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Einstein’s special relativity is a theory rich of paradoxes, one of which is the recently
discovered Relativistic Invariant Mass Paradox. According to this Paradox, the rela-
tivistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic
invariant masses of the constituent stars owing to their motion relative to each other.
This excess of mass is the mass of virtual matter that has no physical properties other
than positive relativistic invariant mass and, hence, that reveals its presence by no means
other than gravity. As such, this virtual matter is the dark matter that cosmologists be-
lieve is necessary in order to supply the missing gravity that keeps galaxies stable. Based
on the Relativistic Invariant Mass Paradox we offer in this article a model which quan-
tifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space
missions, and explains the presence of dark matter and dark energy in the universe. It
turns out that the origin of dark matter and dark energy in the Universe lies in the Para-
dox, and that the origin of the Pioneer anomaly results from neglecting the Paradox.
In order to appreciate the physical significance of the Paradox within the frame of Ein-
stein’s special theory of relativity, following the presentation of the Paradox we demon-
strate that the Paradox is responsible for the extension of the kinetic energy theorem
and of the additivity of energy and momentum from classical to relativistic mechanics.
Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is
incomplete, within the frame of Einstein’s special relativity, since those who made the
claim did not take into account the presence of the Relativistic Invariant Mass Paradox
(which is understandable since the Paradox, published in the author’s 2008 book, was
discovered by the author only recently). It remains to test how well the Paradox accords
with observations.

1 Introduction

Einstein’s special relativity is a theory rich of paradoxes, one
of which is the Relativistic Invariant Mass Paradox, which
was recently discovered in [1], and which we describe in Sec-
tion 5 of this article. The term mass in special relativity usu-
ally refers to the rest mass of an object, which is the Newto-
nian mass as measured by an observer moving along with the
object. Being observer’s invariant, we refer the Newtonian,
rest mass to as the relativistic invariant mass, as opposed to
the common relativistic mass, which is another name for en-
ergy, and which is observer’s dependent. Lev B. Okun makes
the case that the concept of relativistic mass is no longer even
pedagogically useful [2]. However, T. R. Sandin has argued
otherwise [3].

As we will see in Section 5, the Relativistic Invariant
Mass Paradox asserts that the resultant relativistic invariant
mass m0 of a system S of uniformly moving N particles ex-
ceeds the sum of the relativistic invariant masses mk, k =
1; : : : ; N , of its constituent particles, m0 >

PN
k=1mk, since

the contribution to m0 comes not only from the masses mk
of the constituent particles of S but also from their speeds
relative to each other. The resulting excess of mass in the

resultant relativistic invariant mass m0 of S is the mass of
virtual matter that has no physical properties other than pos-
itive relativistic invariant mass and, hence, that reveals it-
self by no means other than gravity. It is therefore naturally
identified as the mass of virtual dark matter that the system
S possesses. The presence of dark matter in the universe
in a form of virtual matter that reveals itself only gravita-
tionally is, thus, dictated by the Relativistic Invariant Mass
Paradox of Einstein’s special theory of relativity. Accord-
ingly, (i) the fate of the dark matter particle(s) theories as
well as (ii) the fate of their competing theories of modified
Newtonian dynamics (MOND [4]) are likely to follow the
fate of the eighteenth century phlogiston theory and the nine-
teenth century luminiferous ether theory, which were initi-
ated as ad hoc postulates and which, subsequently, became
obsolete.

Dark matter and dark energy are ad hoc postulates that ac-
count for the observed missing gravitation in the universe and
the late time cosmic acceleration. The postulates are, thus, a
synonym for these observations, as C. Lämmerzahl, O. Preuss
and H. Dittus had to admit in [5] for their chagrin. An ex-
haustive review of the current array of dark energy theories is
presented in [6].
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The Pioneer anomaly is the anomalous, unmodelled ac-
celeration of the spacecrafts Pioneer 10 and 11, and other
spacecrafts, studied by J. D. Anderson et al in [7] and sum-
marized by S. G. Turyshev et al in [8]. In [7], Anderson et
al compared the measured trajectory of a spacecraft against
its theoretical trajectory computed from known forces act-
ing on the spacecraft. They found the small, but significant
discrepancy known as the anomalous, or unmodelled, accel-
eration directed approximately towards the Sun. The inabil-
ity to explain the Pioneer anomaly with conventional physics
has contributed to the growing interest about its origin, as
S. G. Turyshev, M. M. Nieto and J. D. Anderson pointed
out in [9]. It is believed that no conventional force has been
overlooked [5] so that, seemingly, new physics is needed. In-
deed, since Anderson et al announced in [7] that the Pioneer
10 and 11 spacecrafts exhibit an unexplained anomalous ac-
celeration, numerous articles appeared with many plausible
explanations that involve new physics, as C. Castro pointed
out in [10].

However, we find in this article that no new physics is
needed for the explanation of both the presence of dark mat-
ter/energy and the appearance of the Pioneer anomaly.
Rather, what is needed is to cultivate the Relativistic Invariant
Mass Paradox, which has recently been discovered in [1], and
which is described in Section 5 below.

Accordingly, the task we face in this article is to show that
the Relativistic Invariant Mass Paradox of Einstein’s special
relativity dictates the formation of dark matter and dark en-
ergy in the Universe and that, as a result, the origin of the
Pioneer anomaly stems from the motions of the constituents
of the Solar system relative to each other.

2 Einstein velocity addition vs. Newton velocity addition

The improved way to study Einstein’s special theory of rela-
tivity, offered by the author in his recently published book [1],
enables the origin of the dark matter/energy in the Universe
and the Pioneer anomaly to be determined. The improved
study rests on analogies that Einsteinian mechanics and its
underlying hyperbolic geometry share with Newtonian me-
chanics and its underlying Euclidean geometry. In particu-
lar, it rests on the analogies that Einsteinian velocity addition
shares with Newtonian velocity addition, the latter being just
the common vector addition in the Euclidean 3-space R3.

Einstein addition � is a binary operation in the ball R3
c

of R3,
R3
c = fv 2 R3 : kvk < cg (1)

of all relativistically admissible velocities, where c is the
speed of light in empty space. It is given by the equation

u�v =
1

1 + u�v
c2

�
u +

1
u

v +
1
c2

u
1 + u

(u�v)u
�

(2)

where u is the gamma factor

v =
1r

1� kvk2
c2

(3)

in R3
c , and where � and k k are the inner product and norm

that the ball R3
c inherits from its space R3. Counterintuitively,

Einstein addition is neither commutative nor associative.
Einstein gyrations gyr[u;v] 2 Aut(R3

c ;�) are defined by
the equation

gyr[u;v]w = 	(u�v)�(u�(v�w)) (4)

for all u;v;w 2 R3
c , and they turn out to be automorphisms

of the Einstein groupoid (R3
c ;�). We recall that a groupoid is

a non-empty space with a binary operation, and that an au-
tomorphism of a groupoid (R3

c ;�) is a one-to-one map f
of R3

c onto itself that respects the binary operation, that is,
f(u�v) = f(u)�f(v) for all u;v 2 R3

c . To emphasize that
the gyrations of the Einstein groupoid (R3

c ;�) are automor-
phisms of the groupoid, gyrations are also called gyroauto-
morphisms.

Thus, gyr[u;v] of the definition in (4) is the gyroautomor-
phism of the Einstein groupoid (R3

c ;�), generated by
u;v 2 R3

c , that takes the relativistically admissible velocity
w in R3

c into the relativistically admissible velocity 	(u�v)
�(u�(v�w)) in R3

c .
The gyrations, which possess their own rich structure,

measure the extent to which Einstein addition deviates from
commutativity and associativity as we see from the following
identities [1, 11, 12]:

u�v = gyr[u;v](v�u) Gyrocommutative Law
u�(v�w) = (u�v)�gyr[u;v]w Left Gyroassociative
(u�v)�w = u�(v�gyr[u;v]w) Right Gyroassociative
gyr[u;v] = gyr[u�v;v] Left Loop Property
gyr[u;v] = gyr[u;v�u] Right Loop Property

Einstein addition is thus regulated by its gyrations so that
Einstein addition and its gyrations are inextricably linked. In-
deed, the Einstein groupoid (R3

c ;�) forms a group-like math-
ematical object called a gyrocommutative gyrogroup [13],
which was discovered by the author in 1988 [14]. Interest-
ingly, Einstein gyrations are just the mathematical abstraction
of the relativistic Thomas precession [1, Sec. 10.3].

The rich structure of Einstein addition is not limited to
its gyrocommutative gyrogroup structure. Einstein addition
admits scalar multiplication, giving rise to the Einstein gy-
rovector space. The latter, in turn, forms the setting for the
Beltrami-Klein ball model of hyperbolic geometry just as
vector spaces form the setting for the standard model of Eu-
clidean geometry, as shown in [1].

Guided by the resulting analogies that relativistic mech-
anics and its underlying hyperbolic geometry share with clas-
sical mechanics and its underlying Euclidean geometry, we
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are able to present analogies that Newtonian systems of parti-
cles share with Einsteinian systems of particles in Sections 3
and 4. These analogies, in turn, uncover the Relativistic In-
variant Mass Paradox in Section 5, the physical significance
of which is illustrated in Section 6 in the frame of Einstein’s
special theory of relativity. Finally, in Sections 7 and 8 the
Paradox reveals the origin of the dark matter/energy in the
Universe as well as the origin of the Pioneer anomaly.

3 Newtonian systems of particles

In this section we set the stage for revealing analogies that a
Newtonian system of N particles and an Einsteinian system
of N particles share. In this section, accordingly, as opposed
to Section 4, vk, k = 0; 1; : : : ; N , are Newtonian velocities in
R3, andm0 is the Newtonian resultant mass of the constituent
masses mk, k = 1; : : : ; N of a Newtonian particle system S.

Accordingly, let us consider the following well known
classical results, (6) – (8) below, which are involved in the
calculation of the Newtonian resultant mass m0 and the clas-
sical center of momentum (CM) of a Newtonian system of
particles, and to which we will seek Einsteinian analogs in
Section 4. Thus, let

S = S(mk;vk;�0; N) ; vk 2 R3 (5)

be an isolated Newtonian system of N noninteracting ma-
terial particles the k-th particle of which has mass mk and
Newtonian uniform velocity vk relative to an inertial frame
�0, k = 1; : : : ; N . Furthermore, let m0 be the resultant mass
of S, considered as the mass of a virtual particle located at
the center of mass of S, and let v0 be the Newtonian velocity
relative to �0 of the Newtonian CM frame of S. Then,

1 =
1
m0

NX
k=1

mk (6)

and

v0 =
1
m0

NX
k=1

mkvk

u + v0 =
1
m0

NX
k=1

mk(u + vk)

9>>>>>=>>>>>; ; (7)

u;vk2R3, mk > 0, k = 0; 1; : : : ; N . Here m0 is the Newto-
nian mass of the Newtonian system S, supposed concentrated
at the center of mass of S, and v0 is the Newtonian velocity
relative to �0 of the Newtonian CM frame of the Newtonian
system S in (5).

It follows from (6) that m0 in (6) – (7) is given by the
Newtonian resultant mass equation

m0 =
NX
k=1

mk : (8)

The derivation of the second equation in (7) from the first
equation in (7) is immediate, following (i) the distributive law
of scalar-vector multiplication, and (ii) the simple relation-
ship (8) between the Newtonian resultant mass m0 and its
constituent masses mk, k = 1; : : : ; N .

4 Einsteinian systems of particles

In this section we present the Einsteinian analogs of the New-
tonian expressions (5) – (8) listed in Section 3. The presented
analogs are obtained in [1] by means of analogies that result
from those presented in Section 2.

In this section, accordingly, as opposed to Section 3, vk,
k = 0; 1; : : : ; N , are Einsteinian velocities in R3

c , and m0 is
the Einsteinian resultant mass, yet to be determined, of the
masses mk, k = 1; : : : ; N , of an Einsteinian particle sys-
tem S.

In analogy with (5), let

S = S(mk;vk;�0; N); vk 2 R3
c (9)

be an isolated Einsteinian system of N noninteracting ma-
terial particles the k-th particle of which has invariant mass
mk and Einsteinian uniform velocity vk relative to an inertial
frame �0, k = 1; : : : ; N . Furthermore, let m0 be the resul-
tant mass of S, considered as the mass of a virtual particle lo-
cated at the center of mass of S (calculated in [1, Chap. 11]),
and let v0 be the Einsteinian velocity relative to �0 of the Ein-
steinian center of momentum (CM) frame of the Einsteinian
system S in (9). Then, as shown in [1, p. 484], the relativistic
analogs of the Newtonian expressions in (6) – (8) are, respec-
tively, the following Einsteinian expressions in (10) – (12),

v0
=

1
m0

NX
k=1

mkvk

u�v0
=

1
m0

NX
k=1

mku�vk

9>>>>>=>>>>>; (10)

and

v0
v0 =

1
m0

NX
k=1

mkvkvk

u�v0
(u�v0) =

1
m0

NX
k=1

mku�vk(u�vk)

9>>>>>=>>>>>; ; (11)

u;vk2R3
c , mk > 0, k = 0; 1; : : : ; N . Here m0,

m0 =

vuuuut NX
k=1

mk

!2

+ 2
NX

j;k=1
j<k

mjmk(	vj�vk� 1) (12)

is the relativistic invariant mass of the Einsteinian system S,
supposed concentrated at the relativistic center of mass of S
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(calculated in [1, Chap. 11]), and v0 is the Einsteinian ve-
locity relative to �0 of the Einsteinian CM frame of the Ein-
steinian system S in (9).

5 The relativistic invariant mass paradox of Einstein’s
special theory of relativity

In analogy with the Newtonian resultant mass m0 in (8),
which follows from (6), it follows from (10) that the Ein-
steinian resultant mass m0 in (10) – (11) is given by the
elegant Einsteinian resultant mass equation (12), as shown
in [1, Chap. 11].

The Einsteinian resultant mass equation (12) presents a
Paradox, called the Relativistic Invariant Mass Paradox,
since, in general, this equation implies the inequality

m0 >
NX
k=1

mk (13)

so that, paradoxically, the invariant resultant mass of a system
may exceed the sum of the invariant masses of its constituent
particles.

The paradoxical invariant resultant mass equation (12) for
m0 is the relativistic analog of the non-paradoxical Newto-
nian resultant mass equation (8) for m0, to which it reduces
in each of the following two special cases:

(i ) The Einsteinian resultant mass m0 in (12) reduces to
the Newtonian resultant mass m0 in (8) in the limit as
c!1; and

(ii ) The Einsteinian resultant mass m0 in (12) reduces to
the Newtonian resultant mass m0 in (8) in the special
case when the system S is rigid, that is, all the internal
motions in S of the constituent particles of S relative
to each other vanish. In that case 	vj�vk = 0 so that
	vj�vk = 1 for all j; k = 1; N . This identity, in turn,
generates the reduction of (12) to (8).

The second equation in (11) follows from the first equa-
tion in (11) in full analogy with the second equation in (7),
which follows from the first equation in (7) by the distribu-
tivity of scalar multiplication and by the simplicity of (8).
However, while the proof of the latter is simple and well
known, the proof of the former, presented in [1, Chap. 11],
is lengthy owing to the lack of a distributive law for the Ein-
steinian scalar multiplication (see [1, Chap. 6]) and the lack of
a simple relation for m0 like (8), which is replaced by (12).
Indeed, the proof of the former, that the second equation in
(11) follows from the first equation in (11), is lengthy, but
accessible to undergraduates who are familiar with the vec-
tor space approach to Euclidean geometry. However, in order
to follow the proof one must familiarize himself with a large
part of the author’s book [1] and with its “gyrolanguage”, as
indicated in Section 2.

It is therefore suggested that interested readers may
corroborate numerically (using a computer software like

MATLAB) the identities in (10) – (12) in order to gain con-
fidence in their validity, before embarking on reading several
necessary chapters of [1].

6 The physical significance of the paradox in Einstein’s
special theory of relativity

In this section we present two classically physical significant
results that remain valid relativistically owing to the Rela-
tivistic Invariant Mass Paradox, according to which the rel-
ativistic analog of the classical resultant mass m0 in (8) is,
paradoxically, the relativistic resultant mass m0 in (12).

To gain confidence in the physical significance that results
from the analogy between

(i ) the Newtonian resultant mass m0 in (8) of the Newto-
nian system S in (5) and

(ii) the Einsteinian invariant resultant mass m0 in (12) of
the Einsteinian system S in (9)

we present below two physically significant resulting analo-
gies. These are:

(1) The Kinetic Energy Theorem [1, p. 487]: According to
this theorem,

K = K0 +K1 ; (14)where

(i) K0 is the relativistic kinetic energy, relative to a
given observer, of a virtual particle located at the
relativistic center of mass of the system S in (9),
with the Einsteinian resultant mass m0 in (12);
and

(ii) K1 is the relativistic kinetic energy of the con-
stituent particles of S relative to its CM; and

(iii) K is the relativistic kinetic energy of S relative to
the observer.

The Newtonian counterpart of (14) is well known; see,
for instance, [15, Eq. (1.55)]. The Einsteinian analog in
(14) was, however, unknown in the literature since the
Einsteinian resultant mass m0 in (12) was unknown in
the literature as well till its first appearance in [1]. Ac-
cordingly, Oliver D. Johns had to admit for his chagrin
that “The reader (of his book; see [15, p. 392]) will be
disappointed to learn that relativistic mechanics does
not have a theory of collective motion that is as ele-
gant and complete as the one presented in Chapter 1
for Newtonian mechanics.”
The proof that m0 of (12) is compatible with the va-
lidity of (14) in Einstein’s special theory of relativity is
presented in [1, Theorem 11.8, p. 487].

(2) Additivity of Energy and Momentum: Classically, en-
ergy and momentum are additive, that is, the total en-
ergy and the total momentum of a system S of particles
is, respectively, the sum of the energy and the sum of
momenta of its constituent particles. Consequently,
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also the resultant mass m0 of S is additive, as shown
in (8). Relativistically, energy and momentum remain
additive but, consequently, the resultant mass m0 of S
is no longer additive. Rather, it is given by (12), which
is the relativistic analog of (8).
The proof that m0 of (12) is compatible with the ad-
ditivity of energy and momentum in Einstein’s special
theory of relativity is presented in [1, pp. 488–491].

Thus, the Einsteinian resultant mass m0 in (12) of the
Einsteinian system S in (9) is the relativistic analog of the
Newtonian resultant mass m0 in (8) of the Newtonian system
S in (5). As such, it is the Einsteinian resultant mass m0 in
(12) that is responsible for the extension of the validity of (14)
and of the additivity of energy and momentum from classical
to relativistic mechanics.

However, classically, mass is additive. Indeed, the New-
tonian resultant mass m0 equals the sum of the masses of
the constituent particles, m0 =

PN
k=1mk, as we see in (8).

Relativistically, in contrast, mass is not additive. Indeed, the
Einsteinian resultant mass m0 may exceed the sum of the
masses of the constituent particles, m0 >

PN
k=1mk, as we

see from (12). Accordingly, from the relativistic viewpoint,
the resultant mass m0 in (12) of a galaxy that consists of
stars that move relative to each other exceeds the sum of
the masses of its constituent stars. This excess of mass re-
veals its presence only gravitationally and, hence, we iden-
tify it as the mass of dark matter. Dark matter is thus vir-
tual matter with positive mass, which reveals its presence
only gravitationally. In particular, the dark mass mdark of
the Einsteinian system S in (9), given by (16) below, is the
mass of virtual matter called the dark matter of S. To con-
trast the real matter of S with its virtual, dark matter, we
call the former bright (or, luminous, or, baryonic) matter.
The total mass m0 of S, which can be detected gravitation-
ally, is the composition of the bright mass mbright of the
real, bright matter of S, and the dark mass mdark of the vir-
tual, dark matter of S. This mass composition, presented in
(15) – (17) in Section 7 below, quantifies the effects of dark
matter.

7 The origin of the dark matter

Let

mbright =
NX
k=1

mk (15)

and

mdark =

vuuuut2
NX

j;k=1
j<k

mjmk(	vj�vk � 1) (16)

so that the Einsteinian resultant mass m0 in (12) turns out to
be a composition of an ordinary, bright mass mbright of real
matter and a dark mass mdark of virtual matter according to

the equation

m0 =
q
m2
bright +m2

dark (17)

The massmbright in (15) is the Newtonian resultant mass
of the particles of the Einsteinian system S in (9). These par-
ticles reveal their presence gravitationally, as well as by radi-
ation that they may emit and by occasional collisions.

In contrast, the mass mdark in (16) is the mass of virtual
matter in the Einsteinian system S in (9), which reveals its
presence only gravitationally. In particular, it does not emit
radiation and it does not collide. As such, it is identified with
the dark matter of the Universe.

In our expanding universe, with accelerated expansion
[16], relative velocities between some astronomical objects
are significantly close to the speed of light c. Accordingly,
since gamma factors v approach 1 when their relative ve-
locities v 2 R3

c approach the speed of light, it follows from
(16) that dark matter contributes an increasingly significant
part of the mass of the universe.

8 The origin of the dark energy

Under different circumstances dark matter may appear or dis-
appear resulting in gravitational attraction or repulsion. Dark
matter increases the gravitational attraction of the region of
each stellar explosion, a supernova, since any stellar explo-
sion creates relative speeds between objects that were at rest
relative to each other prior to the explosion. The resulting
generated relative speeds increase the dark mass of the re-
gion, thus increasing its gravitational attraction. Similarly,
relative speeds of objects that converge into a star vanish in
the process of star formation, resulting in the decrease of
the dark mass of a star formation region. This, in turn, de-
creases the gravitational attraction or, equivalently, increases
the gravitational repulsion of any star formation inflated re-
gion. The increased gravitational repulsion associated with
star formation results in the accelerated expansion of the uni-
verse, first observed in 1998; see [6, p. 1764], [17] and [18,
19]. Thus, according to the present special relativistic dark
matter/energy model, the universe accelerated expansion is a
late time cosmic acceleration that began at the time of star
formation.

9 The origin of the Pioneer anomaly

The Einsteinian resultant mass m0 of our Solar system is
given by the composition (17) of the bright mass mbright and
the dark mass mdark of the Solar system. The bright mass
mbright of the Solar system equals the sum of the Newtonian
masses of the constituents of the Solar system. Clearly, it is
time independent. In contrast, the dark mass mdark of the
Solar system stems from the speeds of the constituents of the
Solar system relative to each other and, as such, it is time
dependent.
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The Pioneer 10 and 11 spacecrafts and other deep space
missions have revealed an anomalous acceleration known as
the Pioneer anomaly [7, 8]. The Pioneer anomaly, described
in the introductory section, results from an unmodelled ac-
celeration, which is a small constant acceleration on top of
which there is a smaller time dependent acceleration. A brief
summary of the Pioneer anomaly is presented by K. Tangen,
who asks in the title of [20]: “Could the Pioneer anomaly
have a gravitational origin?”

Our answer to Tangen’s question is affirmative. Our dark
matter/energy model, governed by the Einsteinian resultant
mass m0 in (15) – (17), offers a simple, elegant model that
explains the Pioneer anomaly. The motion of any spacecraft
in deep space beyond the Solar system is determined by the
Newtonian law of gravity where the mass of the Solar sys-
tem is modelled by the Einsteinian resultant mass m0 in (17)
rather than by the Newtonian resultant mass m0 in (8). It is
the contribution of the dark mass mdark to the Einsteinian
resultant mass m0 in (15) – (17) that generates the Pioneer
anomaly.

Ultimately, our dark matter/energy model, as dictated by
the paradoxical Einsteinian resultant mass m0 in (12), will
be judged by how well the model accords with astrophysical
and astronomical observations. Since our model is special
relativistic, only uniform velocities are allowed. Hence, the
model can be applied to the solar system, for instance, un-
der the assumption that, momentarily, the solar system can be
viewed as a system the constituents of which move uniformly.
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