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In this preliminary work, we shall reveal the intrinsic geometry of background currents,
possibly of electromagnetic origin, in the space-time of General Relativity. Drawing a
close analogy between the object of our present study and electromagnetism, we shall
show that there exists an inherent, fully non-linear, conservative third-rank radiation
current which is responsible for the irregularity in the curvature of the background
space(-time), whose potential (generator) is of purely geometric origin.

1 Introduction

Herein we attempt to study, in a way that has never been fully
explored before, the nature of background radiation fields
from a purely geometric point of view. One may always ex-
pect that empty (matter-free) regions in a space(-time) of non-
constant sectional curvature are necessarily filled with some
kind of pure radiation field that may be associated with a class
of null electromagnetic fields. As is common in practice, their
description must therefore be attributed to the Weyl tensor
alone, as the only remaining geometric object in emptiness
(with the cosmological constant neglected). An in-depth de-
tailed elaboration on the nature of the physical vacuum and
emptiness, considering space(-time) anisotropy, can be seen
in [6, 7].

Our present task is to explore the geometric nature of the
radiation fields permeating the background space(-time). As
we will see, the thrilling new aspect of this work is that our
main stuff of this study (a third-rank background current and
its associates) is geometrically non-linear and, as such, it can-
not be gleaned in the study of gravitational radiation in weak-
field limits alone. Thus, it must be regarded as an essential
part of Einstein’s theory of gravity.

Due to the intended concise nature of this preliminary
work, we shall leave aside the more descriptive aspects of
the subject.

2 A third-rank geometric background current in a gen-
eral metric-compatible manifold

At first, let us consider a general, metric-compatible manifold
MD of arbitrary dimension D and coordinates x�. We may
extract a third-rank background current from the curvature as
follows:

J��� = J�[��] = r�R���� ;
where square brackets on a group of indices indicate anti-
symmetrization (similarly, round brackets will be used to in-
dicate symmetrization). Of course, r is the covariant deriva-
tive, and, with @� = @

@ x� ,

R���� = @����� � @����� + �����
�
�� � ��������

are the usual components of the curvature tensor R of the
metric-compatible connection � whose components are
given by

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g����[��]

�
:

Here g�� are the components of the fundamental sym-
metric metric tensor g and ��[��] are the components of the
torsion tensor. The (generalized) Ricci tensor and scalar are
then given, as usual, by the contractions R�� =R���� and
R=R��, respectively.

We may introduce the traceless Weyl curvature tensor W
through the decomposition

R��� = K�
�� +

+
1

D � 2
�
���R� + g�R

�
� � ��R�� � g��R�� ;

K�
�� = W�

�� +

+
1

(D � 1) (D � 2)
�
�� g�� � ���g��R ;

K�� = K(��) = K�
��� = � 1

D � 2
g��R ;

for which D> 2. In particular, we shall take into account the
following useful relation:

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� �R
��+K����R���K����R[��]

�
+

+
1

D�2
�
2RR��+g��R��R���R��R���R �

� R
���+

+
2

D�2

�
R(��)R[�

�] +R
(��)R �

� �R��R(��)
��

� 2
(D�2)2 RR

�� :
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Now, for an arbitrary tensor field T , we have, as usual,

(r�r� �r�r�)T���������� =

= R����T
�����
����� +R����T

�����
����� + � � � �R����T���������� �

�R����T���������� � 2��[��]r�T���������� :

For a complete set of general identities involving the cur-
vature tensor R and their relevant physical applications in
Unified Field Theory, see [1–5].

At this point, we can define a second-rank background
current density (field strength) f through

f�� = f [��] = r�J��� = r�r�R���� = �r[�r�]R���� :

An easy calculation gives, in general,

f�� = �1
2
�
R���R

��� �R���R���� �
�R[��]R���� � ��[��]r�R���� :

In analogy to the electromagnetic source, we may define
a first-rank current density through

j� = r�f�� :
Then, a somewhat lengthy but straightforward calculation

shows that
r� j� = R[��]f�� + ��[��]r�f�� :

We may also define the field strength f through a sixth-
rank curvature tensor F whose components are given by

F������ = F[��][��]�� =

=
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

��R����R���� :
where R���� = R���� .

If we define a second-rank anti-symmetric tensor B by

B�� = F ��
���� =

=
1
2
�
R���R��� �R���R�����R����R[��] ;

we then obtain

f�� = B�� + ��[��]r�R���� ;
such that in the case of vanishing torsion, the quantities f and
B are completely equivalent.

3 A third-rank radiation current relevant to General
Relativity

Having defined the basic geometric objects of our theory, let
us adhere to the standard Riemannian geometry of General
Relativity in which the torsion vanishes, that is ��[��] = 0, and
so the connection is the symmetric Levi-Civita connection.
However, let us also take into account discontinuities in the
first derivatives of the components of the metric tensor in or-
der to take into account discontinuity surfaces correspond-
ing to any existing background energy field. As we will see,
we shall obtain a physically meaningful background current
which is strictly conservative.

Now, in connection with the results of the preceding sec-
tion, if we employ the simplified relation (which is true in the
absence of torsion)

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� � R
�� +K����R��

�
+

+
1

D � 2
�
2RR�� + g��R��R�� � 4R��R

��� �
� 2

(D � 2)2 RR
�� ;

as well as the relations

K�
��K

��� = W�
��W

��� +
1

(D�1) (D�2)2 g
��R2;

K����R�� = W����R�� +

+
1

(D � 1) (D � 2)
(R�� � g��R)R ;

we obtain the desired relation

f�� = �1
2
�
W�

��W
��� �W �

��W
�����

� 1
D � 2

�
W� �

� � �W � �
� �

�
R�� :

If the metric tensor is perfectly continuous, it is obvious
that

f�� = 0 :

In deriving this relation we have used the symmetry
W���� =W���� . This shows that, in the presence of met-
ric discontinuity, the field strength f depends on the Weyl
curvature alone which is intrinsic to the background space(-
time) only when matter and non-null electromagnetic fields
are absent. We see that, in spaces of constant sectional cur-
vature, we will strictly have J���= 0 and f��= 0 since the
Weyl curvature vanishes therein. In other words, in the sense
of General Relativity, the presence of background currents is
responsible for the irregularity (anisotropy) in the curvature
of the background space(-time). Matter, if not elementary
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particles, in this sense, can indeed be regarded as a form of
perturbation with respect to the background space(-time).

Furthermore, it is now apparent that

J��� + J��� + J��� = 0 :

This relation is, of course, reminiscent of the usual Bian-
chi identity satisfied by the components of the Maxwellian
electromagnetic field tensor.

Also, we obtain the conservation law

r�j� = 0 :

which becomes trivial when the metric is perfectly continu-
ous.

Hence, the formal correspondence between our present
theory and the ordinary theory of electromagnetism may be
completed, in the simplest way, through the relation

J��� = r�R���� = r���� ;

where the anti-symmetric field tensor � given by

��� = @�A� � @�A�
plays a role similar to that of the electromagnetic field
strength. However, it should be emphasized that it exists in
General Relativity’s fully non-linear regime. In addition, it
vanishes identically in the absence of curvature anisotropy.
Interestingly, if one is willing to regard electromagnetism as
a kind of non-linear gravity, one may alternatively regard �
as being the complete equivalent of Maxwell’s electromag-
netic field strength. However, we shall not further pursue this
interest here.

Furthermore, we obtain the relation

f�� = ���� ;

where �=r�r�. That is, the wave equation

���� = �1
2
�
W���W��

� �W���W��
�
��

� 1
D � 2

(W���� �W����)R�� :

In the absence of metric discontinuity, we obtain

���� = 0 :

Let us now introduce a vector potential � such that the
curl of which gives us the field strength f . Instead of writ-
ing f�� = @���� @��� and instead of expressing the field
strength f in terms of the Weyl tensor, let us write its compo-
nents in the following equivalent form:

f�� = �1
2
�
R���R��� �R���R���� =

= r��� �r��� :

In order for the potential � to be purely geometric, we
shall have

r��� = �1
2
R���R��� ;

from which an “equation of motion” follows somewhat ef-
fortlessly:

D��
Ds

= �1
2
R���R���

dx�

ds
;

where D��
Ds = dx�

ds r���.
Note that, in the absence of metric discontinuity, the vec-

tor potential � is a mere gradient of a smooth scalar field �:
�� = r�� .

Now, it remains to integrate the equation

@��� = �1
2
R���R��� + ������

by taking a closed contour P associated with the surface area
dS spanned by infinitesimal displacements in two different
directions, that is,

dS�� = d1x�d2x� � d1x�d2x� :

An immediate effect of this closed-loop integration is that,
by using the generally covariant version of Stokes’ theorem
and by explicitly assuming that the integration factor Z
given by

Z�� =
1
2

ZZ

S

�r����� �r�����
�
dS�� =

=
1
2

ZZ

S

�
R���� + �������� � ��������

�
dS�� =

=
1
2

ZZ

S

�
R���� + 2��������

�
dS��

does not depend on �, the integral
H
P

������dx� shall indeed
vanish identically.

Hence, we are left with the expression

��� = �1
2

I
P

R���R���dx
� :

By introducing a new integration factor X satisfying
X�� +X�� +X�� = 0 as follows:

X�� = X [��] =
I
P

R���dx
� =

=
1
2

ZZ

S

�r�R��� �r�R����dS�� ;
we obtain, through direct partial integration,

��� = �1
2

�
R���X�� �

Z
X��dR���

�
:
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Simplifying, by keeping in mind that X =X (R; dR), we
finally obtain

��� =
1
2

Z
R���dX�� :

The simplest desired result of this is none other than

��� =
1
2
R���X�� ;

which, expressed in terms of the Weyl tensor, the Ricci tensor,
and the Ricci scalar, is

���=
1
2
W���X��+

1
D�2

�
X� �

� R���X� �
� R��

�
+

+
1

(D � 1) (D � 2)
X �
� �R :

Hence, through Einstein’s field equation (i.e. through the
energy-momentum tensor T )

R�� = � 8�G
c4

�
T�� � 1

2
g��T

�
;

where G is Newton’s gravitational constant and c is the speed
of light, we may see how the presence of (distributed) matter
affects the potential �.

4 Final remarks

At this point, having outlined our study in brief, it remains
to be seen whether our fully geometric background current
may be associated with any type of conserved material cur-
rent which is already known in the literature. It is also tempt-
ing to ponder, from a purely physical point of view, on the
possibility that the intrinsic curvature of space(-time) owes its
existence to null (light-like) electromagnetic fields or simply
pure radiation fields.

In this case, let the null electromagnetic (pure radiation)
field of the background space(-time) be denoted by ', for
which

'��'�� = 0 :

Then we may express the components of the Weyl ten-
sor as

W���� = '��'�� � '��'�� + '��'�� ;

such that the relation W �
��� = 0 is satisfied.

If this indeed is the case, then we shall have a chance to
better understand how matter actually originates from such a
pure radiation field in General Relativity. This will hopefully
also open a new way towards the full geometrization of matter
in physics.

Finally, as a pure theory of gravitation, the results in the
present work may be compared to those given in [8] and [9],
wherein, based on the theory of chronometric invariants [7], a

new geometric formulation of gravity (which is fully equiva-
lent to the standard form of General Relativity) is presented in
a way very similar to that of the electromagnetic field, based
solely on a second-rank anti-symmetric field tensor.
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