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It is shown that in the weak field approximation the new geometrical approach can lead
to the linear field equations for the several independent fields. For the stronger fields and
in the second order approximation the field equations become non-linear, and the fields
become dependent. This breaks the superposition principle for every separate field and
produces the interaction between different fields.The unification of the gravitational and
electromagnetic field theories is performed in frames of the geometrical approach in the
pseudo-Riemannian space and in the curved Berwald-Moor space.

1 Introduction

In paper [1] the new (geometrical) approach was suggested
for the field theory. It is applicable for any Finsler space [2]
for which in any point of the main space x1; x2; : : : ; xn the
indicatrix volume

�
Vind(x1; x2; : : : ; xn)

�
ev can be defined,

provided the tangent space is Euclidean. Then the action I
for the fields present in the metric function of the Finsler
space is defined within the accuracy of a constant factor as
a volume of a certain n-dimensional region V :

I = const �
Z
V

(n) dx1dx2 : : : dxn

(Vind(x1; x2; : : : ; xn))ev
: (1)

Thus, the field Lagrangian is defined in the following way

L = const � 1
(Vind(x1; x2; : : : ; xn))ev

: (2)

In papers [3, 4] the spaces conformally connected with
the Minkowski space and with the Berwald-Moor space were
regarded. These spaces have a single scalar field for which the
field equation was written and the particular solutions were
found for the spherical symmetry and for the rhombodode-
caedron symmetry of the space.

The present paper is a continuation of those papers deal-
ing with the study and development of the geometric field
theory.

2 Pseudo-Riemannian space with the signature (+���)

Let us consider the pseudo-Riemannian space with the signa-

ture (+���) and select the Minkowski metric tensor
�
gij in

the metric tensor gij(x); of this space explicitly

gij(x) =
�
gij +hij(x) : (3)

Let us suppose that the field hij(x) is weak, that is

jhij(x)j � 1 : (4)

According to [1], the Lagrangian for a pseudo-Rieman-
nian space with the signature (+���) is equal to

L =
q
�det(gij) : (5)

Let us calculate the value of [�det(gij)] within the ac-
curacy of jhij(x)j2 :

�det(gij) ' 1 + L1 + L2 ; (6)
where

L1 =
�
g ijhij � h00 � h11 � h22 � h33 ; (7)

L2 = �h00(h11 + h22 + h33) + h11h22 + h11h33 +

+h22h33 � h2
12 � h2

13 � h2
23 + h2

03 + h2
02 + h2

01 :
(8)

The last formula can be rewritten in a more conven-
ient way

L2 = �
���� h00 h01
h01 h11

����� ���� h00 h02
h02 h22

�����
�
���� h00 h03
h03 h33

����+
���� h11 h12
h12 h22

����+
+
���� h11 h13
h13 h33

����+
���� h22 h23
h23 h33

���� ;
(9)

then

L ' 1 +
1
2

L1 +
1
2

�
L2 � 1

4
L2

1

�
: (10)

To obtain the field equations in the first order approxi-
mation, one should use the Lagrangian L1; and to do the
same in the second order approximation — the Lagrangian�

L1 + L2 � 1
4 L2

1
�
:
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3 Scalar field

For the single scalar field '(x) the simplest representation
of tensor hij(x) has the form :

hij(x) � h(')
ij (x) = � @'

@xi
@'
@xj

: (11)

That is why

L' =
q
�det(gij) =

p
1� L1 ' 1� 1

2
L1� 1

8
L2

1 ; (12)

where

L1 =
�
@'
@x0

�2
�
�
@'
@x1

�2
�
�
@'
@x2

�2
�
�
@'
@x3

�2
: (13)

In the first order approximation, we can use the Lagran-
gian L1 to obtain the following field equation

@2'
@x0@x0 � @2'

@x1@x1 � @2'
@x2@x2 � @2'

@x3@x3 = 0 ; (14)

which presents the wave equation. The stationary field that
depends only on the radius

r =
p

(x1)2 + (x2)2 + (x3)2 ; (15)

will satisfy the equation

d
dr

�
r2 d'
dr

�
= 0 ; (16)

the integration of which gives

d'
dr

= �C1
1
r2 ) '(r) = C0 + C1

1
r
: (17)

In the second order approximation one should use the La-
grangian

�
L1 � 1

4 L2
1
�

to obtain the field equation in the sec-
ond order approximation

�
g ij @

@xi

��
�1� 1

2
L1

�
@'
@xj

�
= 0 ; (18)

this equation is already non-linear.
The strict field equation for the tensor hij(x) (11) is

�
g ij @

@xi

0B@ @'
@xjp
1� L1

1CA = 0 ; (19)

then the stationary field depending only on the radius must
satisfy the equation

d
dr

0BBBB@r2

d'
drs

1�
�
d'
dr

�2
1CCCCA = 0 : (20)

Integrating it, we get

d'
dr

= � C1p
r4 � C2

1
)

) '(r) = C0 +
1Z
r

C1p
r4 � C2

1
dr : (21)

The field with the upper sign and the field with the lower
sign differ qualitatively: the upper sign “+” in Eq. (11) gives
a finite field with no singularity in the whole space, the lower
sign “�” in Eq. (11) gives a field defined everywhere but for
the spherical region

0 6 r 6
pjC1j ; (22)

in which there is no field, while

r >
pjC1j ; r ! pjC1j ) d'

dr
! �C1 � 1 : (23)

At the same time in the infinity (r ! 1) both solutions
'�(r) behave as the solution of the wave equation Eq. (17).

If we know the Lagrangian, we can write the energy-
momentum tensor T ij for the these solutions and calculate
the energy of the system derived by the light speed c :

P0 = const
Z (3)

T 0
0 dV : (24)

To obtain the stationary spherically symmetric solutions,
we get

T 0
0 = � r2p

r4 � C2
1
; (25)

that is why for both upper and lower signs P0 !1.
The metric tensor of Eq. (3,11) is the simplest way to “in-

sert” the gravity field into the Minkowski space — the initial
flat space containing no fields. Adding several such terms as
in Eq. (11) to the metric tensor, we can describe more and
more complicated fields by tensor hij = h(grav)

ij :

4 Covariant vector field

To construct the twice covariant symmetric tensor hij(x)
with the help of a covariant field Ai(x) not using the con-
nection objects, pay attention to the fact that the alternated
partial derivative of a tensor is a tensor too

Fij =
@Aj
@xi
� @Ai
@xj

; (26)

but a skew-symmetric one. Let us construct the symmetric
tensor on the base of tensor Fij . To do this, first, form a
scalar

LA =
�
g ij

�
gkmFikFjm =

= 2
�
g ij

�
gkm

�
@Ak
@xi

@Am
@xj

� @Ak
@xi

@Aj
@xm

�
;

(27)
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which gives the following expressions for two symmetric
tensors

h(1)
ij =

�
gkm

�
2
@Ak
@xi

@Am
@xj
�@Ak
@xi

@Aj
@xm

�@Ak
@xj

@Ai
@xm

�
; (28)

h(2)
ij =

�
gkm

�
2
@Ai
@xk

@Aj
@xm

�@Ai
@xk

@Am
@xj
�@Aj
@xk

@Am
@xi

�
: (29)

Notice, that not only Fij and LA but also the tensors
h(1)
ij , h(2)

ij are gradient invariant, that is they don’t change
with transformations

Ai ! Ai +
@f(x)
@xi

; (30)

where f(x) is an arbitrary scalar function.
Let

hij � h(Ak)
ij = �(x)h(1)

ij + [1� �(x)] h(2)
ij ; (31)

where �(x) is some scalar function. Then in the first order
approximation we get

L1 = 2
�
g ij

�
gkm

�
Ak
@xi

@Aj
@xm

�
� LA ; (32)

and the first order approximation for the field Ai(x) gives
Maxwell equations

�
g ij @2

@xi@xj
Ak � @

@xk

��
g ij @Aj

@xi

�
= 0 : (33)

For Lorentz gauge

�
g ij @Aj

@xi
= 0 ; (34)

the equations Eqs. (33) take the form

�Ak = 0 : (35)

It is possible that Eq. (31) is not the most general form
for tensor hij which in the first order approximation gives
the field equations coinciding with Maxwell equations.

To obtain Maxwell equations not for the free field but
for the field with sources ji(x); one should add to h(Ak)

ij
Eq. (31) the following tensor

h(jk)
ij =

�
16�
c

�
� 1

2
(Aijj + Ajji) : (36)

This means that the metric tensor Eq. (3) with tensor

hij = h(Max)
ij � h(Ak)

ij + h(jk)
ij (37)

describes the weak electromagnetic field with source jk(x):
We must bear in mind that we use the geometrical approach
to the field theory, and we have to consider jk(x) to be given
and not obtained from the field equations.

So, the metric tensor Eq. (3) with tensor

hij = �h(Ak)
ij + h(grav)

ij ; (38)

where �;  are the fundamental constants in frames of the
unique pseudo-Riemannian geometry describes simultane-
ously the free electromagnetic field and the free gravitational
field. To include the sources, jk(x); of the electromagnetic
field, the metric tensor must either include not only jk(x) but
the partial derivatives of this field too or the field jk(x) must
be expressed by the other fields as shown below.

If the gravity field is “inserted” in the simplest way as
shown in the previous section, then the sources of the electro-
magnetic field can be expressed by the scalar field as
follows

ji(x) = q
@'
@xi

: (39)

In this case the first order approximation for Lorentz
gauge gives

�Ak =
4�
c
jk ; (40)

�' = 0 : (41)

Since the density of the current has the form of Eq. (39),
the Eq. (41) gives the continuity equation

�
g ij @ji

@xj
= 0 : (42)

5 Several weak fields

The transition from the weak fields to the strong fields may
lead to the transition from the linear equations for the inde-
pendent fields to the non-linear field equations for the mutu-
ally dependent interacting fields '(x) and  (x) “including”
gravity field in the Minkowski space.

Let

hij = "'
@'
@xi

@'
@xj

+ " 
@ 
@xi

@ 
@xj

; (43)

where "', " are independent sign coefficients. Then the
strict Lagrangian can be written as follows

L'; =
q

1 + L1 + L2 ; (44)

and

L1 =
�
g ij
�
"'
@'
@xi

@'
@xj

+ " 
@ 
@xi

@ 
@xj

�
; (45)

where
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L2 = "' " 

"
�
�
@'
@x0

@ 
@x1 � @'

@x1
@ 
@x0

�2
�

�
�
@'
@x0

@ 
@x2 � @'

@x2
@ 
@x0

�2
�

�
�
@'
@x0

@ 
@x3 � @'

@x3
@ 
@x0

�2
+

+
�
@'
@x1

@ 
@x2 � @'

@x2
@ 
@x1

�2
+

+
�
@'
@x1

@ 
@x3 � @'

@x3
@ 
@x1

�2
+

+
�
@'
@x2

@ 
@x3 � @'

@x3
@ 
@x2

�2#

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

: (46)

This formula, Eq. (46), can be obtained from Eq. (9) most
easily, if one uses the following simplifying formula

���� hii� hi�j�
hi�j� hjj�

���� = �
��������
@'
@xi

@ 
@xi�

@'
@xj�

@ 
@xj

��������
2

=

= �
�
@'
@xi

@ 
@xj
� @'
@xj

@ 
@xi

�2
:

In the first order approximation for the Lagrangian, the
expression L1 should be used. Then the field equations give
the system of two independent wave equations

@2'
@x0@x0 � @2'

@x1@x1 � @2'
@x2@x2 � @2'

@x3@x3 = 0

@2 
@x0@x0 � @2 

@x1@x1 � @2 
@x2@x2 � @2 

@x3@x3 = 0

9>>>=>>>; :

Here the fields '(x) and  (x) are independent and the
superposition principle is fulfilled.

Using the strict Lagrangian for the two scalar fields
Eq. (44) we get a system of two non-linear differential equa-
tions of the second order

�
g ij @

@xi

24';j �1� �g rs ;r  ;s
��  ;j �g rs';r  ;sp

1 + L1 + L2

35 = 0 ;

�
g ij @

@xi

24 ;j �1+
�
g rs';r ';s

�� ';j �g rs';r  ;sp
1 + L1 + L2

35 = 0 ;

where comma means the partial derivative. Here the fields
'(x),  (x) depend on each other, and the superposition prin-
ciple is not fulfilled. The transition from the last but one equa-
tions to the last equations may be regarded as the transition
from the weak fields to the strong fields.

6 Non-degenerate polynumbers

Consider a certain system of the non-degenerate polynum-
bers Pn [5], that is n-dimensional associative commutative
non-degenerated hyper complex numbers. The correspond-
ing coordinate space x1; x2; : : : ; xn is a Finsler metric flat
space with the length element equal to

ds =
n
q�
gi1i2:::in dxi1dxi2 : : : dxin ; (47)

where
�
gi1i2:::in is the metric tensor which does not depend

on the point of the space. The Finsler spaces of this kind can
be found in literature (e.g. [6, 7, 8, 9]) but the fact that all
the non-degenerated polynumber spaces belong to this type
of Finsler spaces was established beginning from the papers
[10, 11] and the subsequent papers of the same authors, es-
pecially in [5].

The components of the generalized momentum in geom-
etry corresponding to Eq. (47) can be found by the formulas

pi =
�
gij2:::jn dxj2 : : : dxjn��

gi1i2:::in dx
i1dxi2 : : : dxin

�n�1
n
: (48)

The tangent equation of the indicatrix in the space of the
non-degenerated polynumbers Pn can be always written [5]
as follows

�
g i1i2:::inpi1pi2 : : : pin � �n = 0 ; (49)

where � is a constant. There always can be found such a
basis (and even several such bases) and such a � > 0 that��

g i1i2:::in
�

=
��
g i1i2:::in

�
: (50)

Let us pass to a new Finsler geometry on the base of the
space of non-degenerated polynumbers Pn. This new geom-
etry is not flat, but its difference from the initial geometry is
infinitely small, and the length element in this new geome-
try is

ds = n

rh�
gi1i2:::in + "hi1i2:::in(x)

i
dxi1dxi2 : : : dxin ; (51)

where " is an infinitely small value. If in the initial space the
volume element was defined by the formula

dV = dxi1dxi2 : : : dxin ; (52)

in the new space within the accuracy of " in the first power
we have

dVh '
h
1 + " � C0

�
g i1i2:::inhi1i2:::in(x)

i
dxi1dxi2 : : : dxin :

That is according to [1], the Lagrangian of the weak field
in the space with the length element Eq. (51) in the first order
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approximation is

L1 =
�
g i1i2:::inhi1i2:::in(x) : (53)

This expression generalizes formula Eq. (7).

7 Hyper complex space H4

In the physical (“orthonormal” [5]) basis in which every
point of the space is characterized by the four real coordi-
nates x0; x1, x2; x3 the fourth power of the length element
dsH4 is defined by the formula

(dsH4)4 � �gijkl dx0dx1dx2dx3 =

= (dx0 + dx1 + dx2 + dx3)(dx0 + dx1 � dx2 � dx3)�
� (dx0 � dx1 + dx2 � dx3)(dx0 � dx1 � dx2 + dx3) =

= (dx0)4+(dx1)4+(dx2)4+(dx3)4+8dx0dx1dx2dx3 �
� 2(dx0)2(dx1)2 � 2(dx0)2(dx2)2 � 2(dx0)2(dx3)2 �
� 2(dx1)2(dx2)2 � 2(dx1)2(dx3)2 � 2(dx2)2(dx3)2: (54)

Let us compare the fourth power of the length element
dsH4 in the space of polynumbers H4 with the fourth power
of the length element dsMin in the Minkowski space

(dsMin)4 = (dx0)4+(dx1)4+(dx2)4+(dx3)4�
� 2(dx0)2(dx1)2�2(dx0)2(dx2)2�2(dx0)2(dx3)2�
+ 2(dx1)2(dx2)2+2(dx1)2(dx3)2+2(dx2)2(dx3)2:

(55)

This means

(dsH4)4 = (dsMin)4 + 8dx0dx1dx2dx3�
� 4(dx1)2(dx2)2�4(dx1)2(dx3)2�4(dx2)2(dx3)2;

(56)

and in the covariant notation we have

(dsH4)4 =
��
gij
�
gkl +

1
3
�
g 0ijkl� �

Gijkl
�
�

� dxidxjdxkdxl ;
(57)

where

�
g 0ijkl =

�
1 ; if i; j; k; l are all different
0 ; else (58)

�
Gijkl =

8>><>>:
1 ; if i; j; k; l , 0 and i = j , k = l;

or i = k , j = l;
or i = l , j = k

0 ; else

(59)

The tangent equation of the indicatrix in the H4 space
can be written in the physical basis as in [5] :

(p0 + p1 + p2 + p3)(p0 + p1 � p2 � p3)�
� (p0� p1 + p2� p3)(p0� p1� p2 + p3)� 1 = 0 ;

(60)

where pi are the generalized momenta

pi =
@ dsH4

@(dxi)
: (61)

Comparing formula Eq. (60) with formula Eq. (61), we
have �

g ijkl pipjpkpl � 1 = 0 : (62)

Here

�
g ijkl =

�
g ij

�
g kl +

1
3
�
g 0 ijkl � �

G ijkl ; (63)

and ��
g ijkl

�
=
��
gijkl

�
��
g 0 ijkl

�
=
��
g 0ijkl

�
� �
G ijkl

�
=
� �
Gijkl

�
9>>>>>=>>>>>; : (64)

To get the Lagrangian for the weak field in the first order
approximation, we have to get tensor hijkl in Eq. (53). In the
simplified version it could be splitted into two additive parts:
gravitational part and electromagnetic part. The gravitational
part can be constructed analogously to Sections 3 and 5 with
regard to the possibility to use the two-index number tensors,

since now tensors
�
g ijkl; hijkl have four indices. The con-

struction of the electromagnetic part should be regarded in
more detail.

Since we would like to preserve the gradient invariance
of the Lagrangian and to get Maxwell equations for the free
field in the H4 space, let us write the electromagnetic part of
tensor hijkl in the following way

hAkijkl = �(x)h(1)
ijkl + [1� �(x)] h(2)

ijkl ; (65)

where the tensors h(1)
ijkl; h

(2)
ijkl are the tensors present in the

round brackets in the r.h.s. of formulas Eqs. (28,29). Then

LA =
�
g ijklhAkijkl �

� �g ij �gkm
�
@Ak
@xi

@Am
@xj

� @Ak
@xi

@Aj
@xm

�
:

(66)

To obtain Maxwell equations not for the free field but for
the field with a source ji(x); one should add to the tensor
h(Ak)
ijkl Eq. (65) the following tensor

h(jk)
ijkl =

�
8

3�

��
2Aijj

�
gkl �Ai �gjk jl � ji �gjk Al ;

�
;

symmetrized in all indices, that is tensor

hijkl = hMax
ijkl � h(Ak)

ijkl + h(jk)
(ijkl)
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describes the weak electromagnetic field with the sources
ji(x), where

ji =
X
b

q(a)
@ (b)

@xi
; (67)

and  (b) are the scalar components of the gravitational field.
To obtain the unified theory for the gravitational and elec-

tromagnetic fields one should take the linear combination of
tensor h(Max)

ijkl corresponding to the electromagnetic field in
the first order approximation, and tensor h(grav)

ijkl correspond-
ing to the gravitational field in the first order approximation

hijkl = �h(Max)
ijkl + h(grav)

ijkl ; (68)

where �;  are constants. Tensor h(grav)
ijkl may be, for exam-

ple, constructed in the following way

hgravijkl =
NX
a=1

"(a)
@'(a)

@xi
@'(a)

@xj
@'(a)

@xk
@'(a)

@xl
+

+
MX
b=1

�(b)
@ (b)

@x(i

@ (b)

@xj
�
gkl) ;

(69)

where "(a); �(b) are the sign coefficients, and '(a);  (b) are
the scalar fields. The whole number of scalar fields is equal
to (N +M) .

8 Conclusion

In this paper it was shown that the geometrical approach [1]
to the field theory in which there usually appear the non-linear
and non-splitting field equations could give a system of inde-
pendent linear equations for the weak fields in the first order
approximation. When the fields become stronger the super-
position principle (linearity) breaks, the equations become
non-linear and the fields start to interact with each other. We
may think that these changes of the equations that take place
when we pass from the weak fields to the strong fields are due
to the two mechanisms: first is the qualitative change of the
field equations for the free fields in the first order approxima-
tion; second is the appearance of the additional field sources,
that is the generation of the field by the other fields.

In frames of the geometrical approach to the field theory
[1] the unification of the electromagnetic and gravitational
fields is performed both for the four-dimensional pseudo-Rie-
mannian space with metric tensor gij(x) and for the four-
dimensional curved Berwald-Moor space with metric tensor
gijkl(x):
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