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In this work, we attempt at constructing a comprehensive four-dimensional unified field
theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in
which the gravitational, electromagnetic, and material spin fields are unified as intrinsic
geometric objects of the space-time manifold S4 via the connection, with the general-
ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the
geometrized electromagnetic interaction.

1 Introduction

In our previous work [1], we developed a semi-classical con-
formal theory of quantum gravity and electromagnetism in
which both gravity and electromagnetism were successfully
unified and linked to each other through an “external” quan-
tum space-time deformation on the fundamental Planck scale.
Herein we wish to further explore the geometrization of the
electromagnetic field in [1] which was achieved by linking
the electromagnetic field strength to the torsion tensor built
by means of a conformal mapping in the evolution (configu-
ration) space. In so doing, we shall in general disregard the
conformal mapping used in [1] and consider an arbitrary, very
general torsion field expressible as a linear combination of the
electromagnetic and material spin fields.

Herein we shall find that the completely geometrized
Yang-Mills field of standard model elementary particle phys-
ics, which roughly corresponds to the electromagnetic, weak,
and strong nuclear interactions, has a more general form than
that given in the so-called rigid, local isospace.

We shall not simply describe our theory in terms of a La-
grangian functional due to our unease with the Lagrangian ap-
proach (despite its versatility) as a truly fundamental physical
approach towards unification. While the meaning of a partic-
ular energy functional (to be extremized) is clear in Newto-
nian physics, in present-day space-time physics the choice of
a Lagrangian functional often appears to be non-unique (as it
may be concocted arbitrarily) and hence devoid of straight-
forward, intuitive physical meaning. We shall instead, as in
our previous works [1–3], build the edifice of our unified field
theory by carefully determining the explicit form of the con-
nection.

2 The determination of the explicit form of the connec-
tion for the unification of the gravitational, electro-
magnetic, and material spin fields

We shall work in an affine-metric space-time manifold S4
(with coordinates x�) endowed with both curvature and tor-
sion. As usual, if we denote the symmetric, non-singular, fun-

damental metric tensor of S4 by g, then g��g�� = ���, where
� is the Kronecker delta. The world-line s is then given by the
quadratic differential form ds2 = g��dx�dxv . (The Einstein
summation convention employed throughout this work.)

As in [1], for reasons that will be clear later, we define the
electromagnetic field tensor F via the torsion tensor of space-
time (the anti-symmetric part of the connection �) as follows:

F�� = 2
mc2

e
��[��]u� ;

wherem is the mass (of the electron), c is the speed of light in
vacuum, and e is the electric charge, and where u� = dx�

ds are
the components of the tangent world-velocity vector whose
magnitude is unity. Solving for the torsion tensor, we may
write, under very general conditions,

��[��] =
e

2mc2
F��u� + S��� ;

where the components of the third-rank material spin (chi-
rality) tensor 3S are herein given via the second-rank anti-
symmetric tensor 2S as follows:

S��� = S��u� � S��u� :
As can be seen, it is necessary that we specify the follow-

ing orthogonality condition:

S��u� = 0 ;
such that

S���u� = 0 :

We note that 3S may be taken as the intrinsic angular mo-
mentum tensor for microscopic physical objects which may
be seen as the points in the space-time continuum itself. This
way, 3S may be regarded as a microspin tensor describing the
internal rotation of the space-time points themselves [2]. Al-
ternatively, 3S may be taken as being “purely material” (en-
tirely non-electromagnetic).

The covariant derivative of an arbitrary tensor field T is
given via the asymmetric connection � by

r�T��:::��::: = @�T��:::��::: + ����T
��:::
��::: + ����T

��:::
��::: + � � � �

� ����T
��:::
��::: � ����T

��:::
��::: � : : : ;
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where @� = @
@x� . Then, as usual, the metricity condition

r�g�� = 0, or, equivalently, @� g�� = ���� + ���� (where
���� = g������), gives us the relation

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g����[��]

�
:

Hence we obtain, for the connection of our unified field
theory, the following explicit form:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

+
e

2mc2
�
F��u� � F ��u� � F��u��+

+ S��� � g�� (S��� + S���) ;

where

��
�� =

1
2
g�� (@� g�� � @�g�� + @�g��)

are the components of the usual symmetric Levi-Civita con-
nection, and where

K�
�� =

e
2mc2

�
F��u� � F��u� � F ��u��+ S����

� g�� (S��� + S���)

are the components of the contorsion tensor in our unified
field theory.

The above expression for the connection can actually be
written alternatively in a somewhat simpler form as follows:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

+
e

2mc2
�
F��u� � F��u� � F��u��+ 2S��u� :

At this point, we see that the geometric structure of our
space-time continuum is also determined by the electromag-
netic field tensor as well as the material spin tensor, in addi-
tion to the gravitational (metrical) field.

As a consequence, we obtain the following relations
(where the round brackets on indices, in contrast to the square
ones, indicate symmetrization):

��(��) = ��
�� � e

2mc2
�
F��u� +F��u�

�
+S��u� +S��u�;

'� = K�
�� = 2��[��] =

e
mc2

F��u�:

We also have

� = ���� = ��
�� +

e
mc2

F��u�;

in addition to the usual relation

���� = ��
�� = @�

�
ln
p

det (g)
�
:

At this point, we may note that the spin vector ' is always
orthogonal to the world-velocity vector as

'�u� = 0 :

In terms of the four-potentialA, if we take the electromag-
netic field tensor to be a pure curl as follows:

F�� = @�A� � @�A� = �r�A� � �r�A� ;
where �r represents the covariant derivative with respect to
the symmetric Levi-Civita connection alone, then we have the
following general identities:

@�F��+@�F��+@�F�� = �r�F��+ �r�F��+ �r�F�� = 0;

r�F�� +r�F�� +r�F�� =

= �2
�

��[��]F�� + ��[��]F�� + +��[��]F��
�
:

The electromagnetic current density vector is then
given by

J� = � c
4�
r�F�� :

Its fully covariant divergence is then given by

r�J� = � c
4�
r����[��]F

��� :
If we further take J� = �emu�, where �em represents the

electromagnetic charge density (taking into account the pos-
sibility of a magnetic charge), we see immediately that our
electromagnetic current is conserved if and only if �r�J� = 0,
as follows

r�J� = @�J� + ����J
� =

= �r�J� +
e

mc2
F��J�u� = �r�J�:

In other words, for the electromagnetic current density to
be conserved in our theory, the following conditions must be
satisfied (for an arbitrary scalar field �):

J� = � c
4�

��[��]F
��;

��[��] = ���@��� ��� @�� :

These relations are reminiscent of those in [1]. Note that
we have made use of the relation (r�r� �r�r�) � =
= 2��[��]r��.

Now, corresponding to our desired conservation law for
electromagnetic currents, we can alternatively express the
connection as

���� = ��
�� + 2

�
g��g��@��� ��� @��

�
:

Contracting the above relation, we obtain the simple re-
lation ���� = ��

��� 6@��. On the other hand, we also have
the relation ���� = ��

�� + e
mc2 F��u

�. Hence we see that �
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is a constant of motion as

@�� = � e
6mc2

F��u� ;

d�
ds

= 0 :

These two conditions uniquely determine the conserva-
tion of electromagnetic currents in our theory.

Furthermore, not allowing for external forces, the geo-
desic equation of motion in S4, namely,

Du�

Ds
= u� r�u� = 0 ;

must hold in S4 in order for the gravitational, electromag-
netic, and material spin fields to be genuine intrinsic geomet-
ric objects that uniquely and completely build the structure of
the space-time continuum.

Recalling the relation ��(��) = ��
�� � e

2mc2
�
F��u� +

+F��u�
�

+S��u� +S��u�, we obtain the equation of mo-
tion

du�

ds
+ ��

��u
�u� =

e
mc2

F��u
� ;

which is none other than the equation of motion for a charged
particle moving in a gravitational field. This simply means
that our relation F�� = 2mc

2

e ��[��]u� does indeed indicate a
valid geometrization of the electromagnetic field.

In the case of conserved electromagnetic currents,
we have

du�

ds
+ ��

��u
�u� = �6 g��@��:

3 The field equations of the unified field theory

The (intrinsic) curvature tensor R of S4 is of course given by
the usual relation

(r�r� �r�r�) V� = R����V� � 2��[��]r�V�;
where V is an arbitrary vector field. For an arbitrary tensor
field T , we have the more general relation

(r�r� �r�r�) T��:::��::: = R����T
��:::
��::: +R����T

��:::
��::: +

+ : : :�R����T ��:::��::: �R����T��:::��::: � : : :�2��[��]r�T��:::��::: :

Of course,

R���� = @����� � @����� + �������� � �������� :

If we define the following contractions:

R�� = R���� ;

R = R�� ;

then, as usual,

R���� = C���� +
1
2

(g��R�� + g��R�� � g��R�� �
�g��R��) +

1
6

(g��g�� � g��g��)R ;

where C is the Weyl tensor. Note that the generalized Ricci
tensor (given by its components R��) is generally asym-
metric.

Let us denote the usual Riemann-Christoffel curvature
tensor by �R, i.e.,

�R���� = @���
�� � @���

�� + ��
����

�� ���
����

�� :

The symmetric Ricci tensor and the Ricci scalar are then
given respectively by �R�� = �R���� and �R= �R��.

Furthermore, we obtain the following decomposition:

R���� = �R����+ �r�K�
��� �r�K�

��+K�
��K

�
���K�

��K
�
�� :

Hence, recalling that '� =K�
�� = 2��[��], we obtain

R�� = �R�� + �r�K�
�� �K�

��K
�
�� � �r�'� + 2K�

��'� ;

R = �R� 2 �r�'� � '�'� �K���K��� :
We then obtain the following generalized Bianchi identi-

ties:

R���� +R���� +R���� = �2(@���[��] + @���[��]+

+ @���[��] + ������[��] + ������[��] + ������[��]) ;

r�R���� +r�R���� +r�R���� = 2
�

��[��]R���� +

+ ��[��]R���� + ��[��]R����
�
;

r�
�
R�� � 1

2
g��R

�
= 2g����[��]R

�
� + ��[��]R

���
� ;

in addition to the standard Bianchi identities

�R���� + �R���� + �R���� = 0 ;

�r� �R���� + �r� �R���� + �r� �R���� = 0 ;

�r�
�

�R�� � 1
2
g�� �R

�
= 0 :

(See [2–4] for instance.)
Furthermore, we can now obtain the following explicit

expression for the curvature tensor R:

R���� = @���
�� � @���

�� + ��
����

�� ���
����

�� +

+
e

2mc2
n

(@�F�� � @�F��) u� +
�
@�F �� � @�F ��� u� +

+ u�@�F
�
� � u�@�F �� + F��@�u� � F��@�u� +

+ F ��@�u� � F ��@�u� + (@�u� � @�u�)F �� +

+ (F ��u� � F ��u� � F ��u�) ��
�� + (F��u� � F ��u� �

� F ��u�
�

��
�� � �F��u� � F ��u� � F ��u����

���
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� (F��u� � F ��u� � F ��u�) ��
�� +

e
2mc2

(F��F�� �
� F��F��) u�u� +

e
2mc2

�
F��F �� � F��F ��� u�u� +

+
e

2mc2
(F��F �� � F��F ��) u�u� +

e
2mc2

�
F ��F�� �

� F ��F��) u�u� +
e

2mc2
�
F��F �� � F��F ��� u�u� +

+
e

2mc2
F ��F��u�u

� +
e

2mc2
F ��F

�
�u�u� �

� e
2mc2

F ��F��u�u
� � e

2mc2
F ��F

�
�u�u� +

+
e

2mc2
�
F��F �� � F��F ���o+ 
���� ;

where the tensor 
 consists of the remaining terms containing
the material spin tensor 2S (or 3S).

Now, keeping in mind that ��(��)= ��
��� e

2mc2
�
F��u�+

+F��u�
�

+S��u� +S��u� and also � = ���� = ��
�� +

+ e
mc2 F��u

�, and decomposing the components of the gen-
eralized Ricci tensor as R�� =R(��) +R[��], we see that

R(��) = @���(��) � 1
2

(@�� + @��) + ��(��)��
� 1

2
�
�������� + ��������

�
;

R[��] = @���[��] � 1
2

(@�� � @��) + ��[��]��
� 1

2
�
�������� � ��������

�
:

In particular, we note that

R[��] = @���[��] � 1
2

(@�� � @��) + ��[��]��
� 1

2
�
�������� � ��������

�
=

= @���[��] + ������[��] + ������[��] � ������[��] +

+
1
2

(@�� � @��) = r���[��] +
1
2

(@�� � @��) :

Hence we obtain the relation

R[��] =
e

2mc2

�
F��r�u� +

DF��
Ds

�
+r�S���+

+
1
2

(@�� � @��) ;

where DF��
Ds =u�r�F�� . More explicitly, we can write

R[��] =
e

2mc2

�
F��r�u� +

DF��
Ds

+ (@�F���
� @�F��) u� + F��@�u� � F��@�u��+r�S��� :

It is therefore seen that, in general, the special identity

@�R[��] + @�R[��] + @�R[��] = 0

holds only when r�u� = 0, DF��Ds = 0, andr� S��� = 0.
We are now in a position to generalize Einstein’s field

equation in the standard theory of general relativity. The
usual Einstein’s field equation is of course given by

�G�� = �R�� � 1
2
g�� �R = kT�� ;

�r� �G�� = 0 ;

where �G is the symmetric Einstein tensor, T is the energy-
momentum tensor, and k= � 8�G

c4 is Einstein’s coupling
constant in terms of the Newtonian gravitational constant G.
Taking c= 1 for convenience, in the absence of pressure, tra-
ditionally we write

�G�� = k
�
�mu�u� +

1
4�

�
F��F

�� � 1
4
g��F��F ��

��
;

where �m is the material density and where the second term
on the right-hand-side of the equation is widely regarded as
representing the electromagnetic energy-momentum tensor.

Now, with the generalized Bianchi identity for the
electromagnetic field, i.e., r�F�� +r�F�� +r�F�� =
=�2

�
��[��]F�� + ��[��]F�� + ��[��]F��

�
, at hand, and as-

suming the “isochoric” condition D�m
Ds =� �mr�u� = 0

(�m , 0), we obtain

r� �G�� = kg��
�

��[��]F�� + ��[��]F�� + ��[��]F��
�
F ��:

In other words,

r� �G�� = k
�

2g����[��]F��F
�� � 1

4�
F��J

�
�
:

This is our first generalization of the standard Einstein’s
field equation, following the traditional ad hoc way of arbi-
trarily adding the electromagnetic contribution to the purely
material part of the energy-momentum tensor.

Now, more generally and more naturally, using the
generalized Bianchi identity r� �R�� � 1

2 g
��R

�
=

= 2g����[��]R
�
� + ��[��]R

���
�, we can obtain the following

fundamental relation:

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
�+

1
2
F��R

���
�

�
u�+

+ 2S �
�� R

�� + S���R
���

� :

Alternatively, we can also write this as

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
�+

1
2
F��R

���
�

�
u�+

+ S��R��u� � S��u�R���� +
�
S��R

�� � S��R����� u� :
Now, as a special consideration, let � be the “area” of a

three-dimensional space-like hypersurface representing mat-
ter in S4. Then, if we make the following traditional choice
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for the third-rank material spin tensor 3S:

S��� =
$

�

�m
�
x�T�� � x�T��� d� ;

where now T is the total asymmetric energy-momentum ten-
sor in our theory, we see that, in the presence of matter, the
condition S��� = 0 implies that

T [��] = �1
2
�
x�r�T�� � x�r�T��� :

In this special case, we obtain the simplified expression

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
� +

1
2
F��R

���
�

�
u�:

If we further assume that the sectional curvature 	 = 1
12R

of S4 is everywhere constant in a space-time region where
the electromagnetic field (and hence the torsion) is absent, we
may consider writing R���� = 	 (g��g�� � g��g��) such
that S4 is conformally flat (C���� = 0), and hence R�� =
= 3	g�� and R[��] = 0. In this case, we are left with the
simple expression

r�
�
R�� � 1

2
g��R

�
= � eR

6mc2
F��u

� :

This is equivalent to the equation of motion

du�

ds
+ ��

��u
�u� = � 6

R
r�
�
R�� � 1

2
g��R

�
:

4 The minimal Lagrangian density of the theory

Using the general results from the preceding section, we ob-
tain

R = �R+
e2

4m2c4
F��F�� � e2

m2c4
F��F�� u

�u��
� 2e
mc2

�r�f� + 2S��S�� �K�(��)K�(��) ;

for the curvature scalar of S4. Here f� =F��u� can be said
to be the components of the so-called Lorentz force.

Furthermore, we see that

K�(��)K�(��) =
e2

m2c4
F��F�� + 2S��S���

� 2e
mc2

F��S�� � e2

2m2c4
F��F��u

�u� :

Hence we obtain

R = �R� e2

2m2c4
F��F�� � 2e

mc2
� �r�f� + F��S��

��
� e2

2m2c4
F��F�� u

�u� :

The last two terms on the right-hand-side of the expres-
sion can then be grouped into a single scalar source as fol-

lows:

� = � 2e
mc2

� �r�f� + F��S��
�� e2

2m2c4
F��F��u

�u� :

Assuming that � accounts for both the total (material-
electromagnetic) charge density as well as the total energy
density, our unified field theory may be described by the fol-
lowing action integral (where the L=R

p
det (g) is the min-

imal Lagrangian density):

I =
&

R
p

det (g) d4x =

=
& �

�R� e2

2m2c4
F��F�� + �

�p
det (g) d4x :

In this minimal fashion, gravity (described by �R) appears
as an emergent phenomenon whose intrinsic nature is of elec-
tromagnetic and purely material origin since, in our theory,
the electromagnetic and material spin fields are nothing but
components of a single torsion field.

5 The non-Abelian Yang-Mills gauge field as a sub-
torsion field in S4

In S4, let there exist a space-like three-dimensional hypersur-
face �3, with local coordinates Xi (Latin indices shall run
from 1 to 3). From the point of view of projective differential
geometry alone, we may say that �3i s embedded (immersed)
in S4. Then, the tetrad linking the embedded space �3 to the
enveloping space-time S4 is readily given by

!i� =
@Xi

@x�
; !�i =

�
!i�
��1

=
@x�

@Xi :

Furthermore, let N be a unit vector normal to the hyper-
surface �3. We may write the parametric equation of the hy-
persurface �3 as H (x�; d) = 0, where d is constant. Hence

N� =
g��@� Hp

g�� (@�H)(@�H)
;

N�N� = 1 :

In terms of the axial unit vectors a, b, and c spanning the
hypersurface �3, we may write

N� =
"����a� b�c�

"����N�a� b�c�
;

where "���� are the components of the completely anti-
symmetric four-dimensional Levi-Civita permutation tensor
density.

Now, the tetrad satisfies the following projective relations:

!i�N
� = 0 ; !i�!

�
k = �ik ;

!�i !
i
� = ��� �N�N� :
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If we denote the local metric tensor of �3 by h, we obtain
the following relations:

hik = !�i !
�
k g�� ;

g�� = !i�!
k
� hik +N�N� :

Furthermore, in the hypersurface �3, let us set ri =
=!�i r� and @i = @

@ Xi =!�i @�. Then we have the follow-
ing fundamental expressions:

r�!i� = Zik!
k
�N� = @�!i� � !i����� + �ikl!

k
�!

l
� ;

rk!�i = ZikN� = @k!
�
i � !�p �pik + ����!

�
i !

�
k ;

!�i r�!k� = 0 ;

riN� = �Zki!�k ;
where Z is the extrinsic curvature tensor of the hypersurface
�3, which is generally asymmetric in our theory.

The connection of the hypersurface �3 is linked to that of
the space-time S4 via

�pik = !p�@k!
�
i + !p�����!

�
i !

�
k :

After some algebra, we obtain

���� = !�i @�!
i
� + !�p �pik!

i
�!

k
� +N�@�N�+

+N�Zik!i�!
k
� �N�Zik!�i !k� :

The fundamental geometric relations describing our em-
bedding theory are then given by the following expressions
(see [4] for instance):

Rijkl = ZikZjl � ZilZjk +R����!
�
i !

�
j !

�
k!

�
l � !�i ��jkl;

rlZik�rkZil=�R����N�!�i !
�
k!

�
l �2�p[kl]Zip+N

���ikl ;

��ijk = (@k@j � @j@k) !�i + !�i ����
�
@k!

�
j � @j!�k� :

Actually, these relations are just manifestations of the fol-
lowing single expression:

(rkrj �rjrk) !�i = Rpijk!
�
p �R����!�i !�j !�k�

� 2�p[jk]ZipN
� + ��ijk :

We may note that �p[ik] and

Rijkl = @k�ijl � @l �ijk + �pjl�
i
pk � �pjk�ipl

are the components of the torsion tensor and the intrinsic cur-
vature tensor of the hypersurface �3, respectively.

Now, let us observe that

@�!i� � @�!i� = 2
�
!i���[��] � �i[kl]!

k
�!

l
� + Zik!

k
[� N�]

�
:

Hence letting
F i�� = 2!i���[��] ;

we arrive at the expression

F i�� = @�!i� � @�!i� + 2�i[kl]!
k
�!

l
� + 2Zik!

k
[�N �] :

In addition, we also see that

�i[kl] =
1
2
!�k !

�
l F

i
�� � 1

2
!�k !

�
l
�
@�!i� � @�!i�� :

Now, with respect to the local coordinate transformation
given by Xi =Xi � �XA� in �3, let us invoke the following
Cartan-Lie algebra:

[ei ; ek] = ei 
 ek � ek 
 ei = Cpikep ;

Cikl = hipC
p
kl = �2�i[kl] = � iĝ 2ikl ;

where ei = eAi
@

@ �XA are the elements of the basis vector span-
ning �3, Cpik are the spin coefficients, i=

p�1, ĝ is a cou-
pling constant, and 2ikl =pdet (h)"ikl (where "ikl are
the components of the completely anti-symmetric three-
dimensional Levi-Civita permutation tensor density).

Hence we obtain

F i�� = @�!i� � @�!i� + iĝ 2ikl !k�!l� + 2Zik!
k
[�N �] :

At this point, our key insight is to define the gauge field
potential as the tetrad itself, i.e.,

Bi� = !i� :

Hence, at last, we arrive at the following important ex-
pression:

F i�� = @�Bi� � @�Bi� + iĝ 2ikl Bk�Bl� + 2ZikB
k
[�N �] :

Clearly, F i�� are the components of the generalized Yang-
Mills gauge field strength. To show this, consider the hyper-
surface E3 of rigid frames (where the metric tensor is strictly
constant) which is a reduction (or, in a way, local infinitesi-
mal representation) of the more general hypersurface �3. We
shall call this an “isospace”. In it, we have

hik = �ik ;

det (h) = 1 ;

�ikl = �ikl = �i[kl] � �l[ik] � �k[il] =
1
2
iĝ"ikl ;

Zik = 0 :

Hence we arrive at the familiar expression

Fi�� = @�B�i � @�B�i + iĝ"iklB�kB�l :

In other words, setting ~F�� =Fi�� ei and ~B� =B�iei, we
obtain

~F�� = @� ~B� � @� ~B� �
h
~B� ; ~B�

i
:

Finally, let us define the gauge field potential of the sec-
ond kind via

!�ik = "ikpBp� ;
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such that
Bi� =

1
2
"ikl!�kl :

Let us then define the gauge field strength of the second
kind via

Rik�� = 2ikp F p�� ;
such that

F p�� =
1
2
2pik Rik�� :

Hence we obtain the general expression

Rik�� = iĝ
p

det (h)
�
@�!�ik � @�!�ik+

+
1p

det (h)
(!�ip!�kp � !�kp!�ip)

�
+

+
p

det (h) "ikpZprB
r
[�N �] :

We may regard the object given by this expression as the
curvature of the local gauge spin connection of the hypersur-
face �3.

Again, if we refer this to the isospace E3 instead of
the more general hypersurface �3, we arrive at the familiar
relation

Rik�� = iĝ (@�!�ik � @�!�ik + !�ip!�kp � !�kp!�ip) :

6 Conclusion

We have just completed our program of building the struc-
ture of a unified field theory in which gravity, electromag-
netism, material spin, and the non-Abelian Yang-Mills gauge
field (which is also capable of describing the weak force in
the standard model particle physics) are all geometrized only
in four dimensions. As we have seen, we have also general-
ized the expression for the Yang-Mills gauge field strength.

In our theory, the (generalized) Yang-Mills gauge field
strength is linked to the electromagnetic field tensor via the
relation

F�� = 2
mc2

e
��[��]u� =

mc2

e
F i��ui ;

where ui =!i�u�. This enables us to express the connection
in terms of the Yang-Mills gauge field strength instead of the
electromagnetic field tensor as follows:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

1
2
ui
�
F i�� u

� �
� F i��u� � F i��u��+ S��� � g�� (S��� + S���) ;

i.e., the Yang-Mills gauge field is nothing but a sub-torsion
field in the space-time manifold S4.

The results which we have obtained in this work may sub-
sequently be quantized simply by following the method given
in our previous work [1] since, in a sense, the present work
is but a further in-depth classical consideration of the fun-
damental method of geometrization outlined in the previous
theory.

Dedication

I dedicate this work to my patron and source of inspiration,
Albert Einstein (1879–1955), from whose passion for the
search of the ultimate physical truth I have learned something
truly fundamental of the meaning of being a true scientist and
independent, original thinker, even amidst the adversities of-
ten imposed upon him by the world and its act of scientific
institutionalization.
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