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The quantum vacuum consists of virtual particles randomly appearing and disappearing
in free space. Ordinarily the wavenumber (or frequency) spectrum of the zero-point
fields for these virtual particles is assumed to be unbounded. The unbounded nature
of the spectrum leads in turn to an infinite energy density for the quantum vacuum and
an infinite renormalization mass for the free particle. This paper argues that there is a
more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum
emerges and that the “graininess” of this more fundamental vacuum state truncates the
wavenumber spectrum and leads to a finite energy density and a finite renormalization
mass.

1 Introduction

The quantum vacuum (QV) [1] consists of virtual particles
which are created alone (photons) or in massive particle-
antiparticle pairs, both of which are jumping in and out of
existence within the constraints of the Heisenberg uncertainty
principle (�E�t� ~); i.e., they appear in free space for short
periods of time (�t) depending upon their temporal energy
content (�E) and then disappear. So the QV is an ever-
changing collection of virtual particles which disappear after
their short lifetimes �t to be replaced by new virtual particles
that suffer the same fate, the process continuing ad infinitum.
The photon component of the QV is referred to here as the
electromagnetic vacuum (EV) and the massive-particle com-
ponent as the massive particle vacuum (MPV).

The quantum fields ascribed to the elementary particles
are considered to be the “essential reality” [2] behind the
physical universe; i.e., a set of fields is the fundamental build-
ing block out of which the visible universe is constructed.
For example, the vector potential for the quantized electro-
magnetic field can be expressed as [1, p. 45]
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2X
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(1)

where the first sum is over the two polarizations of the field,
k = jkj, V =L3 is the box-normalization volume, ak;s(t) is
the photon annihilation operator, h:c: stands for the Hermitian
conjugate of the first term within the brackets, and ek;s is the
unit polarization vector. This is the quantized vector potential
for the EV component of the QV. The vector potential satisfies
the periodicity conditions

A(x+ L; y + L; z + L; t) = A(x; y; z; t) (2)

or equivalently

k = (kx; ky; kz) = (2�=L)(nx; ny; nz) ; (3)

where the ni can assume any positive or negative integer or
zero. Since the Planck constant ~ is considered to be a pri-
mary constant, the field in (1) is a fundamental field that is
not derivable from some other source (e.g. a collection of
charged particles). This paper argues that ~ is not a primary
constant and thus that there is a more fundamental reality be-
hind the quantum fields.

The most glaring characteristic of the EV (and similarly
the MPV) is that its zero-point (ZP) energy [1, p. 49]
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is infinite because of the unbounded nature of the k (jkij<1)
in (3). The sum on the right side of the equal sign is an ab-
breviation for the double sum on the left and !k = ck. Using
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in (4) leads to the EV energy density

c~
V

X
k;s

k
2

=
c~
2�2

Z 1
0

k3 dk =1 ; (6)

where the infinite upper limit on the integral is due to the
unbounded k in (3).

The present paper does two things: it identifies a charged
vacuum state (the PV [3]) as the source of the QV; and calcu-
lates a cutoff wavenumber (based on an earlier independent
calculation [4]) for the integral in (6). The PV model is pre-
sented in the Section 2. In a stochastic-electrodynamic (SED)
calculation [4] Puthoff derives the particle mass, the cutoff

wavenumber (in terms of the speed of light, the Planck con-
stant, and Newton’s gravitational constant), and the gravita-
tional force. The Puthoff model is reviewed in Section 3 and
the resulting cutoff wavenumber changed into a form more
useful to the present needs by substituting derived relations
[3] for the Planck and gravitational constants.

William C. Daywitt. The Source of the Quantum Vacuum 27



Volume 1 PROGRESS IN PHYSICS January, 2009

Section 4 argues that the QV has its source in the PV. It
accomplishes this result by comparing the PV and QV energy
densities. The reader is asked to excuse the course nature of
the comparisons used to make the argument. Section 5 com-
ments on the previous sections and expands the PV theory
somewhat.

The de Broglie radius is derived in Appendix A to assist
in the calculations of Section 4. The derivation is superfi-
cially similar to de Broglie’s original derivation [5], but dif-
fers essentially in interpretation: here the radius arises from
the two-fold perturbation the free particle exerts on the PV.

2 Planck vacuum

The PV [3] is an omnipresent degenerate gas of negative-
energy Planck particles (PP) characterized by the triad
(e�;m�; r�), where e�,m�, and r� (��=2�) are the PP charge,
mass, and Compton radius respectively. The charge e� is the
bare (true) electronic charge common to all charged elemen-
tary particles and is related to the observed electronic charge e
through the fine structure constant � = e2=e2� which is a man-
ifestation of the PV polarizability. The PP mass and Compton
radius are equal to the Planck mass and length respectively. In
addition to the fine structure constant, the particle-PV interac-
tion is the ultimate source of the gravitational (G = e2�=m2�)
and Planck (~ = e2�=c ) constants, and the string of Compton
relations relating the PV and its PPs to the observed elemen-
tary particles and their bare charge e�

r�m�c2 = � � � = rcmc2 = � � � = e2� ; (7)

where the charged elementary particles are characterized by
the triad (e�;m; rc), m and rc being the mass and Compton
radius (�c=2�) of the particle. Particle spin is not yet included
in the theory. The ZP random motion of the PP charges e�
about their equilibrium positions within the PV, and the PV
dynamics, are the source of both the free particles and the QV.

The Compton relations (7) have their origin in the two-
fold perturbation of the PV by the free particle which po-
larizes and “curves” (in a general relativistic sense) the PV.
The particle-PV interaction is such that the polarization force
(e2�=r2) and the curvature force (mc2=r) are equal at the
Compton radius rc [3]:

e2�
r2 =

mc2

r
�! rcmc2 = e2� ; (8)

where the second equation can be expressed in its usual form
rcmc = ~. The requirement that the force equality in (8) hold
in any Lorentz frame leads to the momentum (bp = �i~r)
and energy ( bE = i~@=@t) operators and to the de Broglie
radius (Appendix A). The so-called “wave-particle duality”
of the particle follows from the coupling of the free particle
to the (almost) continuous nature of the PV whose continuum
supports the wave associated with the wave property ascribed
to the particle.

3 Puthoff model

One of the charges in the product e2� terminating the chain
of Compton relations (7) belongs to the free particle while
the other represents the magnitude of the PP charges mak-
ing up the PV. The fact that the bare charge is common to
all the charged elementary particles depicted by (7) suggests
that perhaps e� is massless, and that the mass m in the parti-
cle triad (e�;m; rc) results from some reaction of the charge
to the ZP fields. In a seminal paper [4] Puthoff, in effect, ex-
ploits the idea of a massless charge to derive the particle mass,
the wavenumber kc� truncating the spectrum of the ZP fields,
and the Newtonian gravitational force. This section reviews
Puthoff’s SED calculations and casts them into a form conve-
nient to the present needs. Some minor license is taken by the
present author in the interpretation behind equations (12) and
(13) concerning the constant A.

The Puthoff model starts with a particle equation of mo-
tion (EoM) for the mass m0

m0�r = e�Ezp ; (9)

wherem0, considered to be some function of the actual parti-
cle mass m, is eliminated from (9) by substituting the damp-
ing constant

� =
2e2�

3c3m0
(10)

and the electric dipole moment p = e�r, where r represents
the random excursions of the charge about its average po-
sition at hri = 0. The force driving the particle charge is
e�Ezp, where Ezp is the ZP electric field (B5). Equation (9)
then becomes

�p =
3c3�

2
Ezp ; (11)

which is an EoM for the charge that, from here on, is consid-
ered to be a new equation in two unknowns, � and the cutoff

wavenumber kc�. The mass m of the particle is then defined
via the stochastic kinetic energy of the charge whatever that
may be. A reasonable guess is the kinetic energy of the dis-
carded mass m0

mc2 �
�
m0 _r2

2

�
=



_p2
2
�

3c3�
(12)

realizing that, at best, this choice is only a guide to predicting
what parameters to include in the mass definition. The dipole
variation _p2 is explained below. The simplest definition for
the mass is then

m � 1
c2
A



_p2
2
�

3c3�
; (13)

whereA is a constant to be determined, along with � and kc�,
from a set of three experimental constraints.

The three constraints used to determine the three con-
stants �, kc�, and A are: 1) the observed mass m of the parti-
cle; 2) the perturbed spectral energy density of the EV caused
by radiation due to the random accelerations experienced by
the particle charge e� as it is driven by the random force
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e�Ezp; and 3) Newton’s gravitational attraction between two
particles of mass m.

The dipole moment p in (11) can be readily determined
using the Fourier expansions [6]

p(t) =
Z 1
�1

ep(
) exp (�i
t) d
=(2�)1=2 (14)

and

Ezp(r; t) =
Z 1
�1

eEzp(
) exp (�i
t) d
=(2�)1=2; (15)

where ep(
) and eEzp(
) are the Fourier transforms of the
dipole moment vector p and the field Ezp respectively.

The mass of the particle is defined via the planar motion
of the charge normal to the instantaneous propagation vector
k in (B5) and results in (Appendix B)


_p2
2
�

= 2


(bx � _p)2� =

3~c5�2k2
c�

2�
; (16)

where bx is a unit vector in some arbitrary x-direction and the
factor 2 accounts for the 2-dimensional planar motion. When
the average (16) is inserted into (13), the constant

� =
2�m
A~k2

c�
(17)

emerges in terms of the two as yet unknown constants A
and kc�.

Acceleration of the free bare charge e� by Ezp generates
electric and magnetic fields that perturb the spectral energy
density of the EV with which Ezp is associated. The corre-
sponding average density perturbation is [4]

��0(k) =
~c3�2k
2�2R4 =

2m2c3k
A2~k4

c�R4 ; (18)

where (17) is used to obtain the final expression, and where
R is the radius from the average position of the charge to
the field point of interest. An alternative expression for the
spectral energy perturbation

��(k) =
~k

2�2c3

�
mG
R2

�2

(19)

is calculated [4] from the spacetime properties of an acceler-
ated reference frame undergoing hyperbolic motion, and the
equivalence principle from General Relativity. Since the two
perturbations (18) and (19) must have the same magnitude,
equating the two leads to the cutoff wavenumber

kc� =
�

2�c3

A~G

�1=2
; (20)

where G is Newton’s gravitational constant.
The final unknown constant A in (20) is determined from

the gravitational attraction between two particles of mass m

calculated [4] using their dipole fields and coupled EoMs, re-
sulting in Newton’s gravitational equation

F = �~c3�2k2
c�

�R2 = �2m2G
AR2 ; (21)

where (17) and (20) are used to obtain the final expression.
ClearlyA = 2 for the correct gravitational attraction, yielding
from (20) and (17)
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for the other two constants. The expressions in the brackets
of (22) and (23) are obtained by substituting the PV expres-
sions for the gravitational constant (G= e2�=m2�), the Planck
constant (~= e2�=c), and the Compton relation in (8). The
bracket in (22) shows, as expected, that the cutoff wavenum-
ber in (B5) is proportional to the reciprocal of the Planck
length r� (roughly the distance between the PPs making up
the PV). The bracket in (23) shows the damping constant �
to be very small, orders of magnitude smaller than the Planck
time r�=c. The smallness of this constant is due to the al-
most infinite number (� 1099 per cm3) of agitated PPs in
the PV contributing simultaneously to the ZP field fluctua-
tions.

An aside: zitterbewegung
SED associates the zitterbewegung with the EV [7, p. 396],
i.e. with the ZP electric and magnetic fields. In effect then
SED treats the EV and the MPV as the same vacuum while
the PV model distinguishes between these two vacuum states.
Taking place within the Compton radius rc of the particle, the
particle zitterbewegung can be viewed [1, p. 323] as an “ex-
change scattering” between the free particle and the MPV on
a time scale of about rc=2c, or a frequency around 2c=rc.
The question of how the particle mass derived from the av-
eraging process in (13) can be effected with the charge ap-
pearing and disappearing from the MPV at such a high fre-
quency naturally arises. For this averaging process to work,
the frequency of the averaging must be significantly higher
than the zitterbewegung frequency. This requirement is easily
fulfilled since ckc� � 2c=rc. To see that the averaging fre-
quency is approximately equal to the cutoff frequency ckc�
one needs only consider the details of the average



(bx � _p)2�

in (13) which involves the integral
R kc�

0 k dk � R 1033

0 k dk.
Ninety-nine percent of the averaging takes place within the
last decade of the integral from 1032 to 1033 (the corres-
ponding frequency ck in this range being well beyond the
Compton frequency c=rc of any of the observed elementary
particles), showing that the effective averaging frequency is
close to ckc�.
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4 EV and MPV with truncated spectra

The non-relativistic self force acting on the free charge dis-
cussed in the previous section can be expressed as [1, p. 487]

e�Eself =
2e2�
3c3

d�r
dt
� �r �m (24)

where the radiation reaction force is the first term and the
renormalization mass is

�m =
4e2�

3�c2

Z kc�

0
dk (25)

assumed here to have its wavenumber spectrum truncated at
kc�. An infinite upper limit to the integral corresponds to the
box normalization applied in Section 1 to equation (3) where
jnij<1 is unbounded. However, if the normal mode func-
tions of the ZP quantum field are assumed to be real waves
generated by the collection of PPs within the PV, then the
number of modes ni along the side of the box of length L is
bounded and obeys the inequality jnij6L=2p� r�, where r�
is roughly the separation of the PPs within the PV. Thus the
cutoff wavenumber from the previous section (kc�=

p
�=r�)

that corresponds to this ni replaces the infinite upper limit or-
dinarily assumed for (25). So it is the “graininess” (r� , 0)
associated with the minimum separation r� of the PPs in the
PV that leads to a bounded ki and ni for (3), and which is
thus responsible for the finite renormalization mass (25) and
the finite energy densities calculated below.

Electromagnetic vacuum
Combining (4) and (5) with a spectrum truncated at kc� leads
to the EV energy density [1, p. 49]
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where the 2 in front of the triple integral comes from the sum
over s= 1; 2; and where kc�=

p
�=r� and c~= e2� are used

to obtain the final two expressions. If the energy density of
the PV (excluding the stochastic kinetic energy of its PPs) is
assumed to be roughly half electromagnetic energy (� e2�=r�)
and half mass energy (� m�c2), then

e2�=r� +m�c2
r3�

= 2
e2�=r�
r3�

(27)

is a rough estimate of this energy density. Thus the energy
density (26) of the EV (the virtual-photon component of the
QV) is at most one sixteenth (1=16) the energy density (27)
of the PV. Although this estimate leaves much to be desired,
it at least shows the EV energy density to be less than the PV
energy density which must be the case if the PV is the source
of the EV.

Massive particle vacuum
The energy density of the ZP Klein-Gordon field is [1, p. 342]

h0jHj0i
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where �3(0) =V=8�3 is used to eliminate �3(0) and Ek =
= e2�

p
k2
c + k2 comes from (A5). Equation (28) leads to
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where kc = 1=rc is used in the first line. The final integral is
easily integrated [8] and leads to the expansion in the second-
to-last expression. The final expression follows from the fact
that the second (r2�=�r2

c � 10�40) and higher-order terms in
the expansion are vanishingly small (the ratio r�=rc� 10�20

is used as a rough average for the ratio of the Compton radii of
the PP and the observed elementary particles). So the energy
density in (29) is one thirty-second (1=32) of the PV energy
density in (27).

The k2 term under the radical sign in (28) corresponds to
the squared momentum of the massive virtual particles con-
tributing to the average vacuum density described by (28).
The second term in the large parenthesis of (29) is approx-
imately the relative contribution of the virtual-particle mass
to the overall energy density as compared to the coefficient in
front of the parenthesis which represents the energy density of
the virtual-particle kinetic energy. Thus the kinetic energy of
the virtual particles in the MPV dominates their mass energy
by a factor of about 1040.

5 Conclusion and comments

The conclusion that the PV is the source of the quantum fields
is based on the fact that ~ (= e2�=c) is a secondary con-
stant, where one of the e�s in the product e2� is the particle
charge and the other is the charge on the PPs making up the
PV; and that the amplitude factor Ak in the ZP electric field
(B5) is proportional to the charge on the PPs in the PV. The
ubiquitous nature of ~!= e2�k in the quantum field equations,
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whether k is an electromagnetic wavenumber or a de Broglie
wavenumber, further supports the conclusion.

The Compton relations (7) and the Puthoff model in Sec-
tion 3 both suggest that the particle charge e� is massless.
To be self-consistent and consistent with the Puthoff model,
the PV model for the Compton relations must assume that
the Compton radius rc = rc(m) = e2�=mc2 is larger than the
structural extent of the particle and the random excursions of
the charge leading to the mass (13).

The PV theory has progressed to this point without ad-
dressing particle spin — its success without spin suggesting
perhaps that spin is an acquired, rather than an intrinsic, prop-
erty of the particle. A circularly polarized ZP electric field
may, in addition to generating the mass in (13), generate an
effective spin in the particle. This conclusion follows from a
SED spin model [7, p. 261] that uses a circularly polarized ZP
field in the modeling process — in order to avoid too much
speculation though, one question left unexplored in this spin
model is how the ZP field acquires the circular polarization
needed to drive the particle’s spin. Perhaps the ZP field ac-
quires its circular polarization when the magnetic field prob-
ing the particle (a laboratory field or the field of an atomic
nucleus) induces a circulation within the otherwise random
motion of the PP charges in the PV, these charges then feed-
ing a circular polarization back into the ZP electric field Ezp
of the EV, thus leading to the particle spin.

Appendix A de Broglie radius

A charged particle exerts two distorting forces on the collection of
PPs constituting the PV [3], the polarization force e2�=r2 and the cur-
vature force mc2=r. The equality of the two force magnitudes at the
Compton radius rc in (8) is assumed to be a fundamental property
of the particle-PV interaction. The vanishing of the force difference
e2�=r2

c � mc2=rc = 0 at the Compton radius can be expressed as
a vanishing tensor 4-force [9] difference. In the primed rest frame
of the particle where these static forces apply, this force difference
�F 0� is (� = 1; 2; 3; 4)

�F 0� =
�
0; i

�
e2�
r2
c
� mc2

rc

��
= [ 0; 0; 0; i 0 ] ; (A1)

where i=
p�1 . Thus the vanishing of the 4-force component

�F 04 = 0 in (A1) is the source of the Compton relation in (8) which
can be expressed in the form mc2 = e2�=rc = (e2�=c)(c=rc) = ~!c ,
where !c � c=rc =mc2=~ is the Compton frequency corresponding
to the Compton radius rc .

The 4-force difference in the laboratory frame, that is �F� =
= a���F 0� = 0�, follows from its tensor nature and the Lorentz
transformation x� = a�� x0� [9], where x� = (x; y; z; ict) ,

a�� =

0B@ 1 0 0 0
0 1 0 0
0 0  � i� 
0 0 i�  

1CA (A2)

and �; � = 1; 2; 3; 4 . Thus (A1) becomes
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c
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d
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�
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�
e2�
r2
L
� mc2

rL

��
=

= [ 0; 0; 0; i0 ]

(A3)

in the laboratory frame. The equation �F3 = 0 from the final two
brackets yields the de Broglie relation

p =
e2�=c
rd

= ~

rd
= ~kd (A4)

where p = mv is the relativistic particle momentum, rd � rc=�
is the de Broglie radius, and kd = 1=rd is the de Broglie wave-
number.

Using (8) and (A4), the relativistic particle energy can be ex-
pressed as

Ekd =
�
m2c4 + c2p2�1=2 =

=
�
e4�k2

c + c2~2k2
d
�1=2 = e2�

�
k2
c + k2

d
�1=2 ; (A5)

where mc2 = e2�=rc, kc = 1=rc, and c~ = e2� are used to obtain
the final two expressions.

The equation �F4 = 0 from (A3) leads to the relation p= ~=rL,
where rL� rc= is the length-contracted rc in the ict direction.
The Synge primitive quantization of flat spacetime [10] is equiva-
lent to the force-difference transformation in (A3): the ray trajec-
tory of the particle in spacetime is divided (quantized) into equal
lengths of magnitude �c = 2�rc (this projects back on the “ict”
axis as �L = 2�rL); and the de Broglie wavelength calculated from
the corresponding spacetime geometry. Thus the development in
the previous paragraphs provides a physical explanation for Synge’s
spacetime quantization in terms of the two perturbations e2�=r2 and
mc2=r the free particle exerts on the PV.

Appendix B Charge EoM with the self force

Combining (24) and (25) leads to the charge’s self force

e�Eself = 2e2�
3c3
�d�r
dt
� !0��r

�
(B1)

with !0� � 2c=
p
� r�. Adding (B1) to the right side of (9) then

yields the x-component of the charge’s acceleration corresponding
to (11):

�x = �
�d�x
dt
� !0��x

�
+ 3c3�

2e�
bx �Ezp (B2)

which can be solved by the Fourier expansions

x(t) =
Z 1

�1
ex(
) exp (�i
t) d
=(2�)1=2 (B3)

and

Ex(r; t) =
Z 1

�1
eEx(
) exp (�i
t) d
=(2�)1=2 (B4)

whereEx � bx �Ezp, and where the ZP electric field Ezp is assumed
to have an upper cutoff wavenumber kc� [4, 3]:

Ezp(r; t) = Re
2X

�=1

Z
d
k

Z kc�

0
dk k2 be�(k)Ak�

� exp
�
i (k � r� !t+ ��(k))

�
;

(B5)
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where Re stands for “real part of”; the sum is over the two trans-
verse polarizations of the random field; the first integral is over the
solid angle in k-space; be� is the unit polarization vector; Ak =
=
p
~!=2�2 = e�

p
k=2�2 is the amplitude factor which is pro-

portional to the bare charge e� of the PPs in the PV; != ck; and ��

is the random phase that gives Ezp its stochastic character.
The inverse Fourier transform of Ex from (B4) works out to be

eEx(
) =
��

2

�1=2 2X
�=1

Z
d
k

Z kc�

0
dk k2 bx � be�(k)Ak�

���(
� !) exp [ i (k � r + ��(k))] +

+ �(
 + !) exp [�i (k � r + ��(k))]
	 (B6)

in a straightforward manner, where �(
�!) and �(
+!) are Dirac
delta functions. Equation (B6) is easily checked by inserting it into
(B4) and comparing the result with bx �Ezp from (B5).

Calculating �x and d�x=dt from (B3) and inserting the results,
along with (B4), into (B2) leads to the inverse transform

ex(
) = �
�
3c3�=2e�

� eEx(
)
(1 + �!0�)
2 + i�
3 (B7)

for x(t). Then inserting (B7) into (B3) yields

x(t) = �
�

3c3�
2e�

�
Re

2X
�=1

Z
d
k
Z kc�

0
dk k2 bx � be�(k)Ak�

� exp [ i (k � r� !t+ ��(k))]
(1 + �!0�)!2 + i�!3

(B8)

for the random excursions of the charge.
Differentiating (B8) with respect to time while discarding the

small � terms in the denominator leads to the approximation

_x(t) =
�

3c3�
2e�

�
Re

2X
�=1

Z
d3k bx � be�(k)�

� Ak i! exp [ i (k � r� !t+ ��(k))]
!2

(B9)

for the x-directed velocity, from which the dipole average (16)

_p2
2
�

= 2


(bx � _p)2� = 2e2�



_x2(t)

�
= 3~c5�2k2

c�
2�

(16)

follows, where e2� = c~ is used to eliminate e2�, andZ
d3k =

Z
d
k

Z kc�

0
dk k2 (B10)

is used to expand the triple integral during the calculation.
Differentiating (B8) twice with respect to the time leads to the

dipole acceleration that includes the charge’s self force:

�p = 3
2

�r�
rc

�2
rcc2 Re

2X
�=1

Z
d
k

Z kc�

0
dk k2 be�(k)�

� Ak exp [ i (k � r� !t+ ��(k))]
1 + �!0� + i�ck

;

(B11)

which differs from (11) only in denominator on the right side of
(B11). The last two terms in the denominator are orders of magni-

tude smaller than one: �!0� < r�=rc � 10�20 and �ck < �ckc� =p
� r�=rc � 10�20. Thus the charge’s self force is not a significant

consideration in the definition (13) of the particle’s mass.
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