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We consider the Podkletnov effect — the weight loss of an object located over a
superconducting disc in air due to support by an alternating magnetic field. We
consider this problem using the mathematical methods of General Relativity. We
show via Einstein’s equations and the geodesic equations in a space perturbed by
a disc undergoing oscillatory bounces orthogonal to its own plane, that there is no
rôle of superconductivity; the Podkletnov effect is due to the fact that the field of
the background space non-holonomity (the basic non-othogonality of time lines to
the spatial section), being perturbed by such an oscillating disc produces energy and
momentum flow in order to compensate the perturbation in itself. Such a momentum
flow is directed above the disc in Podkletnov’s experiment, so it works like negative
gravity (anti-gravity). We propose a simple mechanical system which, simulating the
Podkletnov effect, is an experimental test of the whole theory. The theory allows for
other “anti-gravity devices”, which simulate the Podkletnov effect without use of very
costly superconductor technology. Such devices could be applied to be used as a cheap
source of new energy, and could have implications to air and space travel.
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1 Introducing Podkletnov’s experiment

In 1992, Eugene Podkletnov and his team at the Tampere
Institute of Technology (Finland) tested the uniformity of a
unique bulky superconductor disc, rotating at high speed via
a magnetic field [1]. The 145×6-mm superconductor disc
was horizontally oreinted in a cryostat and surrounded by
liquid helium. A small current was initiated in the disc by
outer electromagnets, after which the medium was cooled
to 20–70 K. As the disc achieved superconductivity, and the
state became stable, another electromagnet located under the
cryostat was switched on. Due to the Meissner-Ochsenfeld
effect the magnetic field lifted the disc into the air. The disc
was then driven by the outer electromagnets to 5000 rpm.

A small non-conducting and non-magnetic sample was
suspended over the cryostat where the rotating disc was con-
tained. The weight of the sample was measured with high
precision by an electro-optical balance system. “The sample
with the initial weight of 5.47834 g was found to lose about
0.05% of its weight when placed over the levitating disc
without any rotation. When the rotation speed of the disc
increased, the weight of the sample became unstable and
gave fluctuations from −2.5 to +5.4% of the initial value.
[ . . . ] The levitating superconducting disc was found to rise
by up to 7 mm when its rotation moment increased. Test
measurements without the superconducting shielding disc
but with all operating solenoids connected to the power sup-
ply, had no effect on the weight of the sample” [1].

Additional results were obtained by Podkletnov in 1997,
with a larger disc (a 275/80×10-mm toroid) run under
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Fig. 1: Cryogenic system in Podkletnov’s experiment [2]. Courtesy
of E. Podkletnov. Used by permission.

Fig. 2: Supporting and rotating solenoids in Podkletnov’s experi-
ment [2]. Courtesy of E. Podkletnov. Used by permission.

similar conditions [2]: “The levitating disc revealed a clearly
measurable shielding effect against the gravitational force
even without rotation. In this situation, the weight-loss
values for various samples ranged from 0.05 to 0.07%. [. . .]
Samples made from the same material and of comparable
size, but with different masses, lost the same fraction of their
weight. [. . .] Samples placed over the rotating disc initially
demonstrated a weight loss of 0.3–0.5%. When the rotation
speed was slowly reduced by changing the current in the
solenoids, the shielding effect became considerably higher
and reached 1.9–2.1% at maximum” [2].

Two groups of researchers supported by Boeing and
NASA, and also a few other research teams, have attempted
to replicate the Podkletnov experiment in recent years [3–7].
The main problem they encountered was the reproduction of
the technology used by Podkletnov in his laboratory to pro-
duce sufficiently large superconductive ceramics. The tech-
nology is very costly: according to Podkletnov [8] this re-

Fig. 3: Weight and pressure measurement in Podkletnov’s experi-
ment [2]. Courtesy of E. Podkletnov. Used by permission.

quires tens of millions of dollars. Therefore the aforemen-
tioned organisations tested discs of much smaller size, about
1′′ diameter; so they produced controversial results at the
boundary of precision measurement. As was pointed out
by Podkletnov in his recent interview (April, 2006), the
NASA team, after years of unsuccessful attempts, made a
12′′ disc of superconductive ceramic. However, due to the
crude internal structure (this is one of the main problems
in making such discs), they were unable to use the disc to
replicate his experiment [8].

Podkletnov also recently reported on a “gravity field gen-
erator” [8, 9] constructed in his laboratory in recent years,
on the basis of the earlier observed phenomenon.

In a nutshell, the aforementioned phenomenon is as fol-
lows. We will refer to this as the Podkletnov effect:

When a disc of superconductive ceramic, being in
the state of superconductivity, is suspended in air by
an alternating magnetic field due to an electromagnet
located under the disc, the disc is the source of a
radiation. This radiation, traveling like a plane wave
above the disc, acts on other bodies like a negative
gravity. The radiation becomes stronger with larger
discs, so it depends on the disc’s mass and radius.
When the disc rotates uniformly, the radiation re-
mains the same. During acceleration/braking of the
disc’s rotation, the radiation essentially increases.

Podkletnov claimed many times that he discovered the
effect by chance, not by any theoretical prediction. Being
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an experimentalist who pioneered this field of research, he
continued his experiments blindfolded: in the absence of a
theoretical reason, the cause of the observed weight loss was
unclear. This is why neither Podkletnov nor his followers
at Boeing and NASA didn’t develop a new experiment by
which the weight loss effect substantially increased.

For instance, Podkletnov still believes that the key to
his experiment is that special state which is specific to the
electron gas inside superconductive materials in the state
of superconductivity [8]. He and all the others therefore
focused attention on low temperature superconductive cer-
amics, production of which, taking the large size of the discs
into account, is a highly complicated and very costly process,
beyond most laboratories. In fact, during the last 15 years
only Podkletnov’s laboratory has had the ability to produce
such the discs with sufficient quality.

We propose a purely theoretical approach to this prob-
lem. We consider Podkletnov’s experiment using the math-
ematical methods of General Relativity, in the Einstenian
sense: we represent all essential components of the experi-
ment as a result of the geometrical properties of the lab-
oratory space such as the space non-uniformity, rotation,
deformation, and curvature. We build a complete theory of
the Podkletnov effect on the basis of General Relativity.

By this we will see that there is no rôle for superconduc-
tivity; Podkletnov’s effect has a purely mechanical origin
due in that the vertical oscillation of the disc, produced by
the supporting alternating magnetic field, and the angular
acceleration/braking of the disc’s rotation, perturb a homo-
geneous field of the basic non-holonomity of the space (the
basic non-othogonality of time lines to the spatial section,
known from the theory of non-holonomic manifolds). As
a result the non-holonomity field, initially homogeneous,
is locally stressed, which is expressed by a change of the
left side of Einstein’s equations (geometry) and, through
the conservation law, a corresponding change of the right
side — the energy-momentum tensor for distributed matter
(the alternating magnetic field, in this case). In other words,
the perturbed field of the space non-holonomity produces
energy-momentum in order to compensate for the local per-
turbation in itself. As we will see, the spatial momentum
is directed above the disc in Podkletnov’s experiment, so it
works like negative gravity.

Owing to our theory we know definitely the key para-
meters ruling the weight loss effect. Therefore, following
our calculation, it is easy to propose an experiment wherein
the weight loss substantially increases.

For example, we describe a new experiment where the
Podkletnov effect manifests via simple electro-mechanical
equipment, without costly superconductor technology. This
new experiment can be replicated in any physics laboratory.

We therefore claim thta with our mathematical theory
of the Podkletnov effect, within the framework of General
Relativity, we can calculate the factors ruling the weight loss.

This gives us an opportunity to construct actual working
devices which could revolutionize air and space travel. Such
new technology, which uses high frequency electromagnetic
generators and mechanical equipment instead of costly su-
perconductors, can be the subject of further research on a
commercial basis (due to the fact that applied research is
outside academia).

Besides, additional energy-momentum produced by the
space non-holonomity field in order to compensate for a
local perturbation in itself, means that the Podkletnov effect
can be used to produce new energy.

By our advanced study (not included in this paper), of
our mathematical theory, that herein gives the key factors
which rule the new energy, lends itself to the construction of
devices which generate the new energy, powered by strong
electromagnetic fields, not nuclear reactions and atomic fuel.
Therefore this technology, free of radioactive waste, can be
a source of clean energy.

2 The non-holonomic background space

2.1 Preliminary data from topology

In this Section we construct a space metric which includes
a basic (primordial) non-holonomity, i.e. a basic field of the
non-orthogonality of the time lines to the three-dimensional
spatial section.

Here is some information from topology Each axis of
a Euclidean space can be represented as the element of a
circle with infinite radius [10]. An n-dimensional torus is
the topological product of n circles. The volume of an n-
dimensional torus is completely equivalent to the surface of
an (n+1)-dimensional sphere. Any compact metric space of
n dimensions can be mapped homeomorphicly into a subset
of a Euclidean space of 2n+1 dimensions.

Sequences of stochastic transitions between configura-
tions of different dimensions can be considered as stochastic
vector quantities (fields). The extremum of a distribution
function for frequencies of the stochastic transitions depen-
dent on n gives the most probable number of the dimensions,
and, taking the mapping n→ 2n+1 into account, the most
probable configuration of the space. This function was first
studied in the 1960’s by di Bartini [11, 12, 13]. He found that
the function has extrema at 2n+1=±7 that is equivalent
to a 3-dimensional vortical torus coaxial with another, the
same vortical torus, mirrored with the first one. Each of the
torii is equivalent to a (3+1)-dimensional sphere. Its con-
figuration can be easy calculated, because such formations
were studied by Lewis and Larmore. A vortical torus has
no breaks if the current lines coincide with the trajectory of
the vortex core. Proceeding from the continuity condition,
di Bartini found the most probable configuration of
the vortical torus is it characterized by the ratio E= D

r =
= 1
4 e

6.9996968= 274.074996 between the torus diameter D
and the radius of torus circulation r.
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We apply di Bartini’s result from topology to General
Relativity. The time axis is represented as the element of
the circle of radius R= 1

2D, while the spatial axes are the
elements of three small circles of radii r (the topological
product of which is the 3-dimensional vortical torus). In a
“metric” representation by a Minkowski diagram, the torus
is a 3-dimensional spatial section of the given (3+1)-space
while the time lines have some inclination to the the spatial
section. In order for the torus (the 3-dimensional space of
our world) to be uniform without break, all the time lines
have the same inclination to the spatial section at each point
of the section.

Cosines of the angles between the coordinate axes, in
Riemannian geometry, are represent by the components of
the fundamental metric tensor gαβ [14]. If the time lines are
everywhere orthogonal to the spatial section, all g0i are zero:
g0i=0. Such a space is called holonomic. If not (g0i 6=0),
the space is said to be non-holonomic. As was shown in
the 1940’s by Zelmanov [15, 16, 17], a field of the space
non-holonomity (inclinations of the time lines to the spatial
section) manifests as a rotation of the space with a
3-dimensional velocity vi=−

cg0i√
g00

. The mathematical proof
is given in Appendix 1.

So a field with the same inclination of the time lines
to the spatial section is characterized, in the absence of
gravitational fields, by vi=−cg0i= const at each point of
the spatial section. In other words, this is a field of the ho-
mogeneous non-holonomity (rotation) of the whole space. It
is hard to explain such a field by everyday analogy, because
it has zero angular speed, and also no centre of rotation.
However owing to the space-time representation by a Min-
kowski diagram, it appears very simply as a field of which
the time arrows pierce the hyper-surface of the spatial
section with the same inclination at each point.

After di Bartini’s result, we therefore conclude that the
most probable configuration of the basic space (space-time)
of General Relativity is represented by a primordially non-
holonomic (3+1)-dimensional pseudo-Riemannian space,
where the non-holonomic background field is homogeneous,
which manifests in the spatial section (3-dimensional space)
as the presence of two fundamental drift-fields:

1. A homogeneous field of the constant linear velocity of
the background space rotation

v̄ = c
r

R
=
2c

E
= const = 2.187671×108 cm/sec (1)

which originates from the fact that, given the non-
holonomic space, the time-like spread R depends on
the spatial-like spread r as R

r =
1
2E=137.037498. The

background space rotation, with v̄ = 2,187.671 km/sec
at each point of the space, is due to the continuity
condition everywhere inside the torus;

2. A homogeneous drift-field of the constant dipole-fit

linear velocity

v̄ =
v̄

2π
= const = 3.481787×107 cm/sec (2)

which characterizes a spatial linear drift of the non-
holonomic background relative to any given observer.
The field of the spatial drift with v̄ = 348.1787 km/sec
is also present at each point of the space.

In the spatial section the background space rotation with
v̄=2,187.671km/sec is observed as absolute motion. This
is due to the fact that a rotation due to the space non-
holonomity is relative to time, not the spatial coordinates.
Despite this, as proven by Zelmanov [15, 16, 17], such a
rotation relates to spatial rotation, if any.

2.2 The space metric which includes a non-holonomic
background

We are going to derive the metric of a non-holonomic space,
which has the aforementioned most probable configuration
for the (3+1)-space of General Relativity. To do this we
consider an element of volume of the space (the elementary
volume).

We consider the pseudo-Riemannian (3+1)-space of Ge-
neral Relativity. Let it be non-holonomic so that the non-
holonomity field is homogeneous, i.e. manifests as a homo-
geneous space-time rotation with a linear velocity v, which
has the same numerical value along all three spatial axes
at each point of the space. The elementary 4-dimensional
interval in such a space is

ds2 = c2dt2 +
2v

c
cdt (dx+ dy + dz) −

− dx2 − dy2 − dz2,
(3)

where the second term is not reduced, for clarity.
We denote the numerical coefficient, which characterize

the space rotation (see the second term on the right side),
as α= v/c. We mean, consider the most probable confi-
guration of the (3+1)-space, v= v̄= 2,187.671km/sec and
also α= v̄ /c= 1/137.037498. The ratio α= v̄ /c specific to
the space (it characterizes the background non-holonomity
of the space), coincides with the analytical value of Som-
merfeld’s fine-structure constant [11, 12, 13], connected to
electromagnetic interactions.∗

Given the most probable configuration of the space, each
3-dimensional volume element rotates with the linear veloc-
ity v̄= 2,187.671km/sec and moves with the velocity v̄ =
= v̄

2π = 348.1787 km/sec relative toward any observer loc-
ated in the space. The metric (3) contains the space rotation
only. To modify the metric for the most probable configura-

∗Tests based on the quantum Hall effect and the anomalous magnetic
moment of the electron, give different experimental values for Sommer-
feld’s constant, close to the analytical value. For instance, the latest tests
(2006) gave α' 1/137.035999710(96) [18].
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ds2 = c2dt2 +
2v (cosϕ+ sinϕ)

c
cdtdr +

2vr (cosϕ− sinϕ)
c

cdtdϕ+
2v

c
cdtdz−

− dr2 +
2vv (cosϕ+ sinϕ)

c2
drdz − r2dϕ2 +

2vvr (cosϕ− sinϕ)
c2

dϕdz − dz2
(7)

tion, we should apply Lorentz’ transformation along the
direction of the space motion.

We choose the z-axis for the direction of space motion.
For clarity of further calculation, we use the cylindrical co-
ordinates r, ϕ, z

x = r cosϕ , y = r sinϕ , z = z , (4)

so the metric (3) in the new coordinates takes the form

ds2 = c2dt2 +
2v

c
(cosϕ+ sinϕ) cdtdr+

+
2vr

c
(cosϕ− sinϕ) cdtdϕ+

2v

c
cdtdz−

− dr2 − r2dϕ2 − dz2.

(5)

Substituting the quantities t̃ and z̃ of Lorentz’ transfor-
mations

t̃ =
t+ vz

c2√
1− v2

c2

, z̃ =
z + vt
√
1− v2

c2

, (6)

for t and z in the metric (5), we obtain the metric for a
volume element which rotates with the constant velocity
v̄=αc and approaches with the constant velocity v= v̄ with
respect to any observer located in the space. This is formula
(7) shown on the top of this page. In that formula

1
√
1− v2

c2

=
1

√
1− v̄2

c2

= const ' 1 , (8)

due to that fact that, in the framework of this problem, v� c.
Besides there is also v� c, so that the second order terms
reduce each other. We still do not reduce the numerical
coefficient c of the non-diagonal space-time terms so that
they are easily recognized in the metric.

Because the non-holonomic metric (7) satisfies the most
probable configuration for such a (3+1)-space, we regard it
as the background metric of the world.

2.3 Study of the background metric. The main charac-
teristics of the background space

We now calculate the main characteristics of the space which
are invariant within a fixed three-dimensional spatial section,
connected to an observer. Such quantities are related to the
chronometric invariants, which are the physical observable
quantities in General Relativity [15, 16, 17] (see Appendix 2).

After the components of the fundamental metric tensor
gαβ are obtained from the background metric (7), we cal-
culate the main observable characteristics of the space (see
Appendix 2). It follows that in the space:

v

c
=
v̄

c
= α = const,

vv

c2
=
αv̄

c
=

v̄2

2πc2
= const , (9)

the gravitational potential w is zero

g00 = 1 , w = c2
(
1−
√
g00
)
= 0 , (10)

the linear velocity of the space rotation vi=−
cg0i√
g00

is

v1 = − v̄ (cosϕ+ sinϕ)

v2 = − v̄r (cosϕ− sinϕ)

v3 = − v̄





(11)

the relativistic multiplier is unity (within the number of sign-
ificant digits)

1
√
1− v̄2

c2

=
1

0.9999993
= 1 , (12)

the gravitational inertial force Fi, the angular velocity of the
space rotation Aik, the space deformation Dik, and the space
curvature Cik are zero

Fi = 0 , Aik = 0 , Dik = 0 , Cik = 0 , (13)

while of all the chr.inv.-Christoffel symbols Δikm, only two
components are non-zero,

Δ122 = −r , Δ212 =
1

r
. (14)

The non-holonomic background space is free of distrib-
uted matter, so the energy-momentum tensor is zero therein.
Hence, as seen from the chr.inv.-Einstein equations (see Ap-
pendix 2), the background space necessarily has

λ = 0 , (15)

i.e. it is also free of physical vacuum (λ-field). In other
words, the non-holonomic background space is empty.

We conclude for the background space exposed by the
non-holonomic background metric (7), that

The non-holonomic background space satisfying the
most probable configuration of the (3+1)-space of
General Relativity is a flat pseudo-Riemannian space
with the 3-dimensional Euclidean metric and a con-
stant space-time rotation. The background space is
empty; it permits neither distributed matter or vacuum
(λ-field). The background space is not one an Ein-
stein space (where Rαβ = kgαβ , k= const) due to
the fact that Einstein’s equations have k=0 in the
background space. To be an Einstein space, the back-
ground space should be perturbed.

Read about Einstein spaces and their formal determina-
tion in Einstein Spaces by A. Z. Petrov [19].

It should be noted that of the fact that the 3-dimensional
Euclidean metric means only Fi=0, Aik=0, Dik=0 and
Cik=0. The Christoffel symbols can be Δimn 6=0 due to the
curvilinear coordinates.
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ds2 =

(

1−
2GM

c2z

)

c2dt2 +
2v (cosϕ+ sinϕ)

c
cdtdr +

2vr (cosϕ− sinϕ)
c

cdtdϕ+
2v

c
cdtdz−

− dr2 +
2vv (cosϕ+ sinϕ)

c2
drdz − r2dϕ2 +

2vvr (cosϕ− sinϕ)
c2

dϕdz −

(

1 +
2GM

c2z

)

dz2
(20)

2.4 Perturbation of the non-holonomic background

How does a gravitational field and local rotation (the gravita-
tional field of the Earth and the rotation of a disc, for ins-
tance) affect the metric? This we now describe.

The ratio v /c, according to the continuity condition in the
space (see §2), equals Sommerfeld’s fine-structure constant
α= v̄ /c= 1/137.037498 only if the non-holonomic back-
ground metric is unperturbed by a local rotation, so the
space non-holonomity appears as a homogeneous field of
the constant linear velocity of the space rotation v̄, which
is 2,187.671 km/sec. The gravitational potential w appears
in General Relativity as w= c2(1−

√
g00), i.e. connected to

g00. So the presence of a gravity field changes the linear
velocity of the space rotation vi=−

cg0i√
g00

. For an Earth-

bound laboratory, we have w
c2
= GM

c2z
'7×10−10. This numer-

ical value is so small that perturbations of the non-holonomic
background through g00, by the Earth’s gravitational field,
are weak. Another case — local rotations. A local rotation
with a linear velocity ṽ or a gravitational potential w per-
turbs the homogeneous field of the space non-holonomity,
the ratio v /c in that area changes from the initial value
α= v̄ /c= 1/137.037498 to a new, perturbed value

v

c
=
v̄ + ṽ

c
= α+

ṽ

v̄
α . (16)

This fact should be taken into account in all formulae
which include v or the derivatives.

Consider a high speed gyro used in aviation navigation: a
250 g rotor of 1.65′′ diameter, rotating with an angular speed
of 24,000 rpm. With modern equipment this is almost the
uppermost speed for such a mechanically rotating system∗. In
such a case the background field of the space non-holonomity
is perturbed near the giro as ṽ≈ 53 m/sec, that is 2.4×10−5

of the background v̄= 2,187.671km/sec. Larger effects are
expected for a submarine gyro, where the rotor and, hence,
the linear velocity of the rotation is larger. In other words, the
non-holonomic background can be substantially perturbed
near such a mechanically rotating system.

2.5 The background metric perturbed by a gravita-
tional field

The formula for the linear velocity of the space rotation

vi = −c
g0i
√
g00

, (17)

∗Mechanical gyros used in aviation and submarine navigation techno-
logy have rotations in the range 6,000–30,000 rpm. The upper speed is
limited by problems due to friction.

was derived by Zelmanov [15, 16, 17], due to the space non-
holonomity, and originating in it. It is evident that if the same
numerical value vi= const remains unchanged everywhere
in the spatial section (i.e. ∗∇i vi=0)†

vi = const
∗∇i v

i = 0

}

(18)

there is a homogeneous field of the space non-holonomity.
By the formula (17), given a homogeneous field of the space
non-holonomity, any local rotation of the space (expressed
with g0i) and also a gravitational potential (contained in g00)
perturb the homogeneous non-holonomic background.

We modify the background metric (7) to that case where
the homogeneous non-holonomic background is perturbed
by a weak gravitational field, produced by a bulky point
massM , that is usual for observations in a laboratory located
on the Earth’s surface or near orbit. The gravitational poten-
tial in General Relativity is w= c2(1−

√
g00). We assume

gravity acting in the z-direction, i.e. w= GM
z , and we omit

terms of higher than the second order in c, following the
usual approximation in General Relativity (see Landau and
Lifshitz [20] for instance). We substitute

g00 =
(
1−

w

c2

)2
=

(

1−
GM

c2z

)2
' 1−

2GM

c2z
6=1 (19)

into the first term of the initial metric (5). After Lorentz’
transformations, we obtain a formula for the non-holonomic
background metric (7) perturbed by such a field of gravity.
This is formula (20) displayed on the top of this page.

2.6 The background metric perturbed by a local oscil-
lation and gravitational field

A superconducting disc in air under the influence of an alt-
ernating magnetic field of an electromagnet located beneath
it, undergoes oscillatory bounces with the frequency of the
current, in a vertical direction (the same that of the Earth’s
gravity — the z-direction in our cylindrical coordinates).

We set up a harmonic transformation of the z-coordinate

z̃ = z + z0 cos
Ω

c
u , u = ct+ z , (21)

where z0 is the initial deviation (the amplitude of the oscilla-
tion), while Ω is the frequency. After calculating dz̃ and
dz̃2 (22), and using these instead of dz and dz2 in the non-
holonomic background metric (7), we obtain the background
metric (7) perturbed by the local oscillation and gravitational
field. This is formula (23) shown above.

†See Appendix 2 for the chr.inv.-differentiation symbol ∗∇.
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(22)

ds2 =

[
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Ω
c u
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c
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(23)

ds2 =

(

1−
2GM

c2z
−
2Ωz0v

c2
sin

Ω

c
u

)

c2dt2 +
2v (cosϕ+ sinϕ)

c
cdt dr +

2vr (cosϕ− sinϕ)
c

cdt dϕ +
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c

(
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u

)

cdt dz − dr2 − r2dϕ2 − dz2
(25)

3 The space of a suspended, vertically oscillating disc

3.1 The main characteristics of the space

Metric (23) is very difficult in use. However, under the phys-
ical conditions of a real experiment, many terms vanish so
that the metric reduces to a simple form. We show how.

Consider a system like that used by Podkletnov in his
experiment: a horizontally oriented disc suspended in air
due to an alternating high-frequent magnetic field generated
by an electromagnet located beneath the disc. Such a disc
undergoes an oscillatory bounce along the vertical axis with
a frequency which is the same as that of the alternating
magnetic field. We apply metric (23) to this case, i.e. the
metric of the space near such a disc.

First, because the initial deviation of such a disc from
the rest point is very small (z0� z), we have

2GM

c2
(
z+z0 cos

Ω
c u
)'

2GM

c2z

(

1−
z0
z
cos

Ω

c
u

)

'
2GM

c2z
. (24)

Second, the relativistic square is K =1. Third, under
the conditions of a real experiment like Podkletnov’s, the

terms Ω2z20
c2

Ω2z0
c

, Ωz0
c

, v2

c2
and v

c
have such small num-

erical values that they can be omitted from the equations.
The metric (23) then takes the much simplified form, shown
as expression (25) at the top of this page. In other words,
the expression (25) represents the metric of the space of a
disc which undergoes an oscillatory bounce orthogonal to its
own plane, in the conditions of a real experiment. This is the

main metric which will be used henceforth in our study for
the Podkletnov effect.

We calculate the main observable characteristics of such
a space according to Appendix 2.

In such a space the gravitational potential w and the com-
ponents of the linear velocity of the space rotation vi are

w =
GM

z
+

(

Ωz0 sin
Ω

c
u

)

v , (26)

v1 = −v (cosϕ+ sinϕ)

v2 = −vr (cosϕ− sinϕ)

v3 = −v − Ωz0 sin
Ω

c
u





. (27)

The components of the gravitational inertial force Fi
acting in such a space are

F1 =

(

Ωz0 sin
Ω

c
u

)

vr + (cosϕ+ sinϕ) vt

F2 =

(

Ωz0 sin
Ω

c
u

)

vϕ + r (cosϕ− sinϕ) vt

F3 =

(

Ωz0 sin
Ω

c
u

)

vz −
GM

z2
+ vt +

+ Ω2z0 cos
Ω

c
u






, (28)

where the quantities vr, vϕ, vz , vt denote the respective
partial derivatives of v.
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In such a space the components of the tensor of the
angular velocities of the space rotation Aik are

A12 =
1

2
(cosϕ+ sinϕ) vϕ −

r

2
(cosϕ− sinϕ) vr

A23 =
r

2
(cosϕ− sinϕ) vz −

1

2
vϕ

A13 =
1

2
(cosϕ+ sinϕ) vz −

1

2
vr






. (29)

Because we omit all quantities proportional to v2

c2
, the

chr.inv.-metric tensor hik=−gik+ 1
c2
vivk (the observable

3-dimensional metric tensor) becomes hik=−gik. Its com-
ponents for the metric (25) are

h11 = 1 , h22 = r
2, h33 = 1

h11 = 1 , h22 =
1

r2
, h33 = 1

h = det ‖hik‖ = r
2,

∂ln
√
h

∂x1
=
1

r






. (30)

For the tensor of the space deformation Dik we obtain

D33 = D
33 = 0 , D = hikDik = 0 . (31)

Among the chr.inv.-Christoffel symbols Δikm within the
framework of our approximation, only two components are
non-zero,

Δ122 = −r , Δ212 =
1

r
, (32)

so, despite the fact that the observable curvature tensor Cik
which possesses all the properties of Ricci’s tensor Rαβ on
the 3-dimensional spatial section (see Appendix 2) isn’t zero
in the space, but within the framework of our assumption it
is meant to be zero: Cik=0. In other words, although the
space curvature isn’t zero, it is so small that it is negligible
in a real experiment such as we are considering.

These are the physical observable characteristics of a
space volume element located in an Earth-bound laboratory,
where the non-holonomic background of the space is per-
turbed by a disc which undergoes oscillatory bounces ortho-
gonal to its own plane.

We have now obtained all the physical observable char-
acteristics of space required by Einstein’s equations. Ein-
stein’s equations describe flows of energy, momentum and
matter. Using the derived equations, we will know in preci-
sely those flows of energy and momentum near a disc which
undergoes an oscillatory bounce orthogonal to its own plane.
So if there is any additional energy flow or momentum flow
generated by the disc, Einstein’s equations show this.

3.2 Einstein’s equations in the space. First conclusion
about the origin of the Podkletnov effect

Einstein’s equations, in terms of the physical observable
quantities given in Appendix 2, were derived in the 1940’s

by Zelmanov [15, 16, 17] as the projections of the general
covariant (4-dimensional) Einstein equations

Rαβ −
1

2
gαβR = −κTαβ + λgαβ (33)

onto the time line and spatial section of an observer.
We omit the λ-term due to its negligible effect. In consi-

dering a real situation like Podkletnov’s experiment, we as-
sume the same approximation as in the previous Section. We
also take into account those physical observable characterist-
ics of the space which are zero according to our calculation.

Einstein’s equations expressed in the terms of the phys-
ical observable quantities (see Appendix 2 for the complete
equations) then take the following simplified form

∂F i

∂xi
− AikA

ik +
∂ ln
√
h

∂xi
F i = −

κ

2

(
ρc2 + U

)

∂Aij

∂xj
+
∂ ln
√
h

∂xj
Aij = −κJ i

2AijA
∙j
k∙ +

1

2

(
∂Fi
∂xk

+
∂Fk
∂xi

− 2ΔmikFm

)

=

=
κ

2

(
ρc2 − U

)
hik + κUik






(34)

where ρ= T00
g00

, J i= cT i0√
g00

and U ik= c2T ik are the observ-
able projections of the energy-momentum tensor Tαβ of dis-
tributed matter on the right side of Einstein’s equations (the
right side determines distributed matter which fill the space,
while the left side determines the geometrical properties
of the space). By their physical sense, ρ is the observable
density of the energy of the matter field, J i is the observ-
able density of the field momentum, U ik is the observable
stress-tensor of the field.

In relation to Podkletnov’s experiment, Tαβ is the sum
of the energy-momentum tensor of an electromagnetic field,
generated by an electromagnet located beneath the disc, and
also that of the other fields filling the space. We therefore
attribute the energy-momentum tensor Tαβ and its observ-
able components ρ, J i, U ik to the common field.

Is there additional energy and momentum produced by
the field of the background space non-holonomity in order
to compensate for a perturbation therein, due to a disc under-
going oscillatory bounces orthogonal to its own pane? This is
easy to answer using Einstein’s equations, owing to the fact
that given the unperturbed field of the background space
non-holonomity, the linear velocity of the space rotation
v isn’t a function of the spatial coordinates and time v 6=
6= f (r, ϕ, z, t). After Fi, Aik, Dik, and Δikn specific to the
space of a suspended, vertically oscillating disc are substi-
tuted into Einstein’s equations (34), the left side of the equa-
tions should contain additional terms dependent on the de-
rivatives of v by the spatial coordinates r, ϕ, z, and time
t. The additional terms, appearing in the left side, build
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respective additions to the energy and momentum of the act-
ing electromagnetic field on the right side of the equations.

Following this line, we are looking for the energy and
momentum produced by the field of the background space
non-holonomity due to perturbation therein.

We substitute Fi (28), Aik (29), Dik (31), and Δikn
(32), specific to the space of such an oscillating disc, into
the chr.inv.-Einstein equations (34), and obtain the Einstein
equations as shown in formula (35). These are actually Ein-
stein’s equations for the initial homogeneous non-holonomic
space perturbed by such a disc.

As seen from the left side of the Einstein equations (35),
a new energy-momentum field appears near the disc due to
the appearance of a non-uniformity of the field of the back-
ground space non-holonomity (i.e. due to the functions v of
the coordinates and time):

1. The field bears additional energy to the electromagnet-
ic field energy represented in the space (see the scalar
Einstein equation);

2. The field has momentum flow J i. The momentum
flow spreads from the outer space toward the disc
in the r-direction, twists around the disc in the ϕ-
direction, then rises above the disc in the z-direction
(see the vectorial Einstein equations which describe
the momentum flow J1, J2, and J3 toward r, ϕ,
and z-direction respectively). This purely theoretical
finding explains the Podkletnov effect. According to
Eugene Podkletnov, a member of his experimental
team smoked a pipe a few meters away from the cryo-
stat with the superconducting disc, during operation.
By a stroke of luck, Podkletnov noticed that the to-
bacco smoke was attracted towards the cryostat, then
twisted around it and rose above it. Podkletnov then
applied a high precision balance, which immediately
showed a weight loss over the cryostat. Now it is clear
that the tobaccosmoke revealed the momentum flow
produced by the background space non-holonomity
field perturbed near the vertically oscillating disc;

3. The field has distributed stresses which are expressed
by an addition to the electromagnetic field stress-
tensor (see the Einstein tensor equations).

In the simplest case where Podkletnov’s experiment is
run in a completely holonomic space (v=0) the Einstein
equations (35) take the simplest form

2GM

z3
= −κρc2

J1 = 0 , J2 = 0 , J3 = 0

U11 = 0 , U12 = 0 , U13 = 0 , U22 = 0 , U23 = 0

2GM

z3
= κU33






(36)

This is also true in another case, where the space is non-
holonomic (v 6=0) but v isn’t function of the spatial coordi-
nates and time v 6= f (r, ϕ, z, t), that is the unperturbed
homogeneous field of the background space non-holonomity.
We see that in both cases there is no additional energy and
momentum flow near the disc; only the electromagnetic field
flow is put into equilibrium by the Earth’s gravity, directed
vertically along the z-axis.

So Einstein’s equations show clearly that:
The Podkletnov effect is due to the fact that the field
of the background space non-holonomity, being per-
turbed by a suspended, vertically oscillating disc,
produces energy and momentum flow in order to
compensate for the perturbation therein.

3.3 Complete geometrization of matter

Looking at the right side of the Einstein equations (35),
which determine distributed matter, we see that ρ and U
are included only in the scalar (first) equation and also three
tensor equations with the indices 11, 22, 33 (the 5th, 8th,
and 10th equations). We can therefore find a formula for U .
Then, substituting the formula back into the Einstein equa-
tions for ρ and U11, U22, U33, we can express the char-
acteristics of distributed matter through only the physical
observable characteristics of the space. This fact, coupled
with the fact that the other characteristics of distributed matter
(J1, J2, J3, U12, U13, U13) are expressed through only
the physical observable characteristics of the space by the
2nd, 3rd, 4th, 6th, 7th, and 9th equations of the Einstein
equations (35), means that considering a space in which the
homogeneous non-holonomic background is perturbed by an
oscillating disc, we can obtain a complete geometrization of
matter.

Multiplying the 1st equation of (35) by the 3rd, then
summing with the 5th, 8th, and 10th equations, we eliminate
ρ. Then, because U =hikUik=U11+

U22
r2
+U33, we obtain

a formula for U expressed only via the physical observable
characteristics of the space. Substituting the obtained formula
for κU into the 1st equation, we obtain a formula for ρ.
After that it is easy to obtain ρc2+U and ρc2−U . Using
these in the three Einstein tensor equations with the diagonal
indices 11, 22, 33, we obtain formulae for U11, U22, U33, all
expressed only in terms of the physical observable character-
istics of the space.

The resulting equations, coupled with those of the Ein-
stein equations (35) which determine J1, J2, J3, U12, U13,
and U13, build the system of the equations (37), which comp-
letely determine the properties of distributed matter — the
density of the energy ρ, the density of the momentum flow
JI , and the stress-tensor Uik — only in terms of the physical
observable characteristics of the space. So:

Matter which fills the space, where a homogeneous
non-holonomic background is perturbed by an oscil-
lating disc is completely geometrized.
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There is just one question still to be answered. What is
the nature of the matter?

Among the matter different from the gravitational field,
only the isotropic electromagnetic field was previously geo-
metrized — that for which the metric is determined by the
Rainich condition [23, 24, 25]

R = 0 , RαρR
ρβ =

1

4
δβα (RρσR

ρσ) = 0 (38)

and the Nordtvedt-Pagels condition [26]

ημεγσ
(
Rδγ;σRετ −Rδε;σRγτ

)
= 0 . (39)

The Rainich condition and the Nordtvedt-Pagels condi-
tion, being applied to the left side of Einstein’s equations,
completely determine the properties of the isotropic elec-
tromagnetic field on the right side. In other words, the afore-
mentioned conditions determine both the geometric proper-
ties of the space and the properties of a pervading isotropic
electromagnetic field.

An isotropic electromagnetic field is such where the field
invariants FαβFαβ and F∗αβF

αβ , constructed from the
electromagnetic field tensor Fαβ and the field pseudo-tensor
F ∗αβ = 1

2 η
αβμνFμν dual, are zero

FαβF
αβ = 0 , F∗αβF

αβ = 0 , (40)

so the isotropic electromagnetic field has a structure trun-
cated to that of an electromagnetic field in general.

In our case we have no limitation on the structure of
the electromagnetic field, so we use the energy-momentum
tensor of the electromagnetic field in the general form [20]

Tαβ =
1

4π

(

−FασF
∙σ
β ∙ +

1

4
FμνF

μνgαβ

)

, (41)

whence the observable density of the field energy ρ= T00
g00

and the trace U =hikUik of the observable stress-tensor of
the field U ik= c2T ik are connected by the relation

ρc2 = U . (42)

In other words, if besides the gravitational field there is
be only an electromagnetic field, we should have ρc2=U
for distributed matter in the Einstein equations.

However, as seen in the 2nd equation of the system (37),
ρc2−U 6=0 in the Einstein equations, for the only reason
that, in the case we are considering, the laboratory space
is filled not only by the Earth’s gravitational field and an
alternating magnetic field which supports the disc in air, but
also another field appeared due to the fact that the oscillating
disc perturbs the non-holonomic background of the space.
The perturbation field, as shown in the previous Section,
bears energy and momentum∗, so it can be taken as a field
of distributed matter. In other words,

∗The fact that the space non-holonomity field bears energy and mo-
mentum was first shown in the earlier publication [27], where the field of a
reference body was considered.

We have obtained a complete geometrization of
matter consisting of an arbitrary electromagnetic field
and a perturbation field of the non-holonomic back-
ground of the space.

3.4 The conservation law

When considering the geodesic equations in a space, the
hon-holonomic background of which is perturbed by a disc
undergoing oscillatory bounces orthogonal to its own plane,
we need to know the space distribution of the perturbation,
i.e. some relations between the functions vt= ∂v

∂t
, vr = ∂v

∂r
,

vϕ=
∂v
∂ϕ

, vz = ∂v
∂z

, which are respective partial derivatives of
the value v of the linear velocity of the space rotation vi.

The functions vt, vr, vϕ, vz are contained in the left
side (geometry) of the Einstein equations we have obtained.
Therefore, from a formal point of view, to find the functions
we should integrate the Einstein equations. However the
Einstein equations are represented in a non-empty space,
so the right side of the equations is not zero, but occupied
by the energy-momentum tensor Tαβ of distributed matter
which fill the space. Hence, to obtain the functions vt, vr,
vϕ, vz from the Einstein equations, we should express the
right side of the equations — the energy-momentum tensor
of distributed matter Tαβ — through the functions as well.

Besides, in our case, Tαβ represents not only the energy-
momentum of the electromagnetic field but also the energy-
momentum produced by the field of the background space
non-holonomity compensating the perturbation therein. Yet
we cannot divide one energy-momentum tensor by another.
So we must consider the energy-momentum tensor for the
common field, which presents a problem, because we have
no formulae for the components of the energy-momentum
tensor of the common field. In other words, we are enforced
to operate with the components of Tαβ as merely some
quantities ρ, J i, and U ik.

How to express Tαβ through the functions vt, vr, vϕ,
vz , aside for by the Einstein equations? In another case we
would be led to a dead end. However, our case of distributed
matter is completely geometrized. In other words, the geom-
etrical structure of the space and the space distribution of
the energy-momentum tensor Tαβ are the same things. We
can therefore find the functions vt, vr, vϕ, vz from the space
distribution of Tαβ , via the equations of the conservation law

∇σT
ασ = 0 . (43)

The conservation law in the chr.inv.-form, i.e. represent-
ed as the projections of equation (43) onto the time line and
spatial section of an observer, is [15]

∗∂ρ

∂t
+Dρ+

1

c2
DijU

ij+

(
∗∇i−

1

c2
Fi

)

J i−
1

c2
FiJ

i=0

∗∂Jk

∂t
+2
(
Dk
i+A

∙k
i∙

)
J i+

(
∗∇i−

1

c2
Fi

)

U ik−ρF k=0





(44)
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∂ρ
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∂J1
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r
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Ωz0 sin
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(cosϕ− sinϕ)
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]

= 0

∂J3
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[
(cosϕ+ sinϕ) vz − vr

]
J1 +

[
r (cosϕ− sinϕ) vz − vϕ

]
J2+

+
∂U13
∂r

+
1

r2
∂U23
∂ϕ

+
∂U33
∂z

+
1

r
U13 − ρ

[(

Ωz0 sin
Ω

c
u

)

vz −
GM

z2
+ vt +Ω

2z0 cos
Ω

c
u
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(46)

where ρ= T00
g00

, J i= cT i0√
g00

and U ik= c2T ik are the observ-
able projections of the energy-momentum tensor Tαβ of dis-
tributed matter. The chr.inv.-conservation equations, taking
our assumptions for real experiment into account, take the
simplified form

∂ρ

∂t
+
∂J i

∂xi
+
∂ ln

√
h

∂xi
J i = 0

∂Jk

∂t
+ 2A∙ki∙ J

i +
∂U ik

∂xi
+
∂ln
√
h

∂xi
U ik+

+ΔkimU
im − ρF k = 0






. (45)

Substituting into the equations the formulae for D, Dk
i ,

A∙ki∙ ,
∂ln

√
h

∂xi
, Δkim, and F k, we obtain a system of the con-

servation equations (46) wherein we should substitute ρ, J i,
and U ik from the Einstein equations (37) then, reducing
similar terms, arrive at some relations between the functions
vt, vr, vϕ, vz . The Einstein equations (37) substituted into
(46) evidently result in intractable equations. It seems that
we will have no chance of solving the resulting equations
without some simplification according to real experiment.
We should therefore take the simplification into account
from the beginning.

First, the scalar equation of the conservation law (44)
under the conditions of a real experiment takes the form of
(45), which in another notation is

∂ρ

∂t
+ ∗∇i J

i = 0 . (47)

The 2nd equation of (37) determines ρ: the quantity is
ρ∼ 1

c2
. Omitting the term proportional to 1

c2
as its effect is

negligible in a real experiment, we obtain the scalar equation
of the conservation law in the form∗

∗∇i J
i = 0 , (48)

∗The chr.inv.-differential operators are completely determined, accord-
ing to [15, 16], in Appendix 2.

i.e. the chr.inv.-derivative of the common flow of the spatial
momentum of distributed matter is zero to within the appro-
ximation of a first-order experiment. This finding has a very
important meaning:

Given a space, the non-holonomic background of
which is perturbed by an oscillating disc, the common
flow of the momentum of distributed matter on the
spatial section of such a space is conserved in a first-
order experiment.

Second, there are three states of the disc in Podkletnov’s
experiment: (1) uniform rotation; (2) non-uniform rotation
(acceleration/deceleration); (3) non-rotating disc. To study
the case of a rotating disc we should introduce, into the
metric (25), additional terms which take the rotation into
account. We don’t do this now, for two reasons: (1) the
additional terms introduced into the metric (25) make the
equations of the theory too complicated; (2) the case of a
non-rotating disc is that main case where, according Podklet-
nov’s experiments, the weight-loss effect appears in the basic
form; accelerating/decelerating rotation of the disc produces
only additions to the basic weight-loss. So, to understand the
origin of the weight-loss phenomenon it is most reasonable
to first consider perturbation of the background field of the
space non-holonomity by a non-rotating disc. Because such
a disc lies horizontally in the plane rϕ (horizontal plane),
we should assume vz =0, while the fact that there vr 6=0
and vϕ 6=0 means freedom for oscillation in the plane rϕ
(accelerating or decelerating twists in the plane) as a result of
vertical oscillation of such a disc (otherwise, for no oscilla-
tion in the plane rϕ, the conservation equations would
become zero). The fact that ϕ 6= const in the equations means
the same.

As a result, the conservation equations (46), with the afo-
rementioned assumptions taken into account, take the form
(49). The characteristics of distributed matter such as the
momentum flow J i and the stress-tensor U ik, resulting from
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(50)

the Einstein equations (37), were collected in complete form
into the system (37). Under the aforementioned assumptions
they take the form (50).

We substitute the respective components of J i and U ik

(50) into the conservation equations (49). After algebra, re-
ducing similar terms, the first two equations of (49) become
identically zero, while the third equation takes the form:

vr =
vϕ
r
, (51)

The solution vr =
vϕ
r we have obtained from the conser-

vation equations satisfies by the function

v = B (t) r eϕ, (52)

where B (t) is a function of time t. Specific formula for the
function B (t) should be determined by nature of the pheno-

menon or the conditions of the experiment.
The solution indicates a dependency between the distrib-

utions of v in the r-direction and ϕ-direction in the space, if
the non-holonomic background is perturbed by a disc lying
in the rϕ plane and oscillating in the z-direction.

In other words, the conservation equations in common
with the Einstein equations we have obtained mean that:

A disc, oscillating orthogonally to its own plane, per-
turbs the field of the background non-holonomity of
the space. Such a motion of a disc places a limi-
tation on the geometric structure of the space. The
limitation is manifested as a specific distribution of
the linear velocity of the space rotation. This distribu-
tion means that such a disc should also have small
twists in its own plane due to the perturbed non-
holonomic background.
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(60)

3.5 The geodesic equations in the space. Final conclu-
sion about the forces driving the Podkletnov effect

This is the final part of our mathematical theory of the
Podkletnov effect. Here, using the Einstein equations and
the equations of the conservation law we have developed,
we deduce an additional force that produces the weight-
loss effect in Podkletnov’s experiment, i.e. the weight-loss
over a superconducting disc which is supported in air by an
alternating magnetic field.

As is well known, motion in a gravitational field of a free
test-particle of rest-mass m0 is described by the equations of
geodesic lines (the geodesic equations). The geodesic equa-
tions are, from a purely mathematical viewpoint, the equa-
tions of parallel transfer of the four-dimensional vector of
the particle’s momentum Pα=m0

dxα

ds
along the particle’s

4-dimensional trajectory

dPα

ds
+ ΓαμνP

μ dx
ν

ds
= 0 , (53)

where Γαμν are Christoffel’s symbols of the 2nd kind, while
ds is the 4-dimensional interval along the trajectory.

The geodesic equations (53), being projected onto the
time line and spatial section of an observer, and expressed
through the physical observable characteristics of a real lab-
oratory space of a real observer, are known as the chr.inv.-
geodesic equations. They were deduced in 1944 by Zelm-
anov [15, 16]. The related scalar equation is the projection
onto the time line of the observer, while the 3-dimensional
vector equation is the projection onto his spatial section, and
manifests the 3rd Newtonian law for the test-particle:
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c2
Dikv

ivk = 0

d(mvi)
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+2m
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vk−mF i+mΔinkv

nvk=0





(54)

where m is the relativistic mass of the particle, vi is the 3-
dimensional observable velocity of the particle, and τ is the
physical observable or proper time∗ [15, 16]

∗This is that real time which is registered by the observer in his real

m=
m0√
1−v2/c2

, vi =
dxi

dτ
, (55)

dτ =
√
g00 dt+

g0i
c
√
g00

dxi =
√
g00 dt−

1

c2
vidx

i. (56)

With the simplifications for the real experiment we are
considering, the chr.inv.-geodesic equations (54) take the
form

dm

dτ
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+ 2mA∙ik∙v

k −mF i +mΔinkv
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(57)

that is, in component notation,
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(58)

which are actual chr.inv.-equations of motion of a free test-
body in the space, whose non-holonomic homogeneous
background is perturbed by an oscillating disc.

The scalar geodesic equation of (58) says

m = const , (59)

so taking this fact into account and introducing the notation
v1= dr

dτ
= ṙ, v2= dϕ

dτ
= ϕ̇, v3= dz

dτ
= ż, we obtain a system

of three vector equations of motion of the test-body (60),
wherein vt= ∂v

∂t
, vr = ∂v

∂r
, vϕ= ∂v

∂ϕ
, vz = ∂v

∂z
.

laboratory space. Intervals of the physical observable time dτ and the
observable spatial coordinates dxi are determined, by the theory of phys-
ical observable quantities (chronometric invariants) as the projections of
the interval of the 4-dimensional coordinates dxα onto the time line and
spatial section of an observer, i.e.: bαdxα= cdτ , hiαdx

α= dxi [15, 16].
See Appendix 2 for the details of such a projection.
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Because the terms containing z0 in equations (60) are
very small, they can be considered to be small harmonic
corrections. Such equations can always be solved using the
small parameter method of Poincaré. The Poincaré method
is also known as the perturbation method, because we con-
sider the right side as a perturbation of a harmonic oscillation
described by the left side. The Poincaré method is related to
exact solution methods, because a solution produced with
the method is a power series expanded by a small parameter
(see Lefschetz, Chapter XII, §2 of [21]).

However our task is much simpler. We are looking for an
approximate solution of the system of the vector equations
of motion in order to see the main forces acting in the basic
Podkletnov experiment. We therefore simplify the equations
as possible. First we take into account that, in the condition
of Podkletnov’s experiment, the suspended test-body has
freedom to move only in the z-direction (i.e. up or down
in a vertical direction, which is the direction of the acting
force of gravity). In other words, concerning a free test-body
falling from above the disc, we take ṙ=0 and ϕ̇=0 despite
the forces r̈ and ϕ̈ acting it in the r-direction and the ϕ-
direction are non-zero. Second, rotational oscillation of the
disc in the rϕ–plane is very small. We therefore regard ϕ as
a small quantity, so sinϕ'ϕ and cosϕ' 1. Third, by the
conservation equations, vϕ= rvr.

Taking all the assumptions into account, the equations of
motion (60) take the much simplified form
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Ωz0 sin
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u
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vr
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u

)
vr
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z̈ + g − vt − Ω
2z0 cos

Ω

c
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(61)

where g= GM
z2

is the acceleration produced by the Earth’s
force of gravity, remaining constant for the experiment.

For Podkletnov’s experiment, vt= const, and this value
depends on the specific parameters of the vertically oscillat-
ing disc, such as its diameter, the frequency and amplitude
of its vibration. The harmonic term in the third equation is
a small correction which can only shake a test-body in the
z-direction; this term cannot be a source of a force acting
in just one direction. Besides, the harmonic term has a very
small numerical value, and so it can be neglected. In such a
case, the third equation of motion takes the simple form

z̈ + g − vt = 0 , (62)

where the last term is a correction to the acting force of
gravity due to the perturbed field of the background space
non-holonomity.

Integrating the equation z̈=−g+ vt, we obtain

z = −
g − vt
2

τ 2 + C1 τ + C2 , (63)

where the initial moment of time is τ0=0, the constants
of integration are C1= ż0 and C2= z0. As a result, if the
test-body is at rest at the initial moment of time (ż0=0),
its vertical coordinate z at another moment of observable
time is

z = z0 −
gτ 2

2
+
vt τ

2

2
. (64)

The result we have obtained isn’t trivial because the ad-
ditional forces obtained within the framework of our theory
originate in the field of the background space non-holonomity
perturbed by the disc. As seen from the final equation of
motion along the z-axis (62), such an additional force acts
everywhere against the force of gravity. So it works like
“negative gravity”, a truly anti-gravity force.

Within the framework of Classical Mechanics we have
no space-time, hence there are no space-time terms in the
metrics which determine the non-holonomity of space. So
such an anti-gravity force is absent in Classical Mechanics.

Such an anti-gravity force vanishes in particular cases of
General Relativity, where the pseudo-Riemannian space is
holonomic, and also in Special Relativity, where the pseudo-
Riemannian space is holonomic by definition (in addition to
the absence of curvature, gravitation, and deformation).

So the obtained anti-gravity force appears only in Gen-
eral Relativity, where the space is non-holonomic.

It should be noted that the anti-gravity force F =mvt
isn’t related to a family of forces of inertia. Inertial forces
are fictitious forces unrelated to a physical field; an inertial
force appears only in mechanical contact with that physical
body which produces it, and disappears when the mechanical
connexion ceases. On the contrary, the obtained anti-gravity
force originates from a real physical field — a field of the
space non-holonomity, — and is produced by the field in
order to compensating for the perturbation therein. So the
anti-gravity force obtained within the framework of our theory
is a real physical force, in contrast to forces of inertia.

Concerning Podkletnov’s experiment, we should take
into account the fact that a balance suspended test-body isn’t
free, due to the force of reaction of the pier of the balance
which completely compensates for the common force of
attraction of the test-body towards the Earth (the body’s
weight). As a result such a test-body moves along a non-
geodesic world-trajectory, so the equations of motion of such
a particle have non-zero right side containing the force of
the reaction of the pier. In the state of static weight, the
common acceleration of the test-body in the z-direction is
zero (z̈=0), hence its weight Q is

Q = mg −mvt . (65)

The quantity vt contained in the additional anti-gravity
force F =mvt is determined by the parameters of the small
twists of the disc in the horizontal plane, the frequency of
which is the same as the frequency Ω of vertical oscillation
of the disc, while the amplitude depends on parameters of the
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disc, such as its radius r and the amplitude z0 of the oscilla-
tion. (A calculation for such an anti-gravity force in the
condition of a real experiment is given in the next Section.
As we will see, our theory gives good coincidence with the
weight-loss effect as measured in Podkletnov’s experiment.)

The geodesic equation we have obtained in the field of
an oscillating disc allows us to draw a final conclusion about
the origin of the forces which drive the weight-loss effect in
Podkletnov’s experiment:

A force produced by the field of the background space
non-holonomity, compensating for a perturbation
therein, works like negative gravity in the condition
of an Earth-bound experiment. Being produced by a
real physical field that bears its own energy and mo-
mentum, such an anti-gravity force is a real physical
force, in contrast to fictitious forces of inertia which
are unrelated to physical fields.

In the conditions of Podkletnov’s experiment, a hori-
zontally placed superconducting disc, suspended in
air due to an alternating magnetic field, undergoes
oscillatory bounces in a vertical direction (orthogonal
to the plane of the disc) with the same frequency of
the magnetic field. Such an oscillation perturbs the
field of the background space non-holonomity, ini-
tially homogeneous. As a result the background non-
holonomity field is perturbed in three spatial direc-
tions, including the horizontal plane (the plane of the
disc), resulting in small amplitude oscillatory twists
about the vertical direction. The oscillatory twists det-
ermine the anti-gravity force, produced by the per-
turbed field of the background space non-holonomity,
and act in the vertical directing against the force of
gravity. Any test-body, placed in the perturbed non-
holonomity field above such a vertically oscillating
disc, should experience a loss in its weight, the num-
erical value of which is determined by the parameters
of the disc and its oscillatory motion in the vertical
direction. If such a disc rotates with acceleration, this
should be the source of an addition perturbation of
the background non-holonomity field and, hence, a
substantial addition to the weight-loss effect should
be observed in experiment. (Uniform rotation of the
disc should give no effect.)

Herein we have been concerned with only a theory of
a phenomenon discovered by Podkletnov (we refer to this
as the Podkletnov effect, to fix the term in scientific termin-
ology).

According to our theory, superconductor technology ac-
counts in Podkletnov’s experiment only for levitation of the
disc and driving it into small amplitude oscillatory motion
in the vertical direction. However, it is evident that this isn’t
the only way to achieve such a state for the disc.

Furthermore, we show that there are also both mechan-
ical and nuclear systems which can simulate the Podkletnov
effect and, hence, be the sources of continuous and explo-
sive energy from the field of the background space non-

holonomity.
Such a mechanical system, simulating the conditions of

the Podkletnov effect, provides a possibile means of continu-
ous production of energy from the space non-holonomity
field. At the same time we cannot achieve high numerical
values of the oscillatory motion in a mechanical system, so
the continuous production of energy might be low (althopugh
it may still reach useful values).

On the contrary, processes of nuclear decay and synthesis,
due to the instant change of the spin configuration among
nucleons inside nuclei, should have high numerical values
of vt, and therefore be an explosive source of energy from
the field of the background space non-holonomity.

Both mechanical and nuclear simulations of the Podklet-
nov effect can be achieved in practice.

4 A new experiment proposed on the basis of the theory

4.1 A simple test of the theory of the Podkletnov effect
(alternative to superconductor technology)

According our theory, the Podkletnov effect has a purely
mechanical origin, unrelated to superconductivity — the field
of the background space non-holonomity being perturbed by
a disc which undergoes oscillatory bounces orthogonal to its
own plane, produces energy and momentum flow in order to
compensate for the perturbation therein. Owing to this, we
propose a purely mechanical experiment which reproduces
the Podkletnov effect, equivalent to Podkletnov’s original
superconductor experiment, which would be a cheap alter-
native to costly superconductor technology, and also be a
simple mechanical test of the whole theory of the effect.

What is the arrangement of such a purely mechanical
system, which could enable reproduction of the Podkletnov
effect? Searching the scientific literature, we found such a
system. This is the vibration balance [22], invented and
tested in the 1960–1970’s by N. A. Kozyrev, a famous astro-
nomer and experimental physicist of the Pulkovo Astronom-
ical Observatory (St. Petersburg, Russia). Below is a descrip-
tion of the balance, extracted from Kozyrev’s paper [22]:

“The vibration balance is an equal-shoulder balance, where
the pier of the central prism is connected to a vibration machine.
This vibration machine produces vertical vibration of the pier. The
acceleration of the vibration is smaller than the acceleration of
the Earth’s gravitation. Therefore the prism doesn’t lose contact
with the pier, only alternating pressure results. Thus the distance
between the centre of gravity and the cone of the prism remains
constant while the weight and the balance don’t change their own
measurement precision. The vertical guiding rods, set up along the
pier, exclude the possibility of horizontal motion of the pier. One
of two samples of the same mass is rigidly suspended by the yoke
of the balance, while the second sample is suspended by an elastic
material. Here the force required to lift the yoke is just a small
percentage of the force required to lift the rigidly fixed sample.
Therefore, during vibration of the balance, there is stable kinematic
of the yoke, where the point O (the point of hard suspension)
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doesn’t participate in vibration, while the point A (the point of
elastic suspension) has maximal amplitude of oscillation which is
double the amplitude of the central prism C. Because the additional
force, produced during vibration, is just a few percent more than
the static force, the yoke remains fixed without inner oscillation, i.e.
without twist, in accordance with the requirement of static weight.

We tested different arrangements of balances under vibration.
The tested balances had different sensitivities, while the elastic
material was tried with rubber, a spring, etc. Here is detailed a
description of the vibration balance which is currently in use. This
is a technical balance of the second class of sensitivity, with a
maximum payload of 1 kg. A 1 mm deviation of the measurement
arrow, fixed on the yoke, shows a weight of 10 mg. The centre of
gravity of the yoke is located ∼1 cm below the pier of the central
prism. The length of the shoulders of the yoke is: OC=CA= l=
= 16 cm. The amplitude of vibration is a≈ 0.2 mm. Thus the
maximum speed of the central prism is v= 2π

T
a'2 cm/sec, while

its maximum acceleration
(
2π

T

)2
a= 2×102 is about 20% of the

acceleration of the Earth’s gravitation. We regularly used samples
of 700 g. One of the samples was suspended by a rubber, the strain
of which for 1 cm corresponds 100 g weight. So, during vibration,
the additional force on the yoke is less than 10 g and cannot destroy
the rigidity of the yoke. The elastic rubber suspension absorbs
vibration so that the sample actually rests.

This balance, as well as all recently tested systems,
showed each time the increase of the weight of the elastically
suspended sample. This additional force 4Q is proportional to
the weight of the sample Q, besides 4Q/Q= 3×10−5. Hence,
having Q= 700 g, 4Q= 21 mg and the force momentum twisting
the yoke is 300 dynes×cm.

[ . . . ] From first view one can think that, during such a vibra-
tion, the pier makes twists around the resting point O. In a real
situation the points of the pier are carried into more complicated
motion. The central prism doesn’t lose contact with the pier; they
are connected, and move only linearly. Therefore the central part of
the yoke, where its main mass is concentrated, has no centrifugal
acceleration. What is about the point O, this point in common with
the rigidly suspended sample is fixed in only the vertical direction,
but it can move freely in the horizontal direction. These horizontal
displacements of the point O are very small. Naturally, they are
a2

2l
, i.e. ∼0.1μm in our case. Despite that, the small displacements

result a very specific kinematic of the yoke. During vibration, each
point of the yoke draws an element of an ellipse, a small axis
of which lies along the yoke (in the average position of it). The
concavities of the elements in the yoke’s sections O–C and C–A are
directed opposite to each other; they produce oppositely directed
centrifugal forces. Because v̄2 is greater in the section C–A, the
centrifugal forces don’t compensate each other completely: as a
result there in the yoke a centrifugal force acts in the A-direction
(the direction at the point of the elastically suspended sample). This
centrifugal acceleration has maximum value at the point A. We
have v̄2= 4π2

T2
a2= 6 cm2/sec2. From here we obtain the curvature

radius of the ellipse: ρ= 4 l= 60 cm. So the centrifugal acceleration
is v̄2

ρ
= 0.1 cm/sec2.”

Such a vibration balance is shown in the upper picture of
Fig. 4. An analogous vibration balance is shown in the lower
picture of Fig. 4: there the vibration machine is connected

Fig. 4: The vibration balance — a mechanical test of the whole
theory of the Podkletnov effect (a simple alternative to costly
superconductor technology).

not to the pier of the central prism, but to he elastic suspen-
sion, while the prism’s pier is supported by a spring; such a
system should produce the same effect.

To understand how the Podkletnov effect manifests with
the vibration balance, we consider the operation of the bal-
ance in detail (see Fig. 5).

The point O of the yoke undergoes oscillatory bounces
in the r-direction with the amplitude d, given by

d = l− l cosα = l− l
√
1− sin2α =

= l− l

√

1−
a2

l2
' l− l

(

1−
a2

2 l2

)

'
a2

2 l
,

(66)

while b is

b=d tanα=d
a

l cosα
'

a3

2 l2
(
1− a2

2 l2

)'
a3

2 l2− a2
. (67)

The point A undergoes oscillatory bounces in the z-
direction with the amplitude 2a, while its oscillatory motion
in the r-direction has the amplitude

c = 2l− 2l cosα− d = d . (68)

The oscillatory bouncing of the points O and A along
the elements of an ellipse is an accelerating/decelerating
rotational motion around the focus of the ellipse. In such a
case, by definition of the space non-holonomity as the non-
orthogonality of time lines to the spatial section, manifest
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Fig. 5: The yoke of the vibration balance in operation. The yoke
OA is indicated by the bold line. The double arrow shows the
oscillatory bouncing motion of the point C, which is the point
of connexion of the central prism and the central point of the
yoke. The lower picture shows the yoke in its initial horizontal
position. The upper picture shows the yoke in the upper position,
at maximum deviation from the state of equilibrium.

as a three-dimensional rotation, points O and A during the
oscillatory motion along respective elliptic elements, are the
source of a local field of the space non-holonomity . Respect-
ive tangential accelerations v̄t at the points O and A deter-
mine the sources.

Given that the background space is non-holonomic, such
a field of the local non-holonomity is a perturbation field
in the non-holonomic background. In other words, points O
and A, in common with the respective samples mechanic-
ally connected to the points, are the sources of respective
perturbation fields in the background field of the space non-
holonomity.

Each point of the yoke, being carried into such an oscilla-
tory motion, is the source of such a perturbation field. On the
other hand, the average tangential acceleration of the motion,
v̄t, takes its maximum value at the point A, then substantially
decreases to the point O where it is negligible. Therefore
such a yoke can be approximated as a non-symmetric system,
where the end-point A is the source of a perturbation field in
the non-holonomic background, while the end-point O isn’t
such a source.

According to the Einstein equations we have obtained in
(35), the energy and momentum of a perturbation field in the
non-holonomic background are produced by the whole field
of the background space non-holonomity in order to com-
pensate for the perturbation therein∗. So the energy produced

∗Note that we deduced the Einstein equations (35) for a space pervaded
not only by an electromagnetic field, but also by distributed matter
characterised by arbitrary properties. If only an electromagnetic field, there
would be ρc2=U . However ρc2−U 6=0 in the Einstein equations (35).
This can be due to a number of reasons, the presence of an elastic force
which compresses a spring, for instance. Therefore the Einstein equations

on a test-body in such a perturbation field isn’t limited by
the energy of the source of the perturbation (an oscillator,
for instance), but can increase infinitely.

According to the geodesic equations (61) we have ob-
tained in a perturbed non-holonomic field, the momentum of
such a perturbation field manifests as the additional forces
which act in all three directions r, ϕ, z relative to the source
of the perturbation. If considering a free test-body constrain-
ed to move only along only the Earth’s gravitational field-
lines (falling freely in the z-direction), such an add-on force
is expressed in the geodesic equation along the z-axis (62)

z̈ + g − vt = 0 (69)

as F =mvt, and works against the force of gravity mg. In
the situation of a static weight the total acceleration of such
a sample is zero, z̈=0, while the other forces are put into
equilibrium by the weight of the sample (65)

Q = mg −mvt = Q0 −4Q . (70)

A source of perturbation cannot be an object of applica-
tion of a force produced due to the perturbation. Therefore
the sample O is the object of application of an anti-gravity
force F =mvt due to a field of the anti-gravity accelerations
vt, a source of which is the oscillatory bouncing system
of the point A in common with the elastically suspended
sample, while the point A itself in common with the sample
has no such anti-gravity force applied to it. As a result the
weight of the sample rigidly suspended at the end-point O,
decreases as 4Q=mvt, while the weight of the sample A
remains the same:

QO = mg −mvt , QA = mg . (71)

As a result, such a balance, during its vibration, should
demonstrate a weight-loss of the rigidly suspended sample
O and, respectively, a twist of the balance’s yoke to the
elastically suspended sample A. Such a weight-loss effect on
the rigidly suspended sample, which is a fictitious increase
of the weight of the elastically suspended sample, was first
observed during the years 1960–1970’s in the pioneering
experiment of Kozyrev [22].

The half-length horizontal section of a superconducting
disc suspended in air by an alternating magnetic field in
Podkletnov’s experiment (see Fig. 2) can be approximated
by the yoke of the aforementioned vibrational balance. This
is because the vertical oscillation of such a disc by an alter-
nating magnetic field isn’t symmetric in the disc’s plane, so
such a disc has a small oscillatory twisting motion in the
vertical plane to the yoke of the vibration balance†.

we have obtained (35) are applicable to a laboratory space containing such
a vibration balance.

†This is despite the fact that such a disc has so small an amplitude
and so high a frequency of oscillatory twisting motion, that it seems to be
levitating when almost at rest.
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As a result, such a disc should experience the anti-gravity
force F =mvt at the end-points of the disc, along the whole
perimeter. Common action of the forces should produce:

1. The weight-loss effect 4Q=mvt on the disc itself.
The weight-loss of the disc should increase if the disc
has accelerating/decelerating rotation;

2. Respective weight-loss effect on any test-body located
over the disc along the vertical axis z, according to
the field of anti-gravity accelerations vt.

Therefore the disc in Podkletnov’s experiment and a vib-
ration balance of the aforementioned type are equivalent
systems. So both the superconductor experiment and the
vibration balance should be described by the same theory
we have adduced herein, and produce the same weight-loss
effect as predicted by the theory.

The numerical value of such an anti-gravity acceleration,
vt, can also be calculated within the framework of our theory
of the Podkletnov effect, and thus checked in experiment.

According to our theory, the value v of the perturbation
isn’t dependent on the vertical direction (the z-direction in
our coordinates). Therefore only the horizontal oscillatory
bouncing motion of point A (in common with the sample
rigidly suspended there) perturbs the background field of the
space non-holonomity. According to Fig. 5, the tangential
acceleration of the point A in its oscillatory motion with
amplitude 2a along an ellipse with the radius ρ=4 l, is
directed in the z-direction. So the tangential acceleration
cannot perturb the non-holonomic background. However
there is another tangential acceleration of the point A, which
results from the oscillatory motion of the point with the
amplitude c (numerically c= d) around the upper location of
the point A. This tangential acceleration is directed along the
r-axis, so it is the source of a local perturbation in the non-
holonomic background. The angle of the small twist at the
point A during such an oscillation is ϕ= d

2πa
= a

4πl
, so the

average angular acceleration of the motion is ˉ̈ϕ= 1
2
ϕ̈= Ω2a

8πl
.

The average tangential acceleration of the motion, directed
in the r-direction, is v̄t=2a ˉ̈ϕ, i.e.

v̄t =
Ω2a2

4π l
=
πν2a2

l
, (72)

which characterizes, according to the definition of the space
non-holonomity, the local perturbation in the background
field of the space non-holonomity.

Consider a vibration balance like that in Kozyrev’s ori-
ginal experiment [22]. Each shoulder of the yoke has the
length l= 16 cm, so the total length of the yoke is 32 cm. Let
the central prism of the balance undergo oscillatory bounces
in the vertical direction with an amplitude of a= 0.020 cm,
so the amplitude of the point A is 2a= 0.040 cm. One of the
samples is rigidly suspended at point O of the yoke, while
the other sample is suspended at point A by an
elastic medium. Both samples have the same mass: 700 g.

According to our theory, the Podkletnov effect should appear
in the balance as a weight loss 4Q of the sample O, depen-
dent on the frequency as follows:

ν, Hz vt, cm/sec2 4Q/Q 4Q, mg 4Qexp, mg

30 0.071 7.2×10−5 50
25 0.049 5.0×10−5 35
20 0.031 3.2×10−5 22 21
15 0.018 1.8×10−5 13
10 0.0079 8.0×10−6 5.6

Table 1: The weight-loss effect, calculated with our theory of the
Podkletnov effect, for a vibration balance with the same charact-
eristics as that of Kozyrev’s pioneering experiment [22]. The last
column gives the numerical value of the weight-loss effect observed
in Kozyrev’s experiment, at a constant frequency of 20 Hz.

Kozyrev measured 4Q= 21 mg at a fixed frequency of
ν= 20 Hz in his experiment [22]. This corresponds with
4Q= 22 mg predicted by our theory∗.

For Podkletnov’s experiment, we haven’t enough data for
the amplitude of oscillatory bouncing motion of the super-
conductor disc. Despite this, we can verify our theory of the
phenomenon in another way, due to the fact that Podkletnov
observed a dependence of the weight-loss effect on the
oscillation frequency.

Although dependency on frequency was observed in
each of Podkletnov’s experiments, we only have detailed
data for the 1997 experiment, from publication [2]. We give
in Table 2 Podkletnov’s experimental values of4Q/Q, mea-
sured on a sample located in the field of a 275/80×10 mm
superconductor toroid at vibration frequencies of the toroid
from 3.1 MHz to 3.6 MHz and the constant rotation speed
4300 rpm. The last column gives the increasing values of
4Q/Q, calculated by our theory where the weight-loss effect
should be dependent on the square of the vibration frequency:

ν, MHz (4Q/Q)exp (4Q/Q)theor

3.1 2.2×10−3

3.2 2.3×10−3 2.3×10−3

3.3 2.4×10−3 2.5×10−3

3.4 2.6×10−3 2.6×10−3

3.5 2.9×10−3 2.8×10−3

3.6 3.2×10−3 3.0×10−3

Table 2: The increase of the weight-loss effect (4Q/Q)exp with
vibration frequency ν, measured in Podkletnov’s experiment of
1997 [2], in comparison to the value (4Q/Q)theor calculated by
our theory of the phenomenon.

∗We should also add that, coming from the geodesic equation along the
z-axis, which is the third equation of (61), to the simplified form (62)
thereof, we omitted the harmonic term from consideration. If the term
is included, the vibration balance experiment should reveal not only an
increase of the weight-loss effect with the frequency, but also resonant
levels in it. The resonant levels, in further experiment, would be an
additional verification of our theory.
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We see that our theory is in very close accord with
Podkletnov’s experimental data. Furthermore, according to
Podkletnov [2], despite the high measurement precision of
the balance used in his experiment, some error sources pro-
duced systematic error in the order of 10−3 during the ex-
periment. Taking this into account, we conclude that our
theory is sufficiently coincident with Podkletnov’s experi-
mental data.

Podkletnov observed a decrease of the air pressure over
the working device in the laboratory, and also a force distri-
buted in a radial direction. We point out that the geodesic
equations (61) obtained within the framework of our theory
show forces, aside for the vertically acting anti-gravity force
(i.e. acting in the z-direction), acting in the directions r and
ϕ as well, produced by the perturbed field of the space non-
holonomity. We therefore interpret Podkletnov’s observa-
tions as a qualitative verification of our theory.

Podkletnov measured a much greater weight-loss effect
over a disc during its accelerating/braking rotation. We
haven’t developed a theory for a rotating disc yet. Despite
that, by analogy with our theory for a non-rotating disc,
we can qualitatively predict that a field of the anti-gravity
acceleration vt produced by a rotating disc should be propor-
tional to the radius of the disc and its angular acceleration,
in accordance with the fact that Podkletnov’s experiment is
very difficult to reproduce on small discs, diameter about 1′′.
Following Podkletnov, the weight-loss effect will be surely
measured on a disc of at least 5′′ diameter.

Finally, complete verification of our theory of the Pod-
kletnov effect should usher in new experimental checks for
the frequency dependency of the weight-loss, which should
appear in both the vibration balance and the Podkletnov
superconductor device. With a new vibration balance experi-
ment and a superconductor experiment confirming the fre-
quency dependency according to (72), our theory of the
Podkletnov effect would be completely verified.

4.2 New energy sources and applications to space travel

Due to the predictions of our theory, we have the possibility
of the Podkletnov effect on such a simple device as the
vibration balance, which is a thousand times cheaper and
accessible than superconductor technology. In other words,
being armed with the theory, it is more reasonable to use
the weight-loss effect in practice with other devices which,
working on principles other than the Podkletnov supercon-
ductor device, could easily reproduce the effect in both an
Earth-bound laboratory and in space.

On the basis of our theory, new engineering applications
such as anti-gravity devices and devices which could be used
as new sources of energy, might be developed.

Anti-gravity engines for air and space travel. There can
be at least two kinds of such engines, projected on the basis
of our theory:

1. Land-based engines, which produce a strong anti-
gravity acceleration field due to the Podkletnov effect.
The anti-gravity acceleration field doesn’t depend on
the vertical distance from the disc, which generates it
in Podkletnov’s experiment. Due to this fact, a land-
based engine, producing a beam of the anti-gravity
acceleration field focused on a flying apparatus, can be
used by the flying vehicle as a power station. The anti-
gravity acceleration in the beam becomes the same as
the acceleration of free fall. There can be limitation
only from the scattering of the beam with distance. So
such a land-based engine is suitable for short distances
used in air travel∗;

2. Engines located on board of a flying vehicle, that can
be more suitable for both air and space travel. Such an
engine, being the source of a field of the anti-gravity
acceleration, cannot be the subject of application of
the anti-gravity force produced in the field. However
the force applies to the other parts of the apparatus, as
in the vibration balance experiment or Podkletnov’s
experiment.

We note that in both cases, it isn’t necessary to use a
purely mechanical kernel for such an engine, as for the
vibration balance experiment and Podkletnov’s experiment
considered in this paper. Naturally, using a mechanical oscil-
latory bouncing motion or accelerating/braking rotation, the
maximum acceleration in the generated anti-gravity field is
limited by the shock resistance of the mechanical aspects of
the engine. This substantial limitation can be overcome if
instead of solid bodies, liquids (liquid metal like mercury,
for instance) or liquid crystals are driven into such motion
by high frequency electromagnetic fields.

Devices which could be the source of new energy. This is
another application of our theory, the experimental realiza-
tion of which differs from the vibration balance experiment
and Podkletnov’s experiment. According to our theory, the
coupling energy between the nucleons in a nucleus should
be different due to the Podkletnov effect depending on the
common orientation of the nucleons’ spins in the nucleus.
As a result, we could have a large explosive production of
energy during not only self-decay of heavy elements like
uranium and the trans-uraniums, but also by destroying the
nuclei of the lightweight elements located in the middle
of the Periodic Table of Elements. Of course, not just any
nucleus will be the source of such energy production, but
only those where, by our theory, the Podkletnov effect works,
due to the specific orientation of the spins in the strong
interaction amongst the nucleons.

Such an energy source, being free of deadly radiation or
radioactive waste, could be a viable alternative to nuclear
power plants.

∗This kind of anti-gravity engine was first proposed in 2006 by Eugene
Podklenov, in his interview [8].
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Appendix 1 The space non-holonomity as rotation

How is the non-orthogonality of the coordinate axes expressed by the
components of the fundamental metric tensor gαβ? To show this there are
a few ways [14]. We use a formal method developed by Zelmanov [15].
First, we introduce a locally geodesic reference frame at a given point of
the Riemannian space. Within infinitesimal vicinities of any point of such a
reference frame the fundamental metric tensor is

g̃αβ = gαβ +
1

2

(
∂2g̃αβ

∂x̃μ∂x̃ν

)
(x̃μ − xμ)(x̃ν − xν) + . . . ,

i. e. the components at a point, and in its vicinity, are different from those
at the point of reflection to within only the higher order terms, the values
of which can be neglected. Therefore, at any point of a locally geodesic
reference frame the fundamental metric tensor can be considered constant,
while the first derivatives of the metric (the Christoffel symbols) are zero.

As a matter of fact, within infinitesimal vicinities of any point located
in a Riemannian space, a locally geodesic reference frame can be set up.
At the same time, at any point of this locally geodesic reference frame a
tangentially flat Euclidean space can be set up so that this reference frame,
being locally geodesic for the Riemannian space, is the global geodesic for
that tangential flat space.

The fundamental metric tensor of a flat Euclidean space is constant, so
the values of g̃μν , taken in the vicinity of a point of the Riemannian space,
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converge to the values of the tensor gμν in the flat space tangential at
this point. Actually, this means that we can build a system of basis vectors
~e(α), located in this flat space, tangential to curved coordinate lines of the
Riemannian space.

In general, coordinate lines in Riemannian spaces are curved, inhomo-
geneous, and are not orthogonal to each other. So the lengths of the basis
vectors may sometimes be very different from unity.

We denote a four-dimensional infinitesimal displacement vector by
d~r=(dx0, dx1, dx2, dx3), so that d~r=~e(α)dxα, where components of the
basis vectors ~e(α) tangential to the coordinate lines are ~e(0)={e

0
(0),0,0,0},

~e(1)= {0, e
1
(1), 0, 0}, ~e(2)= {0, 0, e

2
(2), 0}, ~e(3)= {0, 0, 0, e

2
(3)}. The sca-

lar product of the vector d~r with itself is d~rd~r= ds2. On the other hand,
the same quantity is ds2= gαβ dxαdxβ . As a result we have

gαβ = ~e(α)~e(β) = e(α)e(β)cos (x
α;xβ) ,

so we obtain
g00 = e

2
(0) ,

g0i = e(0)e(i) cos (x
0;xi) ,

gik = e(i)e(k) cos (x
i;xk) .

The gravitational potential is w= c2(1−
√
g00). So the time basis

vector ~e(0) tangential to the time line x0= ct, having the length

e(0) =
√
g00 = 1−

w

c2
,

is smaller than unity the greater the gravitational potential w.
The space rotation linear velocity vi=−

cg0i√
g00

and, according to it,

the chr.inv.-metric tensor hik=−gik +
g0i g0k
g00

gives

vi = −c e(i) cos (x
0;xi) ,

hik = e(i)e(k)

[
cos (x0;xi) cos (x0;xk)− cos (xi;xk)

]
.

Appendix 2 A short tour of chronometric invariants

Determination of physical observable quantities in General Relativity isn’t
a trivial problem. For instance, for a four-dimensional vector Qα we may
heuristically assume that its three spatial components form a three-
dimensional observable vector, while the temporal component is an observ-
able potential of the vector field (which generally doesn’t prove they can
be actually observed). However a contravariant tensor of the 2nd rank Qαβ

(as many as 16 components) makes the problem much more indefinite. For
tensors of higher rank the problem of heuristic determination of observable
components is more complicated. Besides, there is an obstacle related to
definition of observable components of covariant tensors (in which the
indices are subscripts) and of mixed tensors, which have both subscripts
and superscripts. Therefore the most reasonable way out of the labyrinth of
heuristic guesses is to create a strict mathematical theory to enable calcula-
tion of observable components for any tensor quantities.

A complete mathematical apparatus to calculate physical observable
quantities for a four-dimensional pseudo-Riemannian space was completed
in 1944 by Abraham Zelmanov [15]: that is the strict solution of the prob-
lem. He called the apparatus the theory of chronometric invariants. Many
researchers were working on the problem in the 1930–1940’s. Even Landau
and Lifshitz in their famous book The Classical Theory of Fields (1939)
introduced observable time and the observable three-dimensional interval
similar to those introduced by Zelmanov. But they limited themselves only
to this particular case and did not arrive at general mathematical methods
to define physical observable quantities in pseudo-Riemannian spaces.

The essence of Zelmanov’s theory is that if an observer accompanies
his physical reference body, his observable quantities are projections of
four-dimensional quantities on his time line and the spatial section — chro-
nometrically invariant quantities, made by projecting operators

bα =
dxα

ds
, hαβ = −gαβ + bαbβ ,

which fully define his real reference space (here bα is his velocity with
respect to his real references). Thus, the chr.inv.-projections of a world-
vector Qα are

bαQ
α =

Q0
√
g00

, hiαQ
α = Qi,

while chr.inv.-projections of a world-tensor of the 2nd rank Qαβ are

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ = Qik.

Physically observable properties of the space are derived from the fact
that chr.inv.-differential operators

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi
=

∂

∂xi
+
1

c2
vi

∗∂

∂t

are non-commutative
∗∂2

∂xi ∂t
−

∗∂2

∂t∂xi
=
1

c2
Fi

∗∂

∂t
,

∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
=
2

c2
Aik

∗∂

∂t
,

and also from the fact that the chr.inv.-metric tensor

hik = −gik +
g0ig0k

g00
= −gik +

1

c2
vivk ,

which is the chr.inv.-projection of the fundamental metric tensor gαβ onto

the spatial section hαi h
β
k gαβ =−hik, may not be stationary. The main ob-

servable characteristics are the chr.inv.-vector of gravitational inertial force
Fi, the chr.inv.-tensor of angular velocities of the space rotation Aik, and
the chr.inv.-tensor of rates of the space deformations Dik, namely

Fi =
1

√
g00

(
∂w

∂xi
−
∂vi

∂t

)
,

Aik =
1

2

(
∂vk

∂xi
−
∂vi

∂xk

)
+

1

2c2
(Fivk−Fkvi) ,

Dik =
1

2

∗∂hik

∂t
, Dik = −

1

2

∗∂hik

∂t
, D = Dk

k =
∗∂ ln

√
h

∂t
,

where w is the gravitational potential

w = c2 (1−
√
g00) ,

and vi is the linear velocity of the space rotation

vi = −c
g0i
√
g00

, vi = −c g0i
√
g00 , vi = hikv

k,

while h=det ‖hik‖, hg00=−g, g=det ‖gαβ‖. Observable inhomoge-
neity of the space is set up by the chr.inv.-Christoffel symbols

Δijk = h
imΔjk,m =

1

2
him
( ∗∂hjm

∂xk
+

∗∂hkm

∂xj
−

∗∂hjk

∂xm

)
,

which are built just like Christoffel’s usual symbols

Γαμν = g
ασ Γμν,σ =

1

2
gασ
(
∂gμσ

∂xν
+
∂gνσ

∂xμ
−
∂gμν

∂xσ

)

using hik instead of gαβ . Components of the usual Christoffel symbols are
linked to the chr.inv.-Christoffel symbols and other chr.inv.-chractersitics of
the accompanying reference space of the given observer by the relations

Di
k + A

∙i
k∙ =

c
√
g00

(
Γi0k −

g0kΓ
i
00

g00

)
,

F k = −
c2Γk00
g00

, giαgkβ Γmαβ = h
iqhksΔmqs .

Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
linked to one another by two identities
∗∂Aik

∂t
+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi

∂xk

)
= 0 ,

∗∂Akm

∂xi
+
∗∂Ami

∂xk
+
∗∂Aik

∂xm
+
1

2
(FiAkm+FkAmi+FmAik) = 0
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which are known as Zelmanov’s identities.

Zelmanov deduced chr.inv.-formulae for the space curvature. He fol-
lowed that procedure by which the Riemann-Christoffel tensor was built:
proceeding from the non-commutativity of the second derivatives of an
arbitrary vector

∗∇i
∗∇kQl −

∗∇k
∗∇iQl =

2Aik

c2

∗∂Ql

∂t
+H

...j
lki∙Qj ,

he obtained the chr.inv.-tensor

H
...j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+Δmil Δ

j
km −ΔmklΔ

j
im

which is similar to Schouten’s tensor from the theory of non-holonomic ma-
nifolds. The tensor H...j

lki differs algebraically from the Riemann-Christoffel
tensor because of the presence of the space rotation Aik in the formula.
Nevertheless its generalization gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) ,

which possesses all the algebraic properties of the Riemann-Christoffel
tensor in this three-dimensional space and, at the same time, the property
of chronometric invariance. Therefore Zelmanov called Ciklj the chr.inv.-
curvature tensor the tensor of the observable curvature of the observer’s
spatial section. Its successive contraction

Ckj = C
∙∙∙i
kij∙ = h

imCkimj , C = C
j
j = h

ljClj

gives the chr.inv.-scalar C, which is the observable three-dimensional cur-
vature of this space.

Chr.inv.-projections of the Riemann-Christoffel tensor

Xik = −c2
R∙i∙k0∙0∙

g00
, Y ijk = −c

R
∙ijk
0 ∙∙∙√
g00

, Zijkl = c2Rijkl,

after substituting the necessary components of the Riemann-Christoffel ten-
sor and lowering indices, are

Xij=
∗∂Dij

∂t
−
(
Dl
i+A

∙l
i∙

)
(Djl+Ajl)+

1

2
(∗∇iFj+

∗∇jFi)−
1

c2
FiFj ,

Yijk =
∗∇i (Djk + Ajk)−

∗∇j (Dik + Aik) +
2

c2
AijFk ,

Ziklj=DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c
2Ciklj ,

where we have Y(ijk)=Yijk +Yjki+Ykij =0, just like the Riemann-
Christoffel tensor. Successive contraction of the spatial observable pro-
jection Ziklj gives

Zil = DikD
k
l −DilD + AikA

∙k
l∙ + 2AikA

k∙
∙l − c

2Cil ,

Z = hilZil = DikD
ik −D2 − AikA

ik − c2C .

Accordingly, Einstein’s equations in the case where matter is arbitrarily
distributed throughout the space have the chr.inv.-projections (the chr.inv.-
Einstein equations)

∗∂D

∂t
+DjlD

jl+AjlA
lj+

(
∗∇j−

1

c2
Fj

)
F j=−

κ

2

(
ρc2+U

)
+λc2,

∗∇j
(
hijD −Dij − Aij

)
+
2

c2
FjA

ij = κJi,

∗∂Dik

∂t
− (Dij+Aij)

(
D
j
k+A

∙j
k∙

)
+DDik+3AijA

∙j
k∙−

1

c2
FiFk+

+
1

2
(∗∇iFk+

∗∇kFi)−c
2Cik=

κ

2

(
ρc2hik+2Uik−Uhik

)
+λc2hik .

where ∗∇j denotes the chr.inv.-derivative, for instance

∗∇i qk =
∗∂qk

dxi
−Δlikql ,

∗∇i q
k =

∗∂qk

dxi
+Δkilq

l,

∗∇i qjk =
∗∂qjk

dxi
−Δlijqlk −Δ

l
ikqjl ,

∗∇i q
k
j =

∗∂qkj

dxi
−Δlijq

k
l +Δ

k
ilq

l
j ,

∗∇i q
jk =

∗∂qjk

dxi
+Δ

j
ilq

lk +Δkilq
jl,

∗∇i q
i =

∗∂qi

∂xi
+Δ

j
jiq

i =
∗∂qi

∂xi
+

∗∂ ln
√
h

∂xi
qi,

∗∇i q
ji =

∗∂qji

∂xi
+Δ

j
ilq

il +
∗∂ ln

√
h

∂xi
qji,

while the quantities

ρ =
T00

g00
, Ji =

cT i0√
g00

, U ik = c2T ik

(from which we have U =hikUik) are the chr.inv.-components of the
energy-momentum tensor Tαβ of distributed matter: the physical observ-
able density of the field energy ρ, the physical observable density of the
field momentum vector Ji, and the physical observable stress-tensor U ik.
For instance, the energy-momentum tensor of the electromagnetic field has
the form [20]

Tαβ =
1

4π

(
−FασF ∙σβ ∙ +

1

4
FμνF

μνgαβ

)
,

where Fαβ is the electromagnetic field tensor (so-called Maxwell’s tensor).
(It follows that the field density ρ is connected to the quantity U=hikUik
by ρc2=U .)

In this way, for any quantity or equation obtained using general covar-
iant methods, we can calculate their physically observable projections on
the time line and the spatial section of any particular reference body and
formulate the projections in terms of their real physically observable prop-
erties, from which we obtain equations containing only quantities measur-
able in practice.
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