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It was known for quite long time that a quaternion space can be generalized to a Clifford
space, and vice versa; but how to find its neat link with more convenient metric form
in the General Relativity theory, has not been explored extensively. We begin with a
representation of group with non-zero quaternions to derive closed FLRW metric [1],
and from there obtains Carmeli metric, which can be extended further to become 5D
and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter
we discuss some plausible implications of this metric, beyond describing a galaxy’s
spiraling motion and redshift data as these have been done by Carmeli and Hartnett
[4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We
also note possible implications to quantum gravity. Further observations are of course
recommended in order to refute or verify this proposition.

1 Introduction

It was known for quite long time that a quaternion space can
be generalized to a Clifford space, and vice versa; but how to
find its neat link to more convenient metric form in the Gen-
eral Relativity theory, has not been explored extensively [2].

First it is worth to remark here that it is possible to find
a flat space representation of quaternion group, using its al-
gebraic isomorphism with the ring division algebra [3, p.3]:

EiEj = � �ij + fijkEk : (1)

Working for Rdim, we get the following metric [3]:

ds2 = dx�dx�; (2)

imposing the condition:

x�x� = R2: (3)

This rather elementary definition is noted here because it
was based on the choice to use the square of the radius to
represent the distance (x�), meanwhile as Riemann argued
long-time ago it can also been represented otherwise as the
square of the square of the radius [3a].

Starting with the complex n = 1, then we get [3]:

q = x0 + x1E1 + x2E2 + x3E3 : (4)

With this special choice of x� we can introduce the spe-
cial metric [3]:

ds2 = R2(�ij@�i@�j): (5)

This is apparently most direct link to describe a flat metric
from the ring division algebra. In the meantime, it seems very
interesting to note that Trifonov has shown that the geometry
of the group of nonzero quaternions belongs to closed FLRW
metric. [1] As we will show in the subsequent Section, this

approach is more rigorous than (5) in order to describe neat
link between quaternion space and FLRW metric.

We begin with a representation of group with non-zero
quaternions to derive closed FLRW metric [1], and from there
we argue that one can obtain Carmeli 5D metric [4] from this
group with non-zero quaternions. The resulting metric can
be extended further to become 5D and 6D metric (which we
propose to call Kaluza-Klein-Carmeli metric).

Thereafter we discuss some plausible implications of this
metric, beyond describing a galaxy’s spiraling motion and
redshift data as these have been done by Carmeli and Hartnett
[4–7]. Possible implications to the Earth geochronometrics
and possible link to coral growth data are discussed. In the
subsequent Section we explain Podkletnov’s rotating disc ex-
periment. We also note a possible near link between Kaluza-
Klein-Carmeli and Yefremov’s Q-Relativity, and also possi-
ble implications to quantum gravity.

The reasons to consider this Carmeli metric instead of the
conventional FLRW are as follows:
• One of the most remarkable discovery from WMAP

is that it reveals that our Universe seems to obey Eu-
clidean metric (see Carroll’s article in Nature, 2003);

• In this regards, to explain this observed fact, most ar-
guments (based on General Relativity) seem to agree
that in the edge of Universe, the metric will follow Eu-
clidean, because the matter density tends to approach-
ing zero. But such a proposition is of course in contra-
diction with the basic “assumption” in GTR itself, i.e.
that the Universe is homogenous isotropic everywhere,
meaning that the matter density should be the same too
in the edge of the universe. In other words, we need
a new metric to describe the inhomogeneous isotropic
spacetime.
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• Furthermore, from astrophysics one knows that spiral
galaxies do not follow Newtonian potential exactly.
Some people have invoked MOND or modified (Post-)
Newton potential to describe that deviation from New-
tonian potential [8, 9]. Carmeli metric is another pos-
sible choice [4], and it agrees with spiral galaxies, and
also with the redshift data [5–7].

• Meanwhile it is known, that General Relativity is strict-
ly related to Newtonian potential (Poisson’s equation).
All of this seems to indicate that General Relativity is
only applicable for some limited conditions, but it may
not be able to represent the rotational aspects of gravi-
tational phenomena. Of course, there were already ex-
tensive research in this area of the generalized gravita-
tion theory, for instance by introducing a torsion term,
which vanishes in GTR [10].

Therefore, in order to explain spiral galaxies’ rotation
curve and corresponding “dark matter”, one can come up with
a different route instead of invoking a kind of strange matter.
In this regards, one can consider dark matter as a property of
the metric of the spacetime, just like the precession of the first
planet is a property of the spacetime in General Relativity.

Of course, there are other methods to describe the inho-
mogeneous spacetime, see [15, 16], for instance in [16] a
new differential operator was introduced: �

�� = 1
Ho

1
c
�
�t , which

seems at first glance as quite similar to Carmeli method. But
to our present knowledge Carmeli metric is the most con-
sistent metric corresponding to generalized FLRW (derived
from a quaternion group).

Further observations are of course recommended in order
to refute or verify this proposition.

2 FLRW metric associated to the group of non-zero
quaternions

The quaternion algebra is one of the most important and well-
studied objects in mathematics and physics; and it has natural
Hermitian form which induces Euclidean metric [1]. Mean-
while, Hermitian symmetry has been considered as a method
to generalize the gravitation theory (GTR), see Einstein paper
in Ann. Math. (1945).

In this regards, Trifonov has obtained that a natural exten-
sion of the structure tensors using nonzero quaternion bases
will yield formula (6). (See [1, p.4].)

Interestingly, by assuming that [1]:

� (�)
� _R
R

�2
= 1 ; (7)

then equation (6) reduces to closed FLRW metric [1, p.5].
Therefore one can say that closed FLRW metric is neatly as-
sociated to the group of nonzero quaternions.

Now consider equation (7), which can be rewritten as:

� (�)( _R)2 = R2: (8)

Since we choose (8), then the radial distance can be ex-
pressed as:

dR2 = dz2 + dy2 + dx2: (9)

Therefore we can rewrite equation (8) in terms of (9):

� (�)(d _R)2 = (dR)2 = dz2 + dy2 + dx2; (10)

and by defining

� (�) = � 2 =
1

H2
0 (�)

=
1

�(H2
0 )n

: (11)

Then we can rewrite equation (10) in the form:

� (�)(d _R)2 = � 2(dv)2 = dz2 + dy2 + dx2; (12)

or �� 2(dv)2 + dz2 + dy2 + dx2 = 0 ; (13)

which is nothing but an original Carmeli metric [4, p.3, equa-
tion (4)] and [6, p.1], where H0 represents Hubble constant
(by setting �=n= 1, while in [12] it is supposed that �= 1:2,
n = 1). Further extension is obviously possible, where equa-
tion (13) can be generalized to include the (icdt) component
in the conventional Minkowski metric, to become (Kaluza-
Klein)-Carmeli 5D metric [5, p.1]:

�� 2(dv)2 + dz2 + dy2 + dx2 + (icdt)2 = 0 : (14)

Or if we introduce equation (13) in the general relativistic
setting [4, 6], then one obtains:

ds2 = � 2(dv)2 � e� � dr2 �R2 � (d#2 + sin2# � d�2): (15)

The solution for (15) is given by [6, p.3]:

dr
dv

= � � exp
�
��

2

�
; (16)

which can be written as:

d _r
dr

=
dv
dr

= ��1 � exp
�
�
2

�
: (17)

This result implies that there shall be a metric deforma-
tion, which may be associated with astrophysics observation,
such as the possible AU differences [11, 12].
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Furthermore, this proposition seems to correspond neatly
to the Expanding Earth hypothesis, because [13]:

“In order for expansion to occur, the moment of inertia
constraints must be overcome. An expanding Earth would
necessarily rotate more slowly than a smaller diameter planet
so that angular momentum would be conserved.” (Q.1)

We will discuss these effects in the subsequent Sections.
We note however, that in the original Carmeli metric,

equation (14) can be generalized to include the potentials to
be determined, to become [5, p.1]:

ds2 =
�

1 +
	
� 2

�
� 2 (dv)2 � dr2 +

�
1 +

�
c2

�
c2dt2; (18)

where
dr2 = dz2 + dy2 + dx2: (19)

The line element represents a spherically symmetric inho-
mogeneous isotropic universe, and the expansion is a result of
the spacevelocity component. In this regards, metric (18) de-
scribes funfbein (“five-legs”) similar to the standard Kaluza-
Klein metric, for this reason we propose the name Kaluza-
Klein-Carmeli for all possible metrics which can be derived
or extended from equations (8) and (10).

To observe the expansion at a definite time, the (icdt)
term in equation (14) has been ignored; therefore the met-
ric becomes “phase-space” Minkowskian. [5, p.1]. (A simi-
lar phase-space Minkowskian has been considered in various
places, see for instance [16] and [19].) Therefore the metric
in (18) reduces to (by taking into consideration the isotropic
condition):

dr2 +
�

1 +
	
� 2

�
� 2 (dv)2 = 0 : (20)

Alternatively, one can suppose that in reality this assump-
tion may be reasonable by setting c ! 0, such as by consid-
ering the metric for the phonon speed cs instead of the light
speed c; see Volovik, etc. Therefore (18) can be rewritten as:

ds2
phonon =

�
1 +

	
� 2

�
� 2 (dv)2 � dr2 +

+
�

1 +
�
c2s

�
c2s dt

2:
(21)

To summarize, in this Section we find out that not only
closed FLRW metric is associated to the group of nonzero
quaternions [1], but also the same group yields Carmeli met-
ric. In the following Section we discuss some plausible im-
plications of this proposition.

3 Observable A: the Earth geochronometry

One straightforward implication derived from equation (8) is
that the ratio between the velocity and the radius is directly
proportional, regardless of the scale of the system in question:

� _R
R

�2
= � (�)�1 ; (22)

or �
R1
_R1

�
=
�
R2
_R2

�
=
p
� (�) : (23)

Therefore, one can say that there is a direct proportion-
ality between the spacevelocity expansion of, let say, Virgo
galaxy and the Earth geochronometry. Table 1 displays the
calculation of the Earth’s radial expansion using the formula
represented above [17]:

Therefore, the Earth’s radius increases at the order of
� 0.166 cm/year, which may correspond to the decreasing
angular velocity (Q.1). This number, albeit very minute, may
also correspond to the Continental Drift hypothesis of A. We-
gener [13, 17]. Nonetheless the reader may note that our cal-
culation was based on Kaluza-Klein-Carmeli’s phase-space
spacevelocity metric.

Interestingly, there is a quite extensive literature suggest-
ing that our Earth experiences a continuous deceleration rate.
For instance, J. Wells [14] described a increasing day-length
of the Earth [14]:

“It thus appears that the length of the day has been in-
creasing throughout geological time and that the number of
days in the year has been decreasing. At the beginning of the
Cambrian the length of the day would have been 21h.” (Q.2)

Similar remarks have been made, for instance by
G. Smoot [13]:

“In order for this to happen, the lunar tides would have to
slow down, which would affect the length of the lunar month.
. . . an Earth year of 447 days at 1.9 Ga decreasing to an Earth
year of 383 days at 290 Ma to 365 days at this time. However,
the Devonian coral rings show that the day is increasing by
24 seconds every million years, which would allow for an
expansion rate of about 0.5% for the past 4.5 Ga, all other
factors being equal.” (Q.3)

Therefore, one may compare this result (Table 1) with the
increasing day-length reported by J. Wells [13].

4 Observable B: the Receding Moon from the Earth

It is known that the Moon is receding from the Earth at a
constant rate of � 4cm/year [17, 18].

Using known values: G = 6.6724�10�8 cm2/(g � sec2)
and � = 5.5�106 g/m3, and the Moon’s velocity�7.9 km/sec,
then one can calculate using known formulas:

Vol =
4
3
� � (R+ �R)3; (24)

M + �M = Vol � � ; (25)

r + �r =
G � (M + �M)

v2 ; (26)

where r, v, M each represents the distance from the Moon to
the Earth, the Moon’s orbital velocity, and the Earth’s mass,
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Nebula Radial velocity
(mile/s)

Distance
(103 kly)

Ratio
(10�5 cm/yr)

the Earth dist.
(R, km)

Predicted the Earth exp.
(�R, cm/year)

Virgo 750 39 2.617 6371 0.16678

Ursa Mayor 9300 485 2.610 6371 0.166299

Hydra 38000 2000 2.586 6371 0.164779

Bootes 2 86000 4500 2.601 6371 0.165742

Average 2.604 0.1659

Table 1: Calculation of the radial expansion from the Galaxy velocity/distance ratio. Source: [17].

respectively. Using this formula we obtain a prediction of the
Receding Moon at the rate of 0.00497 m/year. This value is
around 10% compared to the observed value 4 cm/year.

Therefore one can say that this calculation shall take into
consideration other aspects. While perhaps we can use other
reasoning to explain this discrepancy between calculation and
prediction, for instance using the “conformal brane” method
by Pervushin [20], to our best knowledge this effect has neat
link with the known paradox in astrophysics, i.e. the observed
matter only contributes around �1–10% of all matter that is
supposed to be “there” in the Universe.

An alternative way to explain this discrepancy is that there
is another type of force different from the known Newtonian
potential, i.e. by taking into consideration the expansion of
the “surrounding medium” too. Such a hypothesis was pro-
posed recently in [21]. But we will use here a simple argu-
ment long-time ago discussed in [22], i.e. if there is a force
other than the gravitational force acting on a body with mass,
then it can be determined by this equation [22, p.1054]:

d(mv0)
dt

= F + Fgr; (27)

where v0 is the velocity of the particle relative to the absolute
space [22a]. The gravitational force can be defined as before:

Fgr = �mrV ; (28)

where the function V is solution of Poisson’s equation:

r2 V = 4�K� ; (29)

and K represents Newtonian gravitational constant. For sys-
tem which does not obey Poisson’s equation, see [15].

It can be shown, that the apparent gravitational force that
is produced by an aether flow is [22]:

Fgr = m
@v
@t

+mr
�
v2

2

�
�mv0 �r� v+ v

dm
dt

; (30)

which is an extended form of Newton law:

~F =
d
dt

(~m~v) = m
�
d~v
dt

�
+ v

�
d~m
dt

�
: (31)

If the surrounding medium be equivalent to Newton’s the-
ory, this expression shall reduce to that given in (27). Suppos-
ing the aether be irrotational relative to the particular system

of the coordinates, and m= const, then (29) reduces [22]:

Fgr = �m
�
�@v
@t
�r

�
v2

2

��
; (32)

which will be equivalent to equation (27) only if:

rV =
@v
@t

+r
�
v2

2

�
: (33)

Further analysis of this effect to describe the Receding
Moon from the Earth will be discussed elsewhere. In this Sec-
tion, we discuss how the calculated expanding radius can de-
scribe (at least partially) the Receding Moon from the Earth.
Another possible effect, in particular the deformation of the
surrounding medium, shall also be considered.

5 Observable C: Podkletnov’s rotation disc experiment

It has been discussed how gravitational force shall take into
consideration the full description of Newton’s law. In this
Section, we put forth the known equivalence between New-
ton’s law (31) and Lorentz’ force [23], which can be written
(supposing m to be constant) as follows:

~F =
d
dt

(
 ~m~v) = 
m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
; (34)

where the relativistic factor is defined as:


 = �
r

1
1� �2 : (35)

while we can expand this equation in the cylindrical coordi-
nates [23], we retain the simplest form in this analysis. In
accordance with Spohn, we define [24]:

E = �rA : (36)

B = r� A : (37)

For Podkletnov’s experiment [26–28], it is known that
there in a superconductor E = 0 [25], and by using the mass
m in lieu of the charge ratio e

c in the right hand term of (34)
called the “gravitational Lorentz force”, we get:

m
�
d~v
dt

�
=
m



�
~v � ~B

�
=

1



�
~p� ~B

�
: (38)
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Let us suppose we conduct an experiment with the weight
w= 700 g, the radius r= 0.2 m, and it rotates at f = 2 cps
(cycle per second), then we get the velocity at the edge of
the disc as:

v = 2� � f r = 2.51 m/sec; (39)

and with known values forG= 6.67�10�11, c' 3�108m/sec,
Mearth = 5.98�1024 kg, rearth = 3�106 m, then we get:

Fgr =
G
c2r

Mv � 3.71�10�9 newton/kgm sec: (40)

Because B=F=meter, then from (39), the force on the
disc is given by:

Fdisc = ~Bearth � ~pdisc � Bearth �
�
m
c



�
: (41)

High-precision muon experiment suggests that its speed
can reach around � 0.99 c. Let us suppose in our disc, the
particles inside have the speed 0.982 c, then 
�1 = 0.1889.
Now inserting this value into (40), yields:

Fdisc = (3.71�10�9) � (0.7) � (3�108) � 0.189 =
= 0.147 newton = 14.7 gr:

(42)

Therefore, from the viewpoint of a static observer, the
disc will get a mass reduction as large as 14:7

700 = 2.13%, which
seems quite near with Podkletnov’s result, i.e. the disc can
obtain a mass reduction up to 2% of the static mass.

We remark here that we use a simplified analysis using
Lorentz’ force, considering the fact that superconductivity
may be considered as a relativistic form of the ordinary elec-
tromagnetic field [25].

Interestingly, some authors have used different methods to
explain this apparently bizarre result. For instance, using Taj-
mar and deMatos’ [29] equation: 
0 = a


2 = 0:2�2
2 = 0:2. In

other words, it predicts a mass reduction around � 0:2
9:8 = 2%,

which is quite similar to Podkletnov’s result.
Another way to describe those rotating disc experiments

is by using simple Newton law [33]. From equation (31) one
has (by setting F = 0 and because g = dv

dt ):
dm
dt

= �m
v
g = � m

!R
g ; (43)

Therefore one can expect a mass reduction given by an
angular velocity (but we’re not very how Podkletnov’s exper-
iment can be explained using this equation).

We end this section by noting that we describe the rotating
disc experiment by using Lorentz’ force in a rotating system.
Further extension of this method in particular in the context
of the (extended) Q-relativity theory, will be discussed in the
subsequent Section.

6 Possible link with Q-Relativity. Extended 9D metric

In the preceding Section, we have discussed how closed
FLRW metric is associated to the group with nonzero quater-
nions, and that Carmeli metric belongs to the group. The only

problem with this description is that it neglects the directions
of the velocity other than against the x line.

Therefore, one can generalize further the metric to be-
come [1, p.5]:

� � 2(dvR)2 + dz2 + dy2 + dx2 = 0 ; (44)

or by considering each component of the velocity vector [23]:

(i� dvX)2 + (i� dvY )2 + (i� dvZ)2 +

+ dz2 + dy2 + dx2 = 0 :
(45)

From this viewpoint one may consider it as a generaliza-
tion of Minkowski’s metric into biquaternion form, using the
modified Q-relativity space [30, 31, 32], to become:

ds = (dxk + i� dvk) qk: (46)

Please note here that we keep using definition of Yefre-
mov’s quaternion relativity (Q-relativity) physics [30], albeit
we introduce dv instead of dt in the right term. We propose
to call this metric quaternionic Kaluza-Klein-Carmeli metric.

One possible further step for the generalization this equa-
tion, is by keep using the standard Q-relativistic dt term, to
become:

ds = (dxk + icdtk + i� dvk) qk ; (47)

which yields 9-Dimensional extension to the above quater-
nionic Kaluza-Klein-Carmeli metric. In other words, this
generalized 9D KK-Carmeli metric is seemingly capable to
bring the most salient features in both the standard Carmeli
metric and also Q-relativity metric. Its prediction includes
plausible time-evolution of some known celestial motion in
the solar system, including but not limited to the Earth-based
satellites (albeit very minute). It can be compared for instance
using Arbab’s calculation, that the Earth accelerates at rate
3.05 arcsec/cy2, and Mars at 1.6 arcsec/cy2 [12]. Detailed
calculation will be discussed elsewhere.

We note here that there is quaternionic multiplication rule
which acquires the compact form [30–32]:

1qk = qk1 = qk ; qjqk = ��jk + "jknqn ; (48)

where �kn and "jkn represent 3-dimensional symbols of Kro-
necker and Levi-Civita, respectively [30]. It may also be
worth noting here that in 3D space Q-connectivity has clear
geometrical and physical treatment as movable Q-basis with
behavior of Cartan 3-frame [30].

In accordance with the standard Q-relativity [30, 31], it
is also possible to write the dynamics equations of Classical
Mechanics for an inertial observer in the constant Q-basis, as
follows:

m
d2

dt2
(xkqk) = Fkqk : (49)

Because of the antisymmetry of the connection (the gen-
eralized angular velocity), the dynamics equations can be
written in vector components, by the conventional vector no-
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tation [30, 32]:

m
�
~a+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)� = ~F ; (50)

which represents known types of classical acceleration, i.e.
the linear, the Coriolis, the angular, and the centripetal acce-
leation, respectively.

Interestingly, as before we can use the equivalence be-
tween the inertial force and Lorentz’ force (34), therefore
equation (50) becomes:

m
�
d~v
dt

+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
�

=

= q

�
~E +

1
c
~v � ~B

�
;

(51)

or �
d~v
dt

�
=
q

m

�
~E +

1
c
~v � ~B

�
�

� 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
m

:
(52)

Please note that the variable q here denotes electric
charge, not quaternion number.

Therefore, it is likely that one can expect a new effects
other than Podkletnov’s rotating disc experiment as discussed
in the preceding Section.

Further interesting things may be expected, by using (34):

~F = m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
)

) m (d~v) = q
�
~E +

1
c
~v � ~B

�
dt :

(53)

Therefore, by introducing this Lorentz’ force instead of
the velocity into (44), one gets directly a plausible extension
of Q-relativity:

ds =
�
dxk + i�

q
m

�
~Ek +

1
c
~vk � ~Bk

�
dtk
�
qk : (54)

This equation seems to indicate how a magnetic worm-
hole can be induced in 6D Q-relativity setting [16, 19]. The
reason to introduce this proposition is because there is known
link between magnetic field and rotation [34]. Nonetheless
further experiments are recommended in order to refute or
verify this proposition.

7 Possible link with quantum gravity

In this Section, we remark that the above procedure to de-
rive the closed FLRW-Carmeli metric from the group with
nonzero quaternions has an obvious advantage, i.e. one can
find Quantum Mechanics directly from the quaternion frame-
work [35]. In other words, one can expect to put the gravita-
tional metrical (FLRW) setting and the Quantum Mechanics
setting in equal footing. After all, this may be just a goal
sought in “quantum gravity” theories. See [4a] for discussion

on the plausible quantization of a gravitational field, which
may have observable effects for instance in the search of ex-
trasolar planets [35a].

Furthermore, considering the “phonon metric” described
in (20), provided that it corresponds to the observed facts,
in particular with regards to the “surrounding medium” vor-
tices described by (26–29), one can say that the “surrounding
medium” is comprised of the phonon medium. This proposi-
tion may also be related to the superfluid-interior of the Sun,
which may affect the Earth climatic changes [35b]. Therefore
one can hypothesize that the signatures of quantum gravity,
in the sense of the quantization in gravitational large-scale
phenomena, are possible because the presence of the phonon
medium. Nonetheless, further theoretical works and observa-
tions are recommended to explore this new proposition.

8 Concluding remarks

In the present paper we begun with a representation of a group
with non-zero quaternions to derive closed FLRW metric [1],
and we obtained Carmeli 5D metric [4] from this group. The
resulting metric can be extended further to become 5D and
6D metric (called by us Kaluza-Klein-Carmeli metric).

Thereafter we discussed some plausible implications of
this metric. Possible implications to the Earth geochrono-
metrics and possible link to the coral growth data were dis-
cussed. In subsequent Section we explained Podkletnov’s
rotating disc experiment. We also noted possible neat link
between Kaluza-Klein-Carmeli metric and Yefremov’s
Q-Relativity, in particular we proposed a further extension
of Q-relativity to become 9D metric. Possible implications to
quantum gravity, i.e. possible observation of the quantization
effects in gravitation phenomena was also noted.

Nonetheless we do not pretend to have the last word on
some issues, including quantum gravity, the structure of the
aether (phonon) medium, and other calculations which re-
main open. There are also different methods to describe the
Receding Moon or Podkletnov’s experiments. What this pa-
per attempts to do is to derive some known gravitational phe-
nomena, including Hubble’s constant, in a simplest way as
possible, without invoking a strange form of matter. Further-
more, the Earth geochronometry data may enable us to verify
the cosmological theories with unprecedented precision.

Therefore, it is recommended to conduct further observa-
tions in order to verify and also to explore the implications of
our propositions as described herein.
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