q̇ j) has to be non-
degenerate, which means that the Hessian determinant has
to be non-zero.

From the Lagrangian formalism, we can pass to the Ha-
miltonian one through the Legendre transformation

H = πj q̇
j − L(q j , q̇ j) , πj =

∂L

∂q̇ j
, (12)

defining, respectively, the Hamiltonian function and the con-
jugate momenta. In the Hamiltonian formalism, the conserv-
ation laws are obtained when

[
Σj ,H

]
=0, 16 j6m This

is the relation for conserved momenta and, in order to obtain
a symmetry, the Hamilton function has to satisfy the relation
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LΓH = 0 , where the vector Γ is defined by

Γ = q̇ i
∂

∂qi
+ q̈ i

∂

∂q̇i
. (13)

Let us now go to the specific formalism of Quantum
Mechanics which we will use for the following Quantum
Cosmology considerations. By the Dirac canonical quanti-
zation procedure, we have

πj −→ π̂j = −i∂j , H −→ Ĥ (q j ,−i∂q j ) . (14)

If |Ψ〉 is a state of the system (i. e. its wave function),
dynamics is given by the Schrödinger eigenvalue equation

Ĥ |Ψ〉 = E |Ψ〉 , (15)

where, obviously, the whole wave-function is given by
|φ(t, x)〉 = eiEt/h̄ |Ψ〉. If a symmetry exists, the reduction
procedure outlined above can be applied and then, from (11)
and (12), we get

π1 ≡
∂L

∂Q̇1
= iX1θL = Σ1 ,

π2 ≡
∂L

∂Q̇2
= iX2θL = Σ2 , (16)

. . . . . . . . . ,

depending on the number of symmetry vectors. After Dirac
quantization, we get

−i∂1|Ψ〉 = Σ1|Ψ〉, −i∂2|Ψ〉 = Σ2|Ψ〉, . . . (17)

which are nothing else but translations along the Qj axis
singled out by the corresponding symmetry. Eqs. (17) can
be immediately integrated and, being Σj real constants, we
obtain oscillatory behaviors for |Ψ〉 in the directions of sym-
metries, i. e.

|Ψ〉 =
m∑

j=1

eiΣjQ
j

|χ(Ql)〉 , m < l 6 n , (18)

where m is the number of symmetries, l are the directions
where symmetries do not exist and n is the number of dim-
ensions of configuration space. Vice-versa, dynamics given
by (15) can be reduced by (17) if, and only if, it is possible to
define constant conjugate momenta as in (16), i.e. oscillatory
behaviors of a subset of solutions |Ψ〉 exist as a consequen-
ce of the fact that symmetries are present in the dynamics.
The m symmetries give first integrals of motion. In one
and two–dimensional configuration spaces, the existence of
a symmetry allows the complete solution of the problem.
Therefore, if m=n, the problem is completely solvable and
a symmetry exists for every variable of configuration space.
The reduction procedure of dynamics, connected to the exist-
ence of symmetries, allows to select a subset of the general
solution of equations of motion, where oscillatory behaviors

of the wave functions are found. In other words, symmetries
select exact solutions and reduce dynamics. In these cases,
the general solution of a dynamical system can be split in a
combination of functions each of them depending on a given
variable. As a corollary, a Lagrangian (or a Hamiltonian)
where only kinetic terms are present gives always rise to
a full integrable dynamics. The total phase-space M of the
system, thanks to conservation laws, can be split in the ten-
sor product of phase-spaces (multi-spaces) assigned by con-
served momenta, i. e. {qi, πi}→{Qi,Σi} , and then M=
=Πni=1{Qi,

⊗
Σi}. As we will see, this feature is relevant

in minisuperspace Quantum Cosmology.

3 The “many-worlds” interpretation of Quantum
Mechanics and the role of conservation laws

The above considerations acquire a fundamental role in
Minisuperspace Quantum Cosmology since, as we will see,
Conservation Laws give rise to an approach by which it is
possible to “select” physical universes. Quantum Cosmology
is one of the results of the efforts of last thirty years directed
to the quantization of gravity [12]. The aim has been to
obtain a scheme in which gravity is treated on the same
ground of the other interaction of Nature. Such an approach
(not a coherent theory yet) is the canonical quantization
of gravity. In order to test the theoretical results, Planck’s
scales, which cannot be reached by the current physics, have
to be considered, so the cosmology is the most reasonable
area for the application of the observable predictions of
quantum gravity. More properly, Quantum Cosmology is the
quantization of dynamical systems which are “universes”. In
this context, supposed the Universe as a whole (the ensemble
of all the possible universes), it has a quantum mechanical
nature and that an observable universe is only a limit concept
valid in particular regions of a manifold (superspace) com-
posed by all the possible space-like 3-geometries and local
configurations of the matter fields. The task of Quantum
Cosmology is to relate all the measurable quantities of the
observable universe∗ to the assigned boundary conditions for
a wave function in the superspace. This wave function has
to be connected to the probability to obtain typical universes
(even if, in the standard approach, it is not a proper probabili-
ty amplitude since a Hilbert space does not exist in the cano-
nical formulation of quantum gravity) [11]. Quantum Cos-
mology has to solve, in principle, the problem of the initial
conditions of the standard cosmology: i.e. it should explain
the observed universe, specifying the physical meaning of
the boundary conditions of the superspace wave function.
In other words, the main issue of quantum cosmology is
to search for boundary conditions in agreement with the

∗An operative definition of “observable universe” could be a universe
where cosmological parameters as the Hubble one H0, the deceleration
parameter q0, the density parameters ΩM , ΩΛ, Ωk and the age t0 can be
inferred by observations [3].
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astronomical observations and these conditions have to be
contained in the wave function of the universe |Ψ〉. The
dynamical behavior of |Ψ〉 in the superspace is described by
the Wheeler-DeWitt (WDW) equation [12] that is a second
order functional differential equation hard to handle, because
it has infinite degrees of freedom. Usually attention has
been concentrated on finite dimensional models in which the
metrics and the matter fields are restricted to particular forms
(minisuperspace models), like homogeneous and isotropic
spacetimes. With these choices, the WDW equation becomes
a second order partial differential equation which, possibly,
can be exactly integrated. However, by definition, there is no
rest outside of the Universe in cosmology, so that boundary
conditions must be considered as a fundamental law of phys-
ics [11]. Moreover, not only the conceptual difficulties, but
also the mathematical ones, make Quantum Cosmology hard
to handle. For example, the superspace of geometrodynamics
[13] has infinite degrees of freedom so that it is technically
impossible to integrate the full infinite dimensional WDW
equation. Besides, a Hilbert space of states describing the
universe is not available [12]. Finally, it is not well establish-
ed how to interpret the solutions of WDW equation in the
framework of probability theory. Despite these still unsolved
shortcomings, several positive results have been obtained
and Quantum Cosmology has become a sort of paradigm
in theoretical physics researches. For example the infinite-
dimensional superspace can be restricted to opportune finite-
dimensional configuration spaces called minisuperspaces. In
this case, the above mathematical difficulties can be avoided
and the WDW equation can be integrated. The so called
no boundary condition by Harte and Hawking [14] and the
tunneling from nothing by Vilenkin [15] give reasonable
laws for initial conditions from which our observable uni-
verse could be started. The Hartle criterion [11] is an inter-
pretative scheme for the solutions of the WDW equation.
Hartle proposed to look for peaks of the wave function of
the universe: if it is strongly peaked, we have correlations
among the geometrical and matter degrees of freedom; if
it is not peaked, correlations are lost. In the first case, the
emergence of classical relativistic trajectories (i.e. universes)
is expected. The analogy to the quantum mechanics is
immediate. If we have a potential barrier and a wave func-
tion, solution of the Schrödinger equation, we have an os-
cillatory regime upon and outside the barrier while we
have a decreasing exponential behavior under the barrier.
The situation is analogous in Quantum Cosmology: now
potential barrier has to be replaced by the superpotential
U(hij , ϕ), where hij are the components of the three–metric
of geometrodynamics and ϕ is a generic scalar field describ-
ing the matter content. More precisely, the wave function of
the universe can be written as

Ψ
[
hij(x), φ(x)

]
∼eim

2
PS , (19)

where mp is the Planck mass and

S≡S0+m
−2
P S1+O(m

−4
P ) (20)

is the action which can be expanded. We have to note that
there is no normalization factor due to the lack of a proba-
bilistic interpretative full scheme. Inserting S into the WDW
equation and equating similar power terms of mp, one ob-
tains the Hamilton-Jacobi equation for S0. Similarly, one
gets equations for S1, S2 . . . , which can be solved consi-
dering results of previous orders giving rise to the higher
order perturbation theory. We need only S0 to recover the
semi-classical limit of Quantum Cosmology [10]. If S0 is a
real number, we get oscillating WKB modes and the Hartle
criterion is recovered since |Ψ〉 is peaked on a phase-space
region defined by

πij = m2
P

δS0
δhij

, πϕ = m2
P

δS0
δϕ

, (21)

where πij and πϕ are classical momenta conjugates to hij

and ϕ. It is worth stressing, at this point, that such a momenta
are nothing else but Conservation Laws. The semi-classical
region of superspace, where Ψ has an oscillating structure, is
the Lorentz one otherwise it is Euclidean∗. In the latter case,
we have S= iI and

Ψ∼ e−m
2
P I , (22)

where I is the action for the Euclidean solutions of classical
field equations (istantons). This scheme, at least at a semi-
classical level, solves the problem of initial conditions. Given
an action S0, Eqs. (21) imply n free parameters (one for each
dimension of the configuration space Q ≡ {hij , ϕ}) and then
n first integrals of motion exactly as in the scheme proposed
in the previous section. However the general solution of the
field equations involves 2n − 1 parameters (one for each
Hamilton equation of motion except the energy constraint).
Consequently, the wave function is peaked on a subset of the
general solution. In this sense, the boundary conditions on
the wave function imply initial conditions for the classical
solutions. In other words, the issue is searching for some
general method by which selecting such constants of motion
related to the emergence of classical trajectories without
arbitrarily choosing regions of the phase-space where mo-
menta are conserved. In this sense, there is a deep connection
between the conservation laws and the structure of the wave
function of the universe. Using the results of the previous
section (see Eq. 18), the oscillatory regime, and then the
correlation among the variables in the framework of the
Hartle criterion, is guaranteed only if conservation laws are
present into dynamics. In this context, if conservation laws
are absolutely valid, the above reduction procedure gives
rise to subsets of the infinite dimensional general solution of

∗It is important to note that we are using both symbols |Ψ〉 and Ψ
depending on the interpretation which we want to give to the wave function.
In the first case, the wave function is considered a “quantum-state”, in the
second one, it has a semi-classical interpretation.
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the WDW equation where oscillating behaviors are recover-
ed. Viceversa, the Hartle criterion is always connected to the
presence of a conservation law and then to the emergence of
classical trajectories which are observable universes where
cosmological observations are possible. Then the above re-
sult can be given in the following way:

In minisuperspace quantum cosmology, the existence
of conservation laws yields a reduction procedure of
dynamics which allows to find out oscillatory behav-
iors for the general solution of WDW equation. Vice-
versa, if a subset of the solution of WDW equation has
an oscillatory behavior, conserved momenta have to
exist and conservation laws are present. If a conserv-
ation law exists for every configuration variable, the
dynamical system is completely integrable and the ge-
neral solution of WDW equation is a superposition
of oscillatory behaviors. In other words, conservation
laws allow and select observable universes.

On the other hand, if conservation laws are not valid the
WDW multi-space solution give rise to non-observable uni-
verses (instanton solutions).

4 Many worlds from conservation laws

In order to give concrete examples of the above results,
we can show how, given a generic theory of gravity, it is
possible to work out minisuperspace cosmological models
where observable universes (classical trajectories) are ob-
tained thanks to the existence of conserved quantities. We
shall take into account the most general action in which
gravity is nonminimally coupled to a scalar field:

A=

∫

M

d4x
√
−g

[

F (ϕ)R+
1

2
gμνϕ;μϕ;ν−V (ϕ)+Lm

]

(23)

where the form and the role of V (ϕ) are still general and Lm
represents the standard fluid matter content of the theory.
This effective action comes out in the framework of the
Open Quantum Relativity [1, 6] a dynamical theory in which,
asking for a General Conservation Principle [5], the unifica-
tion of different interactions is achieved and several short-
comings of modern physics are overcome (see [1] and ref-
erences therein). The state equation of fluid matter is p=
=(γ−1)ρ and 16 γ6 2 where p and ρ are, respectively,
the ordinary pressure and density. Now we have all the ingre-
dients to develop a scalar-tensor gravity quantum cosmology.
Using the transformations:

ϕ = e−ϕ, F (ϕ) =
1

8
e−2ϕ, V (ϕ) = U(ϕ)e−2ϕ, (24)

the action (23) can be recast in the form

A =

∫
d4x

√
−g
{
exp
[
−2ϕ

][
R+ 4gμνϕ;μϕ; ν +

−U(ϕ)
]
+ Lm

}
,

(25)

always using Planck units 8πG= c=1. Let us now take
into account a Friedman, Robertson, Walker (FRW) metric
ds2= dt2− a2(t)dΩ23, where dΩ23 is the 3–dimensional
element of the spacelike manifold. With this assumption,
the configuration space is Q≡{a, ϕ} and the tangent space
is TQ≡{a, ȧ, ϕ, ϕ̇}. This is our minisuperspace. Clearly
p= p(a) and ρ= ρ(a). Substituting the FRW metric and
integrating by parts, the Lagrangian (25) becomes point-
like, that is:

L =
1

8
a3e−2ϕ

[

6

(
ȧ

a

)2
− 12 ϕ̇

(
ȧ

a

)

− 6
k

a2
+

+4 ϕ̇2 − 8U(ϕ)

]

+ a3Lm .

(26)

At this point, it is worth noting that the scale–factor
duality symmetry arises if the transformation of the scale
factor of a homogeneous and isotropic space-time metric,
a(t)→ a−1(−t), leaves the model invariant, taking into ac-
count also the form of the potential U .

Provided the transformations

ψ = ϕ−
3

2
ln a , Z = ln a , (27)

the Lagrangian (26) becomes:

L = e−2ψ
[
4ψ̇2−3Ż2−6ke−2Z−8W

]
+De3(1−γ)Z (28)

where the potential W (ψ,Z), thanks to the transformations
(27), is depending on both the variables of the minisuper-
space. In the new variables, the duality invariance has be-
come a parity invariance since Z and −Z are both solutions
of dynamics. The emergence of this feature is related to
the presence of nonminimal coupling; it allows the fact that
several solutions can be extended for t→−∞ without sin-
gularities [3]. Another important consideration is connected
to the role of perfect fluid matter. It introduces two further
parameters which are D (related to the bulk of matter) and
γ (related to the type of matter which can be e.g. radiation
γ = 4/3 or dust γ = 1). We shall see below that they directly
determine the form of cosmological solutions. Two general
forms of potential W preserving the duality symmetry

W (Z,ψ) =
D

4
e−3γZe2ψ , W (Z,ψ) = Λ , (29)

where Λ=const. These are all the ingredient we need in
order to construct our minisuperspace quantum cosmology.
Let us start with a simple but extremely didactic example of
the above effective action (25) which is

A =

∫
d4x

√
−g e−2ϕ

[
R+ 4(∂ϕ)2 − Λ

]
, (30)

where D= k=0 and W =Λ. This example is useful to
show, as we shall see below, the way in which the full theory
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works. The Lagrangian (28) becomes

L = −3e−2ψŻ2 + 4ψ̇2e−2ψ − 2Λe−2ψ, (31)

that is cyclic in Z. Due to the considerations in previous
section, we have to derive a conserved quantity, relatively to
the variable Z, and then an oscillatory behavior for the wave
function of the universe Ψ. The Legendre transformation for
the conjugate momenta gives

πZ =
∂L

∂Ż
= −6Że−2ψ, πψ =

∂L

∂ψ̇
= 8ψ̇e−2ψ, (32)

and the Hamitonian isH=πZŻ +πψψ̇−L. From Dirac ca-
nonical quantization rules, it is possible to write πZ→−i∂Z
and πψ→−i∂ψ , and then the WDW equation is

[
1

12
∂2Z −

1

16
∂2ψ + 2Λe

−4ψ

]

Ψ(Z,ψ) = 0 , (33)

where a simple factor ordering choice is done [11]. This
is a second order partial differential equation which can
be solved by separation of variables Ψ(Z,ψ)=A(Z)B(ψ)
from which Eq. (33) can be split into two ordinary differen-
tial equations

d2B(ψ)

dψ2
−
(
32Λe−4ψ + 16E

)
B(ψ) = 0 , (34)

d2A(z)

dz2
= 12EA(z) , (35)

where E is a arbitrary constant. For E> 0, the general solu-
tion of the WDW equation is

Ψ(Z,ψ) ∝ exp

(

±

√
3

2
Z

)

×

×

[

c0 ∓
1

8
√
2Λ
exp

(
±4
√
2Λ e−2ψ

)]

×

× exp
[
ψ ∓ 2

√
2Λ e−2ψ

]
.

(36)

For E< 0, Eq. (35) is a harmonic oscillator whose solu-
tions are A(Z)∝± sin(mZ) (we have put |E|=m2). In
this case the momentum πZ =m is a constant of motion.
Eq. (34) is solvable in terms of modified Bessel functions
and the general solution of Eq. (33) is

Ψ(Z,ψ) ∝ ± sin(mZ)K im
2Λ

(√
2Λ e−2ψ

)
; (37)

with an evident oscillatory behavior. Finally, in the case
E=0, the solution is

Ψ(Z,ψ) ∝ ZK0

(√
2Λ e−2ψ

)
, (38)

where K0 is the modified Bessel function of zero order. The
absence of a positive defined scalar product in the super-
space prevents the existence of a Hilbert space for the states

of the WDW equation; i. e. we cannot apply the full probabi-
lity interpretation to the squared modulus of the wave func-
tion of the universe. This is the reason why we have to
omit the normalization constants in front of the solutions
(36), (37), (38). Various suggestions have been given in
literature to interpret Ψ [11], although starting from different
points of view, all these different interpretations arrive to the
conclusion that, at least in the semiclassical limit, a notion
of measure can be introduced considering |Ψ|2. As we said
above, the strong peaks of |Ψ|2 (oscillatory behaviors) in-
dicate classical correlations among the dynamical variables,
whereas weak variations of |Ψ|2 mean the absence of corre-
lations [11]. In fact the presence of strong amplitude peaks
of the wave function seems to be the common indicator of
where the classical (in principle observable) universes enucl-
eates in its configuration space. The classical limit of quan-
tum cosmology can be recovered in the oscillation regime
with great phase values of Ψ: in this region the wave func-
tion is strongly peaked on first integrals of motion related to
conservation laws. In the case presented here, the solutions
(36), (37), (38) give information on the nature and the prop-
erties of classical cosmological behavior: for the vacuum
state, E = 0, we have

Ψ ∼ ln a
√
π eψ exp

(
−
√
2Λ e−2ψ

)
→ 0 , (39)

for ψ → −∞ and
Ψ ∼ 2ψ ln a , (40)

for ψ→+∞. So |Ψ|2 is exponentially small for ψ6 0, while

it increases for great ψ. This fact tells us that is most pro-
bable a realization of a classical universe for great field
configurations (for example see the prescriptions for chaotic
inflation where the scalar field has to start with a mass of
a few Planck masses [16]). Another feature which emerges
from (36) and (37) is the following: as Z = ln a, Ψ can
be considered a superposition of states Ψ(a) with states
Ψ(a−1), that is the wave function of the universe (and also
the WDW equation) contains the scale factor duality.
Furthermore, using the first integrals of motion ( i.e the ca-
nonical momenta related to conservation laws), we get the
classical solutions

a(t) = a0

[
cosλτ + sinλτ

cosλτ − sinλτ

]±
√
3/3

, (41)

ϕ(t) =
1

4
ln

[
λ2

k cos2 2λτ

]

±

±

√
3

2
ln

∣
∣
∣
∣
cosλτ + sinλτ

cosλτ − sinλτ

∣
∣
∣
∣+ ϕ0 ,

(42)

and

a(t) = a0 exp

{

∓
1
√
6
arctan

[
1− 2e4λτ

2e2λτ
√
1− e4λτ

]}

, (43)
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Λ k D γ Solution

6= 0 0 6= 0 1 CT

0 0 6= 0 1 CT

0 ±1 6= 0 4/3 I

6= 0 0 0 ∀γ CT

0 k > 0 6k ∀γ CT and I

Table 1: Main features of the solutions of WDW equation, Clas-
sical Trajectories (CT) and Instantons (I), for different values of
parameter Λ, k, D, γ.

ϕ(t) =
1

4
ln

[
2λ2e4λτ

k (1− e4λτ )

]

∓

∓
1
√
6
arctan

[
1− 2e4λτ

2e2λτ
√
1− e4λτ

]

+ ϕ0 ,

(44)

where τ =±t, k is an integration constant and λ2=Λ/2.
In (41), (42), we have Λ> 0, in (43), (44) Λ< 0. These
“universes” are “observable” since, starting from these solu-
tions, it is easy to construct all the cosmological parameters
H0, q0, ΩΛ, ΩM and t0. It is worth stressing that such
solutions are found only if conservation laws exists. It is
remarkable that the scalar factor duality emerges also for the
wave function of the universe in a quantum cosmology con-
text: that is the solutions for a have their dual counterpart
a−1 in the quantum state described by Ψ. This fact, in the
philosophy of quantum cosmology, allows to fix a law for
the initial conditions (e. g. Vilenkin tunneling from nothing
or Hartle-Hawking no-boundary conditions [11]) in which
the duality is a property of the configuration space where
our classical universe enucleates. This fact gives rise to cos-
mological solutions which can be consistently defined for
t→±∞.

The approach can be directly extended to the Lagrangian
(28), from which, by a Legendre transformation and a canon-
ical quantization, we get the WDW equation
[
1

2
∂2Z −

1

8
∂2ψ + 3ke

−2Z−4ψ +

+4We−4ψ −De3(1−γ)Z−2ψ
]

Ψ(Z,ψ) = 0 ,

(45)

whose solutions can be classified by the potential parameter
Λ, the spatial curvature k, the bulk of matter D, and the
adiabatic index γ. In the following Table, we give the main
features of WDW solutions.

5 Discussion and conclusions

In this paper, we have shown that the reduction procedure
of dynamics, related to conservation laws, can give rise to a

splitting of the phase-space of a physical system, by which
it is possible to achieve the complete solution of dynamics.
This result can be applied to Quantum Cosmology, leading
to the result that physical many worlds can be related to in-
tegrable multi-spaces of the above splitting. From a mathem-
atical viewpoint, the above statement deserves some further
discussion. As a first remark the general solution (18) can
be interpreted as a superposition of particular solutions (the
components in different directions) which result more solved
(i.e. separated in every direction of configuration space) if
more symmetries exist. Starting from such a consideration,
as a consequence, we can establish a sort of degree of solv-
ability, among the components of a given physical system,
connected to the number of symmetries: (i) a system is com-
pletely solvable and separable if a symmetry exists for every
direction of configuration space (in this case, the system
is fully integrable and the relations among its parts can
be exactly obtained); (ii) a system is partially solved and
separated if a symmetry exists for some directions of confi-
guration space (in this case, it is not always possible to get
a general solution); (iii) a system is not separated at all and
no symmetry exists, i. e. a necessary and sufficient condition
to get the general solution does not exist. In other words, we
could also obtain the general solution in the last case, but
not by a straightforward process of separation of variables
induced by the reduction procedure.

A further remark deserves the fact that the eigen-functions
of a given operator (in our case the Hamiltonian Ĥ) define
a Hilbert space. The above result works also in this case,
so that we can define, for a quantum system whose eigen-
functions are given by a set of commuting Hermitian opera-
tors, a Hilbert Space of General Conservation Laws (see also
[5]). The number of dimensions of such a space is given by
the components of superposition (18) while the number of
symmetries is given by the oscillatory components. Vice-
versa, the oscillatory components are always related to the
number of symmetries in the corresponding Hilbert space.
These results can be applied to minisuperspace quantum
cosmology. The role of symmetries and conservation laws
is prominent to interpret the information contained in the
wave function of the universe which is solution of the WDW
equation; in fact, the conserved momenta, related to some (or
all) of the physical variables defining the minisuperspace,
select oscillatory behaviors (i.e. strong peaks) in Ψ, which
means “correlation” among the physical variables and then
classical trajectories whose interpretation is that of “observ-
able universes”. In this sense, the so called Hartle criterion
of quantum cosmology becomes a sufficient and necessary
condition to select classical universes among all those which
are possible. Working out this approach, we obtain the wave
function of the universe Ψ depending on a set of physical
parameter which are D, the initial bulk of matter, k, the
spatial curvature constant, γ, the adiabatic index of perfect
fluid matter, Λ, the parameter of the interaction potential.
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The approach allows to recover several classes of interesting
cosmological behaviors as De Sitter-like-singularity free so-
lutions, power-law solutions, and pole-like solutions [3].

However, some points have to be considered in the in-
terpretation of the approach. The Hartle criterion works in
the context of an Everett-type interpretation of Quantum
Cosmology [9, 17] which assumes the idea that the universe
branches into a large number of copies of itself whenever
a measurement is made. This point of view is the so called
Many Worlds interpretation of Quantum Cosmology. Such
an interpretation is an approach which gives a formulation
of quantum mechanics designed to deal with correlations
internal to individual, isolated systems. The Hartle criterion
gives an operative interpretation of such correlations. In par-
ticular, if the wave function is strongly peaked in some
region of configuration space, the correlations which char-
acterize such a region can be, in principle, observed. On the
other hand, if the wave function is smooth in some region,
the correlations which characterize that region are precluded
to the observations (that is, the cosmological parameters as
H0 or ΩΛ cannot be neither calculated nor observed).

If the wave function is neither peaked nor smooth, no
predictions are possible from observations. In conclusion,
the analogy with standard quantum mechanics is straight-
forward. By considering the case in which the individual
system consists of a large number of identical subsystems,
one can derive, from the above interpretation, the usual pro-
babilistic interpretation of Quantum Mechanics for the sub-
systems [11, 10]. If a conservation law (or more than one)
is present for a given minisuperspace model, then strongly
peaked (oscillatory) subsets of the wave function of the uni-
verse are found. Viceversa, oscillatory parts of the wave
function can be always connected to conserved momenta
and then to symmetries.
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