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This paper treats of vortical gravitational fields, a tensor of which is the rotor of
the general covariant gravitational inertial force. The field equations for a vortical
gravitational field (the Lorentz condition, the Maxwell-like equations, and the
continuity equation) are deduced in an analogous fashion to electrodynamics. From
the equations it is concluded that the main kind of vortical gravitational fields is
“electric”, determined by the non-stationarity of the acting gravitational inertial force.
Such a field is a medium for traveling waves of the force (they are different to the
weak deformation waves of the space metric considered in the theory of gravitational
waves). Standing waves of the gravitational inertial force and their medium, a vortical
gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of
a space body (the source of such a field) is a very rare phenomenon in the Universe.

1 The mathematical method

There are currently two methods for deducing a formula for
the Newtonian gravitational force in General Relativity. The
first method, introduced by Albert Einstein himself, has its
basis in an arbitrary interpretation of Christoffel’s symbols
in the general covariant geodesic equations (the equation of
motion of a free particle) in order to obtain a formula like
that by Newton (see [1], for instance). The second method is
due to Abraham Zelmanov, who developed it in the 1940’s
[2, 3]. This method determines the gravitational force in
an exact mathematical way, without any suppositions, as
a part of the gravitational inertial force derived from the
non-commutativity of the differential operators invariant in
an observer’s spatial section. This formula results from Zel-
manov’s mathematical apparatus of chronometric invariants
(physical observable quantities in General Relativity).

The essence of Zelmanov’s mathematical apparatus [4]
is that if an observer accompanies his reference body, his
observable quantities are the projections of four-dimensional
quantities upon his time line and the spatial section— chrono-
metrically invariant quantities, via the projecting operators
bα= dxα

ds
and hαβ =−gαβ + bαbβ , which fully define his

real reference space (here bα is his velocity relative to his
real references). So the chr.inv.-projections of a world-vector
Qα are bαQα=

Q0√
g00

and hiαQ
α=Qi, while the chr.inv.-

projections of a 2nd rank world-tensor Qαβ are bαbβQαβ =

= Q00

g00
, hiαbβQαβ =

Qi
0√
g00

, hiαh
k
βQ

αβ =Qik. The principal
physical observable properties of a space are derived from
the fact that the chr.inv.-differential operators

∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi
= ∂
∂xi
+ 1
c2
vi

∗∂
∂t

are non-commutative as
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1

c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2

c2
Aik

∗∂
∂t

, and
also that the chr.inv.-metric tensor hik=−gik+ bi bk may
not be stationary. The principal physical observable charac-
teristics are the chr.inv.-vector of the gravitational inertial

force Fi, the chr.inv.-tensor of the angular velocities of the
space rotation Aik, and the chr.inv.-tensor of the rates of the
space deformations Dik:

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

, w = c2 (1−
√
g00) , (1)

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , (2)

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln

√
h

∂t
, (3)

where w is the gravitational potential, vi=−
c g0i√
g00

is the

linear velocity of the space rotation, hik=−gik+ 1
c2
vivk

is the chr.inv.-metric tensor, h=det‖hik‖, hg00=−g, and
g=det‖gαβ‖. The observable non-uniformity of the space
is set up by the chr.inv.-Christoffel symbols

Δijk=h
imΔjk,m=

1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

, (4)

which are constructed just like Christoffel’s usual symbols
Γαμν = g

ασΓμν,σ using hik instead of gαβ .
A four-dimensional generalization of the chr.inv.-quanti-

ties Fi, Aik, and Dik is [5]

Fα=−2c
2bβaβα , (5)

Aαβ = ch
μ
αh

ν
βaμν , (6)

Dαβ = ch
μ
αh

ν
βdμν , (7)

where

aαβ =
1

2
(∇α bβ−∇β bα) , dαβ =

1

2
(∇α bβ+∇β bα) . (8)

For instance, the chr.inv.-projections of Fα are

ϕ = bαF
α =

F0
√
g00

= 0 , qi = hiαF
α = F i. (9)
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Proceeding from the exact formula for the gravitational
inertial force above, we can, for the first time, determine
vortical gravitational fields.

2 D’Alembert’s equations of the force

It is a matter of fact that two bodies attract each other due
to the transfer of the force of gravity. The force of gravity
is absent in a homogeneous gravitational field, because the
gradient of the gravitational potential w is zero everywhere
therein. Therefore it is reasonable to consider the field of the
vector potential Fα as a medium transferring gravitational
attraction via waves of the force.

D’Alembert’s equations of the vector field Fα without
its inducing sources

Fα = 0 (10)

are the equations of propagation of waves traveling in the
field∗. The equations have two chr.inv.-projections

bσ F σ = 0 , hiσ F σ = 0 , (11)

which are the same as

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 . (12)

These are the chr.inv.-d’Alembert equations for the field
Fα=−2c2a∙ασ∙b

σ without its-inducing sources. To obtain the
equations in detailed form isn’t an easy process. Helpful
here is the fact that the chr.inv.-projection of Fα upon a
time line is zero. Following this path, after some algebra,
we obtain the chr.inv.-d’Alembert equations (11) in the final
form

1
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+
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+
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+
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)
FnD−

1
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1

c4
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−hkm
{
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∂xk

(
Δi
mnF
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+Δi
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−Δn
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∗∂F i
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= 0 .






(13)

∗The waves travelling in the field of the gravitational inertial force
aren’t the same as the waves of the weak perturbations of the space metric,
routinely considered in the theory of gravitational waves.

3 A vortical gravitational field. The field tensor and
pseudo-tensor. The field invariants

We introduce the tensor of the field as a rotor of its four-
dimensional vector potential Fα as well as Maxwell’s tensor
of electromagnetic fields, namely

Fαβ = ∇αFβ −∇β Fα =
∂Fβ
∂xα

−
∂Fα
∂xβ

. (14)

We will refer to Fαβ (14) as the tensor of a vortical
gravitational field, because this is actual a four-dimensional
vortex of an acting gravitational inertial force Fα.

Taking into account that the chr.inv.-projections of the
field potential Fα=−2c2a∙ασ∙b

σ are F0√
g00
=0, F i=hikFk,

we obtain the components of the field tensor Fαβ :

F00 = F
00 = 0 , F0i = −

1

c

√
g00

∗∂Fi
∂t

, (15)

Fik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

+
1

c2

(

vi
∗∂Fk
∂t

− vk
∗∂Fi
∂t

)

, (16)

F ∙00∙ =
1

c2
vk

∗∂Fk
∂t

, F ∙i0∙ =
1

c

√
g00 h

ik
∗∂Fk
∂t

, (17)

F ∙0k∙ =
1

√
g00

[
1

c

∗∂Fk
∂t

−
1

c3
vkv

m
∗∂Fm
∂t

+

+
1

c
vm
(∗∂Fm
∂xk

−
∗∂Fk
∂xm

)]

,

(18)

F ∙ik∙ = h
im

( ∗∂Fm
∂xk

−
∗∂Fk
∂xm

)

−
1

c2
himvk

∗∂Fm
∂t

, (19)

F 0k =
1

√
g00

[
1

c
hkm

∗∂Fm
∂t

+

+
1

c
vnhmk

( ∗∂Fn
∂xm

−
∗∂Fm
∂xn

)]

,

(20)

F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

. (21)

We see here two chr.inv.-projections of the field tensor
Fαβ . We will refer to the time projection

Ei=
F ∙i0∙√
g00

=
1

c
hik

∗∂Fk
∂t

, Ei=hikE
k=

1

c

∗∂Fi
∂t

(22)

as the “electric” observable component of the vortical gravi-
tational field, while the spatial projection will be referred to
as the “magnetic” observable component of the field

Hik = F ik = himhkn
( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

, (23)

Hik = himhknH
mn =

∗∂Fi
∂xk

−
∗∂Fk
∂xi

, (24)
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which, after use of the 1st Zelmanov identity [2, 3] that
links the spatial vortex of the gravitational inertial force to
the non-stationary rotation of the observer’s space

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

=0 , (25)

takes the form

Hik = 2himhkn
∗∂Amn
∂t

, Hik = 2
∗∂Aik
∂t

. (26)

The “electric” observable component Ei of a vortical
gravitational field manifests as the non-stationarity of the
acting gravitational inertial force F i. The “magnetic” ob-
servable component Hik manifests as the presence of the
spatial vortices of the force F i or equivalently, as the non-
stationarity of the space rotation Aik (see formula 26). Thus,
two kinds of vortical gravitational fields are possible:

1. Vortical gravitational fields of the “electric” kind
(Hik=0, Ei 6=0). In this field we have no spatial
vortices of the acting gravitational inertial force F i,
which is the same as a stationary space rotation. So a
vortical field of this kind consists of only the “electric”
component Ei (22) that is the non-stationarity of the
force F i. Note that a vortical gravitational field of the
“electric” kind is permitted in both a non-holonomic
(rotating) space, if its rotation is stationary, and also
in a holonomic space since the zero rotation is the
ultimate case of stationary rotations;

2. The “magnetic” kind of vortical gravitational fields is
characterized by Ei=0 and Hik 6=0. Such a vortical
field consists of only the “magnetic” components Hik,
which are the spatial vortices of the acting force F i

and the non-stationary rotation of the space. Therefore
a vortical gravitational field of the “magnetic” kind is
permitted only in a non-holonomic space. Because the
d’Alembert equations (13), with the condition Ei=0,
don’t depend on time, a “magnetic” vortical gravita-
tional field is a medium for standing waves of the
gravitational inertial force.

In addition, we introduce the pseudotensor F ∗αβ of the
field dual to the field tensor

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (27)

where the four-dimensional completely antisymmetric dis-
criminant tensors Eαβμν = eαβμν√

−g and Eαβμν = eαβμν
√
−g

transform tensors into pseudotensors in the inhomogeneous
anisotropic four-dimensional pseudo-Riemannian space∗.

Using the components of the field tensor Fαβ , we obtain

∗Here eαβμν and eαβμν are Levi-Civita’s unit tensors: the four-
dimensional completely antisymmetric unit tensors which transform tensors
into pseudotensors in a Galilean reference frame in the four-dimensional
pseudo-Euclidean space [1].

the chr.inv.-projections of the field pseudotensor F ∗αβ :

H∗i =
F ∗∙i0∙√
g00

=
1

2
εikm

( ∗∂Fk
∂xm

−
∗∂Fm
∂xk

)

, (28)

E∗ik = F ∗ik = −
1

c
εikm

∗∂Fm
∂t

, (29)

where εikm= b0E
0ikm=

√
g00E

0ikm= eikm√
h

and εikm=

= b0E0ikm=
E0ikm√
g00

= eikm
√
h are the chr.inv.-discriminant

tensors [2]. Taking into account the 1st Zelmanov identity
(25) and the formulae for differentiating εikm and εikm [2]

∗∂εimn
∂t

= εimnD ,
∗∂εimn

∂t
= −εimnD , (30)

we write the “magnetic” component H∗i as follows

H∗i = εikm
∗∂Akm
∂t

= 2

( ∗∂Ω∗i

∂t
+Ω∗iD

)

, (31)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of the
angular velocity of the space rotation, while the trace D=
=hikDik=D

n
n of the tensor Dik is the rate of the relative

expansion of an elementary volume permeated by the field.
Calculating the invariants of a vortical gravitational field

(J1=FαβFαβ and J2=FαβF ∗αβ), we obtain

J1=h
imhkn

(∗∂Fi
∂xk

−
∗∂Fk
∂xi

)(∗∂Fm
∂xn

−
∗∂Fn
∂xm

)

−

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

,

(32)

J2 = −
2

c
εimn

( ∗∂Fm
∂xn

−
∗∂Fn
∂xm

) ∗∂Fi
∂t

, (33)

which, with the 1st Zelmanov identity (25), are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

−
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, (34)

J2 = −
4

c
εimn

∗∂Amn
∂t

∗∂Fi
∂t

=

= −
8

c

( ∗∂Ω∗i

∂t
+Ω∗iD

) ∗∂Fi
∂t

.

(35)

By the strong physical condition of isotropy, a field is
isotropic if both invariants of the field are zeroes: J1=0
means that the lengths of the “electric” and the “magnetic”
components of the field are the same, while J2=0 means
that the components are orthogonal to each other. Owning
the case of a vortical gravitational field, we see that such a
field is isotropic if the common conditions are true

himhkn
∗∂Aik
∂t

∗∂Amn
∂t

=
1

2c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

∗∂Amn
∂t

∗∂Fi
∂t

= 0





(36)
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however their geometrical sense is not clear.
Thus the anisotropic field can only be a mixed vortical

gravitational field bearing both the “electric” and the “mag-
netic” components. A strictly “electric” or “magnetic” vort-
ical gravitational field is always spatially isotropic.

Taking the above into account, we arrive at the necessary
and sufficient conditions for the existence of standing waves
of the gravitational inertial force:

1. A vortical gravitational field of the strictly “magnetic”
kind is the medium for standing waves of the gravita-
tional inertial force;

2. Standing waves of the gravitational inertial force are
permitted only in a non-stationary rotating space.

As soon as one of the conditions ceases, the acting grav-
itational inertial force changes: the standing waves of the
force transform into traveling waves.

4 The field equations of a vortical gravitational field

It is known from the theory of fields that the field equations
of a field of a four-dimensional vector-potential Aα is a
system consisting of 10 equations in 10 unknowns:

• Lorentz’s condition ∇σAσ =0 states that the four-
dimensional potential Aα remains unchanged;

• the continuity equation ∇σ jσ =0 states that the field-
inducing sources (“charges” and “currents”) can not
be destroyed but merely re-distributed in the space;

• two groups (∇σFασ = 4π
c j

α and ∇σF ∗ασ =0) of the
Maxwell-like equations, where the 1st group determ-
ines the “charge” and the “current” as the components
of the four-dimensional current vector jα of the field.

This system completely determines a vector field Aα and
its sources in a pseudo-Riemannian space. We shall deduce
the field equations for a vortical gravitational field as a field
of the four-dimensional potential Fα=−2c2a∙ασ∙b

σ .
Writing the divergence ∇σF σ = ∂Fσ

∂xσ
+ΓσσμF

μ in the
chr.inv.-form [2, 3]

∇σF
σ=

1

c

( ∗∂ϕ

∂t
+ϕD

)

+
∗∂qi

∂xi
+qi

∗∂ln
√
h

∂xi
−
1

c2
Fiq

i (37)

where
∗∂ ln

√
h

∂xi
=Δ

j
ji and

∗∂qi

∂xi
+ qiΔ

j
ji=

∗∇i qi, we obtain
the chr.inv.-Lorentz condition in a vortical gravitational field

∗∂F i

∂xi
+ F iΔ

j
ji −

1

c2
FiF

i = 0 . (38)

To deduce the Maxwell-like equations for a vortical gra-
vitational field, we collect together the chr.inv.-projections
of the field tensor Fαβ and the field pseudotensor F ∗αβ . Ex-
pressing the necessary projections with the tensor of the rate
of the space deformation Dik to eliminate the free hik terms,
we obtain

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik, (39)
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∗∂Amn
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=

= 2
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(
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kn − Ak∙∙mD
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)
,

(40)
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= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD , (41)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

. (42)

After some algebra, we obtain the chr.inv.-Maxwell-like
equations for a vortical gravitational field
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G
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Δj
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1
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(
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G
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up
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(44)

The chr.inv.-continuity equation ∇σjσ=0 for a vortical
gravitational field follows from the 1st group of the Maxwell-
like equations, and is

∗∂2

∂xi∂xk

(
∗∂Aik

∂t

)
−
1

c2

(
∗∂Aik

∂t
+Ai∙∙nD
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)(
AikD+
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∂t
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−

−
1

c2

[
∗∂2Aik

∂t2
+
∗∂
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)
]
Aik+

1

2c2

(
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+2FkD

ik

)
×

×

(∗∂Δj
ji

∂t
+
D

c2
Fi−

∗∂D

∂xi

)
+2

∗∂2

∂xi∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

+

[
∗∂Aik

∂t
+2
(
Ai∙∙nD

kn−Ak∙∙mD
im
)
][

∗∂

∂xi

(
Δj
jk−

1

c2
Fk

)
+

+
(
Δj
ji−

1

c2
Fi

)(
Δl
lk−

1

c2
Fk

)]
= 0 .

(45)

To see a simpler sense of the obtained field equations, we
take the field equations in a homogeneous space (Δikm=0)
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free of deformation (Dik=0)∗. In such a space the chr.inv.-
Maxwell-like equations obtained take the simplified form

1

c

∗∂2F i

∂xi∂t
−
2

c
Aik

∗∂Aik

∂t
= 4πρ

2
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−
2
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−
1
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=
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c
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 G
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up
I,

(46)

∗∂2Ω∗i

∂xi∂t
+
1
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Ω∗m

∗∂Fm
∂t

= 0

εikm
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∂xk∂t

−
1

c2
εikmFk
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∂t

+ 2
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∂t2
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 G
ro

up
II

,

(47)

where the field-inducing sources are

ρ =
1

4πc

( ∗∂2F i

∂xi∂t
− 2Aik

∗∂Aik
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)

, (48)
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c
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−
1
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1
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)

, (49)

and the chr.inv.-continuity equation (45) takes the form

∗∂2

∂xi∂xk

(∗∂Aik
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)

−
1
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−
1

c2

∗∂Aik
∂t

∗∂Aik

∂t
−

−
1

c2

( ∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(50)

The obtained field equations describe the main properties
of vortical gravitational fields:

1. The chr.inv.-Lorentz condition (38) shows the inho-
mogeneity of a vortical gravitational field depends on
the value of the acting gravitational inertial force F i

and also the space inhomogeneity Δjji in the direction
the force acts;

2. The 1st group of the chr.inv.-Maxwell-like equations
(43) manifests the origin of the field-inducing sources
called “charges” ρ and “currents” ji. The “charge” ρ
is derived from the inhomogeneous oscillations of the
acting force F i and also the non-stationary rotation
of the space (to within the space inhomogeneity and
deformation withheld). The “currents” ji are derived
from the non-stationary rotation of the space, the spa-
tial inhomogeneity of the non-stationarity, and the
non-stationary oscillations of the force F i (to within
the same approximation);

3. The 2nd group of the chr.inv.-Maxwell-like equations
(44) manifests the properties of the “magnetic” com-
ponent H∗i of the field. The oscillations of the acting
force F i is the main factor making the “magnetic”
component distributed inhomogeneously in the space.

∗Such a space has no waves of the space metric (waves the
space deformation), however waves of the gravitational inertial force are
permitted therein.

If there is no acting force (F i=0) and the space is free
of deformation (Dik=0), the “magnetic” component
is stationary.

4. The chr.inv.-continuity equation (50) manifests in the
fact that the “charges” and the “currents” inducing
a vortical gravitational field, being located in a non-
deforming homogeneous space, remain unchanged
while the space rotation remains stationary.

Properties of waves travelling in a field of a gravitational
inertial force reveal themselves when we equate the field
sources ρ and ji to zero in the field equations (because a
free field is a wave):

∗∂2F i

∂xi∂t
= 2Aik

∗∂Aik

∂t
, (51)

∗∂2Aik

∂xk∂t
=
1

c2
Fk

∗∂Aik

∂t
+

1

2c2

∗∂2F i

∂t2
, (52)

which lead us to the following conclusions:

1. The inhomogeneous oscillations of the gravitational
inertial force F i, acting in a free vortical gravitational
field, is derived mainly from the non-stationary rota-
tion of the space;

2. The inhomogeneity of the non-stationary rotations of
a space, filled with a free vortical gravitational field, is
derived mainly from the non-stationarity of the oscil-
lations of the force and also the absolute values of the
force and the angular acceleration of the space.

The foregoing results show that numerous properties of
vortical gravitational fields manifest only if such a field is
due strictly to the “electric” or the “magnetic” kind. This fact
forces us to study these two kinds of vortical gravitational
fields separately.

5 A vortical gravitational field of the “electric” kind

We shall consider a vortical gravitational field strictly of the
“electric” kind, which is characterized as follows

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

= 0 , (53)

Hik = 2himhkn
∗∂Amn
∂t

= 0 , (54)

Ei =
1

c

∗∂Fi
∂t

6= 0 , (55)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik 6= 0 , (56)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD = 0 , (57)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

6= 0 . (58)
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We are actually considering a stationary rotating space
(if it rotates) filled with the field of a non-stationary gravita-
tional inertial force without spatial vortices of the force. This
is the main kind of vortical gravitational fields, because a
non-stationary rotation of a space body is very rare (see the
“magnetic” kind of fields in the next Section).

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38), because the condition does not
have the components of the field tensor Fαβ .

The field invariants J1=FαβFαβ and J2=FαβF ∗αβ

(34, 35) in this case are

J1 = −
2

c2
hik

∗∂Fi
∂t

∗∂Fk
∂t

, J2 = 0 . (59)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “electric” kind are

∗∇iE
i = 4πρ

1

c

( ∗∂Ei

∂t
+ EiD

)

= −
4π

c
ji





Group I, (60)

E∗ikAik = 0

∗∇kE
∗ik −

1

c2
FkE

∗ik = 0





Group II, (61)

and, after Ei and E∗ik are substituted, take the form

1

c

∗∂2F i

∂xi∂t
+
1

c

(
∗∂F i

∂t
+2FkD

ik

)
Δj
ji+

+
2

c

∗∂

∂xi

(
FkD

ik
)
=4πρ

1

c2

∗∂2F i

∂t2
+
2

c2

∗∂

∂t

(
FkD

ik
)
+

+
1

c2

(
∗∂F i

∂t
+2FkD

ik

)
D=−

4π

c
ji






Group I, (62)

1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

+ εikm
(
Δj
jk −

1

c2
Fk

) ∗∂Fm
∂t

= 0





Group II. (63)

The chr.inv.-continuity equation for such a field, in the
general case of a deforming inhomogeneous space, takes the
following form
( ∗∂F i

∂t
+ 2FkD

ik

)( ∗∂Δ
j
ji

∂t
−

∗∂D

∂xi
+
D

c2
Fi

)

= 0 , (64)

and becomes the identity “zero equal to zero” in the absen-
ce of space inhomogeneity and deformation. In fact, the chr.
inv.-continuity equation implies that one of the conditions

∗∂F i

∂t
= −2FkD

ik,
∗∂Δ

j
ji

∂t
=

∗∂D

∂xi
−
D

c2
Fi (65)

or both, are true in such a vortical gravitational field.

The chr.inv.-Maxwell-like equations (62, 63) in a non-
deforming homogeneous space become much simpler

1

c

∗∂2F i

∂xi∂t
= 4πρ

1

c2

∗∂2F i

∂t2
= −

4π

c
ji





Group I, (66)

1

c2
Ω∗m

∗∂Fm
∂t

= 0

εikm
∗∂2Fm
∂xk∂t

−
1

c2
εikmFk

∗∂Fm
∂t

= 0





Group II. (67)

The field equations obtained specify the properties for
vortical gravitational fields of the “electric” kind:

1. The field-inducing sources ρ and ji are derived mainly
from the inhomogeneous oscillations of the acting gra-
vitational inertial force F i (the “charges” ρ) and the
non-stationarity of the oscillations (the “currents” ji);

2. Such a field is permitted in a rotating space Ω∗i 6=0, if
the space is inhomogeneous (Δikn 6=0) and deforming
(Dik 6=0). The field is permitted in a non-deforming ho-
mogeneous space, if the space is holonomic (Ω∗i=0);

3. Waves of the acting force F i travelling in such a field
are permitted in the case where the oscillations of the
force are homogeneous and stable;

4. The sources ρ and qi inducing such a field remain
constant in a non-deforming homogeneous space.

6 A vortical gravitational field of the “magnetic” kind

A vortical gravitational field strictly of the “magnetic” kind
is characterized by its own observable components

Hik =
∗∂Fi
∂xk

−
∗∂Fk
∂xi

= 2
∗∂Aik
∂t

6= 0 , (68)

Hik = 2himhkn
∗∂Amn
∂t

6= 0 , (69)

Ei =
1

c

∗∂Fi
∂t

= 0 , (70)

Ei =
1

c
hik

∗∂Fk
∂t

=
1

c

∗∂F i

∂t
+
2

c
FkD

ik = 0 , (71)

H∗i = εimn
∗∂Amn
∂t

= 2
∗∂Ω∗i

∂t
+ 2Ω∗iD 6= 0 , (72)

E∗ik = −
1

c
εikm

∗∂Fm
∂t

= 0 . (73)

Actually, in such a case, we have a non-stationary rotat-
ing space filled with the spatial vortices of a stationary grav-
itational inertial force Fi. Such kinds of vortical gravita-
tional fields are exotic compared to those of the “electric”
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kind, because a non-stationary rotation of a bulky space body
(planet, star, galaxy) — the generator of such a field — is a
very rare phenomenon in the Universe.

In this case the chr.inv.-Lorentz condition doesn’t change
to the general formula (38) or for a vortical gravitational
field of the “electric” kind, because the condition has no
components of the field tensor Fαβ .

The field invariants (34, 35) in the case are

J1 = 4h
imhkn

∗∂Aik
∂t

∗∂Amn
∂t

, J2 = 0 . (74)

The chr.inv.-Maxwell-like equations for a vortical gravi-
tational field strictly of the “magnetic” kind are

1

c
HikAik = −4πρ

∗∇kH
ik −

1

c2
FkH

ik =
4π

c
ji





Group I, (75)

∗∇iH
∗i = 0

∗∂H∗i

∂t
+H∗iD = 0





Group II, (76)

which, after substituting for Hik and H∗i, are

1

c
Aik

∗∂Aik
∂t

= −2πρ

∗∂2Aik

∂xk∂t
+2

∗∂

∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+
(
Δj
jk−

1

c2
Fk

)
×

×

{
∗∂Aik

∂t
+ 2
(
Ai∙∙nD

kn − Ak∙∙mD
im
)
}
=
2π

c
ji






G
ro

up
I,

(77)

∗∂2Ω∗i

∂xi∂t
+

∗∂

∂xi

(
Ω∗iD

)
+

(
∗∂Ω∗i

∂t
+Ω∗iD

)
Δj
ji = 0

∗∂2Ω∗i

∂t2
+

∗∂

∂t

(
Ω∗iD

)
+

(
∗∂Ω∗i

∂t
+Ω∗iD

)
D = 0




 G
ro

up
II

.

(78)

The chr.inv.-continuity equation for such a field, in a de-
forming inhomogeneous space, is

∗∂2

∂xi∂xk

(
∗∂Aik

∂t

)
−
1

c2
Aik

∗∂2Aik
∂t2

−
1

c2

(
∗∂Aik

∂t
+AikD

)
×

×
∗∂Aik
∂t

+2
∗∂2

∂xi∂xk

(
Ai∙∙nD

kn−Ak∙∙mD
im
)
+

{
∗∂Aik

∂t
+

+2
(
Ai∙∙nD

kn − Ak∙∙mD
im
)
}{( ∗∂Δj

jk

∂xi
−
1

c2

∗∂Fk
∂xi

+

+
(
Δj
jk −

1

c2
Fk

)(
Δl
li −

1

c2
Fi

)}
= 0 .

(79)

If the space is homogeneous and free of deformation, the
continuity equation becomes

∗∂2

∂xi∂xk

(∗∂Aik

∂t

)

−
1

c2
Aik

∗∂2Aik
∂t2

−

−
1

c2

( ∗∂Aik
∂t

+
∗∂Fk
∂xi

−
1

c2
FiFk

) ∗∂Aik

∂t
= 0 .

(80)

In such a case (a homogeneous space free of deforma-
tion) the chr.inv.-Maxwell-like equations (77, 78) become

1

c
Aik

∗∂Aik
∂t

= −2πρ

∗∂2Aik

∂xk∂t
−
1

c2
Fk

∗∂Aik

∂t
=
2π

c
ji





Group I, (81)

∗∂2Ω∗i

∂xi∂t
= 0

∗∂2Ω∗i

∂t2
= 0





Group II. (82)

The obtained field equations characterizing a vortical
gravitational field of the “magnetic” kind specify the prop-
erties of such kinds of fields:

1. The field-inducing “charges” ρ are derived mainly
from the non-stationary rotation of the space, while
the field “currents” ji are derived mainly from the
non-stationarity and its spatial inhomogeneity;

2. Such a field is permitted in a non-deforming homoge-
neous space, if the space rotates homogeneously at a
constant acceleration;

3. Waves in such a field are standing waves of the acting
gravitational inertial force. The waves are permitted
only in a space which is inhomogeneous (Δikn 6=0)
and deforming (Dik 6=0);

4. The sources ρ and ji inducing such a field remain
unchanged in a non-deforming homogeneous space
where F i 6=0.

7 Conclusions

According the foregoing results, we conclude that the main
kind of vortical gravitational fields is “electric”, derived from
a non-stationary gravitational inertial force and, in part, the
space deformation. Such a field is a medium for traveling
waves of the gravitational inertial force. Standing waves
of a gravitational inertial force are permitted in a vortical
gravitational field of the “magnetic” kind (spatial vortices
of a gravitational inertial force or, that is the same, a non-
stationary rotation of the space). Standing waves of the grav-
itational inertial force and their medium, a vortical gravita-
tional field of the “magnetic” kind, are exotic, due to a non-
stationary rotation of a bulky space body (the source of such
a field) is a very rare phenomenon in the Universe.

It is a matter of fact that gravitational attraction is an
everyday reality, so the traveling waves of the gravitational
inertial force transferring the attraction should be incontro-
vertible. I think that the satellite experiment, propounded
in [6], would detect the travelling waves since the amplitudes
of the lunar or the solar flow waves should be perceptible.
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