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The assumption that elementary particles with nonzero rest mass consist of relativis-
tic constituents moving with constant energy pc results in a logarithmic potential and
exponential expression for particle masses. This approach is put to a test by assigning
each elementary particles mass a position on a logarithmic spiral. Particles then accu-
mulate on straight lines. It is discussed if this might be an indication for exponential
mass quantization.

1 Introduction

The approach of fitting parts of elementary particle mass
spectra involving logarithmic potentials has been subject to
research in the past decades. In this paper the simple assump-
tion of relativistic constituents moving with constant energy
pc in a logarithmic potential is discussed. A similar approach
has already been presented in one of the early papers by
Y. Muraki et al. [1], where the additional assumption of cir-
cular quantized orbits results in an empiric logarithmic mass
function with accurate fits for several meson resonance states.

Besides the basic assumption of constant energy pc of the
constituents and a resulting logarithmic potential, however,
the physical approach in this paper differs and results in an
exponential mass function with elementary particle masses
proportional to �n, where n are integers. � is a constant factor
derived and thus not empirical chosen to fit particle masses.

The mass function results in points on a logarithmic spi-
ral lining up under a polar angle ' and being separated by
the factor �. Elementary particle masses following this ex-
ponential quantization thus would, when placed on the spiral,
be found on straight lines. Even slight changes of the value
� would change the particle distribution on the spiral signif-
icantly. Linear distributions for particle masses on the spiral
thus would give hints if the logarithmic potential is an ap-
proach worth being further investigated to explain the wide
range of elementary particle masses.

2 Physical approach

Elementary particles with mass m consist of confined con-
stituent particles, which are moving with constant energy pc
within a sphere of radius R. For this derivation it is not es-
sential to define further properties of the constituents, e.g. if
they are rotating strings or particles in circular orbits.

The only assumption made is that the force F needed
to counteract a supposed centrifugal force FZ / c2=R act-
ing on each constituent is equal or proportional to pc=R, thus
F =FZ = a1=R, regardless of the origin of the interaction.

The potential energy needed to confine a constituent there-
fore is

E =
Z
a1

R
dR = a1

Z
1
R
dR = a1 ln

R
Ra

; (2a)

where Ra is the integration constant and a1 a parameter to be
referred to later. The center of mass of the elementary particle
as seen from the outside and thus the mass that is assigned to
the system is

m =
~

cR
: (2b)

The logarithmic potential energy in Eq. (2a) is assumed to
be proportional to m=R, yielding

E =
a2m
R

: (2c)

Both parameters a1 and a2 are supposed not to be a func-
tion of R, but to depend on constituent particle properties and
coupling constants, resp. For example, a1=a2 could be set
equal c2= ( is the gravitational constant), but such a con-
straint is not required. Insertingm from Eq. (2b) into Eq. (2c)
yields

E = a2
~

cR2 : (2d)

The angular momentum of the system is assumed to be an
integer multiple n of ~, with a ground state of radius R0.

En = a2
~

cR2
n

= a2
(n+ 1)~
cR2

0
; n = 0; 1; 2 : : : (2e)

From Eq. (2a) and Eq. (2e) it follows that

ln
Ra
Rn

= �(n+ 1)
R2
a

R2
0

with Ra =
�
a2~

a1c

�1
2

; (2f)

assigning the integration constant Ra a value. For n= 0 the
value for Rn is set to R0, allowing to calculate the ratio
Ra=R0 using Eq. (2f)

x = e�x2
with x =

Ra
R0

;

and with defining �= 1=x resulting in

� = 1:53158: (2g)
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Fig. 1: The masses of elementary particles placed on the spiral and listed for each resulting sequence starting from the center. The solid
lines are seperated by 45�. The red dot in the center is the electron at 0�. The outer limit of the spiral at 135� is about 2 GeV. Particles
allocated on a sequence, but with masses too large for this scale are marked red in the attached listings of sequence particles. The top for
example is far outside on S6 at 317�.

Since ln�= 1=�2 it follows that

Rn = Rae(n+1) ln� : (2h)

With Eq. (2b) and Eq. (2f) Ra can be written as

Ra = R0� ; (2i)
where

R0 =
~

m0c
with � = m0

�
a2c
a1~

�1
2

and inserting Ra into Eq. (2h) yields

Rn = R0ek'n where k =
1

2�
ln� ; (2j)

and
'n = 2�(n+ 1) + 's and 's = 2�

ln�
ln�

:

Eq. (2j) applies to particle masses by inserting Rn into
Eq. (2b). Thus with

mn =
~

Rnc
and m0 =

~

R0c
it follows that

mn = m0ek'n : (2k)

In Eq. (2k) �k is substituted by k, which just determines
to start with m0 as the smallest instead of the biggest mass
and thus turning the spiral from the inside to the outside in-
stead vice versa. This has no influence on the results. mn are
elementary particle masses and points on a logarithmic spiral
lining up at an angle 's as defined in Eq. (2j). These points
are referred to as a particle sequence S('s). The angle 's
should not be the same for all elementary particles since it is
a function of the parameters a1 and a2.

To determine whether elementary particle masses tend to
line up in sequences first of all a logarithmic spiral

m(') = m0ek'

with continues values for ' is calculated. m0 is the initial
mass and thus starting point of the spiral at '= 0. The start-
ing point m0 =m('= 0) is set so that as a result the electron
is placed at the angle '= 0.

One turn of the spiralm(')!m('+2�) corresponds to
multiplyingm(') by �, yieldingm(')�=m('+2�). Spiral
points lining up at the same polar angle ' differ by a factor �.

In a second step for each elementary particle mass pro-
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Fig. 2: Additional sequences shown within a mass range of 6.5 GeV. See Fig. 1 for listings of S1-S6.

Fig. 3: At a mass range of 175 GeV the Z and top align with S3 and S6, resp., as listed in Fig. 1.
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vided by the PDG table 2004 [2, 3] the resulting angle 's in
the logarithmic spiral is calculated using Eq. (2k) with m0 as
the electron mass and 's as defined in Eq. (2j). This results
in polar coordinates (mn; 's) and thus a point on the spiral
for each elementary particle.

After all elementary particles are entered as points into the
spiral it is analyzed if sequences S('s), thus particle masses
mn lining up in the spiral in the same direction 's are found.

3 Results

The results for particle sequences are shown step by step for
mass ranges from 2 GeV to 175 GeV to provide a clear over-
view. Elementary particles which are part of a sequence, but
out of the shown mass range and thus not displayed as red
dots in the spiral are marked red in the list of sequence parti-
cles, which is attached to each sequence.

All allocations of elementary particle masses to sequences
are accurate within at least �m=m= 4�10�3. All sequence
positions are fitted and accurate within 's� 0; 5�.

Fig. 1 shows the results within a mass range of 2 GeV
from the center to the outer limit of the spiral. The position
of the electron is set to 0� as the starting point of the spiral,
the muon then is found to be at 182�. Also on these sequences
are the phi (1680) and the K* (892), resp.

The K+, tau, psi (4160) and B (c) are at 45�. The proton,
N (1440) and N (2190) opposite at 225�. The eta, f (1)(1285),
D (s), Upsilon (10860), Z-boson are at 132� and the
Delta (1600), Sigma (c)(2455) and the top opposite at 317�,
resp. Calculating the Planck mass with mpl = (~c=)1=2 re-
sults in a position on sequence S6.

In Fig. 2 additional sequences within a mass range of
6.5 GeV are shown, e.g. the pi+, rho (770), pi (1800) and
chi (b2)(1P) are aligned at S (58�).

Also the f (0)(980), f (1)(1500), f (2)(2300), chi (b2)(1P)
and B (s) are aligned precisely in a sequence at 260�. The
f (2)(1525) and f (2)(2340) align at 278�.

Other sequences are as follows, at 150� (Xi, D* (2010),
Upsilon (11020)), at 156� (Xi-, Xi (2030), J/psi (1S)) and at
245� (eta’, rho (1450), Sigma (2250), B). Also the psi (4040),
psi (4415), Upsilon (1S) and Upsilon (3S) are found in se-
quences.

A picture of the mass range of elementary particles at 175
GeV is shown in Fig. 3, with the Z and top aligning in the
sequences S3 and S6, resp., as listed in Fig. 1.

4 Discussion and conclusion

In this simple model the mass distribution of elementary par-
ticles strongly depends on the derived quantization factor �.
Even slight changes ��=�� 5�10�4 disrupt the particle se-
quences. Thus of interest are the symmetric sequences S1-S6
with precise positions for the electron, muon, kaon, proton

and tau. Also the eta, K (892), D (s), B (c), Upsilon (10860),
Z and top are placed on these sequences. Other sequences
align particles like f’s, pi’s and Xi’s.

The existence of more than one sequence implies that �
in Eq. (2i), i.e. the ratio of parameters a1 and a2, has several
values within the elementary particle mass spectrum.

Randomly chosen values for � other than the derived one
do not provide symmetric and precise results, but rather uni-
form distributions, as should be expected. The results of the
precise and specific sequences in the derived logarithmic spi-
ral still might be a pure coincidence. But they also could be
an indication for constituent particles moving in a logarithmic
potential, resulting in an exponential quantization for elemen-
tary particle masses. Then the results would suggest the log-
arithmic potential to be considered an approach worth being
further investigated to explain the wide range of elementary
particle masses.
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