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One shows how in certain model situations conformal general relativity corresponds
to a Bohmian-Dirac-Weyl theory with conformal mass and Bohmian quantum mass
identified.

The article [12] was designed to show relations between con-
formal general relativity (CGR) and Dirac-Weyl (DW) the-
ory with identification of conformal mass m̂ and quantum
mass M following [7, 9, 11, 25] and precision was added via
[21]. However the exposition became immersed in techni-
calities and details and we simplify matters here. Explic-
itly we enhance the treatment of [7] by relating M to an im-
proved formula for the quantum potential based on [21] and
we provide a specific Bohmian-Dirac-Weyl theory wherein
the identification of CGR and DW is realized. Much has
been written about these matters and we mention here only
[1–7, 9–20, 23–28] and references therein. One has an Ein-
stein form for GR of the form

SGR =
Z
d4x
p�g(R� �jr j2 + 16�LM ) (1.1)

(cf. [7, 22]) whose conformal form (conformal GR) is an in-
tegrable Weyl geometry based on

ŜGR =
Z
d4x

p�ĝ e� �
�
�
R̂�

�
�� 3

2

�
jr̂ j2 + 16�e� LM

�
= (1.2)

=
Z
d4x

p�ĝ "�̂R̂� ��� 3
2

� jr̂�̂j2
�̂

+ 16��̂2LM

#
where 
2 = exp(� ) =� with ĝab = 
2gab and �̂=
= exp( ) =��1 (note (r̂ )2 = (r̂�̂)2=(�̂)2). One sees also
that (1.2) is the same as the Brans-Dicke (BD) action when
LM = 0, namely (using ĝ as the basic metric)

SBD =
Z
d4x

p�ĝ ��̂R̂� !
�̂
jr̂�̂j2 + 16�LM

�
; (1.3)

which corresponds to (1.2) provided !=�� 3
2 and LM = 0.

For (1.2) we have a Weyl gauge vector wa � @a = @a�̂=�̂
and a conformal mass m̂ = �̂�1=2m with 
2 = �̂�1 as the
conformal factor above. Now in (1.2) we identify m̂ with
the quantum mass M of [25] where for certain model situa-
tions M � � is a Dirac field in a Bohmian-Dirac-Weyl theory
as in (1.8) below with quantum potential Q determined via
M2 = m2 exp(Q) (cf. [10, 11, 21, 25] and note that m2 / T
where 8�T ab = (1=

p�g)(�
p�g LM=�gab)). Then �̂�1 =

= m̂2=m2 = M2=m2 � 
2 for 
2 the standard conformal

factor of [25]. Further one can write (1A)
p�ĝ �̂ R̂=

= �̂�1p�ĝ �̂2 R̂ = �̂�1p�g R̂ = (�2=m2)
p�g R̂. Re-

call here from [11] that for gab = �̂ĝab one has
p�g=

= �̂2p�ĝ and for the Weyl-Dirac geometry we give a brief
survey following [11, 17]:

1. Weyl gauge transformations: gab! ~gab = e2�gab;
gab! ~gab = e�2�gab — weight e.g. �(gab) =�2.
� is a Dirac field of weight -1. Note �(

p�g) = 4;
2. �cab is Riemannian connection; Weyl connection is �̂cab

and �̂cab = �cab = gabwc � �cbwa � �cawb;
3. raBb = @aBb �Bc�cab; raBb = @aBb +Bc�bca;
4. r̂aBb = @aBb �Bc�̂cab; r̂aBb = @aBb +Bc�̂bca;
5. r̂�gab = �2gabw�; r̂�gab = 2gabw� and for 
2 =

= exp(� ) the requirementrcgab = 0 is transformed
into r̂cĝab = @c ĝab showing that wc =�@c (cf. [7])
leading to w� = �̂�=�̂ and hence via �=m�̂�1=2 one
has wc = 2�c=� with �̂c=�̂=�2�c=� and wa =
=�2�a=�.

Consequently, via �2R̂ = �2R� 6�2r�w� + 6�2w�w�
(cf. [11, 12, 16, 17]), one observes that ��2r�w� =
=�r�(�2w�) + 2�@��w�, and the divergence term will
vanish upon integration, so the first integral in (1.2) becomes

I1 =
Z
d4x
p�g

�
�2

m2R+12�@��w�+6�2w�w�
�
: (1.4)

Setting now �� 3
2 =  the second integral in (1.2) is

I2 = � 
Z
d4x

p�ĝ �̂ jr̂�̂j2j�̂j2 =

= � 4
Z
d4x

p�ĝ �̂�1�̂2 jr̂�j2
�2 = (1.5)

= � 4
m2

Z
d4x
p�gjr̂�j2;

while the third integral in the formula (1.2) becomes
(1B) 16�

R p�g d4xLM . Combining now (1.4), (1.5), and
(1B) gives then

ŜGR =
1
m2

Z
d4x
p�g ��2R+ 6�2w�w� +

+ 12�@��w� � 4jr̂�j2 + 16�m2LM
�
:

(1.6)
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We will think of r̂� in the form (1C) r̂��= @�� �
� w�� = �@��. Putting then jr̂�j2 = j@�j2 (1.6) becomes
(recall  = �� 3

2 )

ŜGR =
1
m2

Z
d4x
p�g �

� ��2R+ (3� 4�)j@�j2 + 16�m2LM
�
:

(1.7)

One then checks this against some Weyl-Dirac actions.
Thus, neglecting termsW abWab we find integrands involving
dx4p�g times

��2R+ 3(3� + 2)j@�j2 + 2��4 + LM (1.8)

(see e.g. [11,12,17,25]); the term 2��4 of weight�4 is added
gratuitously (recall � (

p�g ) = 4). Consequently, omitting
the � term, (1.8) corresponds to (1.7) times m2 for LM �� 16�LM and (1D) 9� + 4� + 3 = 0. Hence one can iden-
tify conformal GR (without �) with a Bohmian-Weyl-Dirac
theory where conformal mass m̂ corresponds to quantum
mass M.

REMARK 1.1. The origin of a �4 term in (1.8) from
ŜGR in (1.2) with a term 2

p�ĝ�̂ in the integrand would
seem to involve writing (1E) 2

p�ĝ �̂ = 2
p�ĝ �̂2
4�̂ =

= 2
p�g �4�̂=m4 so that � in (1.8) corresponds to �̂. Nor-

mally one expects �
p�g ! p�ĝ �̂2� (cf. [2]) or perhaps

�! �̂2� = 
�4� = �̂. In any case the role and nature of a
cosmological constant seems to still be undecided. �
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