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The integrals that describe the expectation values of the zero-point quantum-field-
theoretic vacuum state are semi-infinite, as are the integrals for the stochastic electro-
dynamic vacuum. The unbounded upper limit to these integrals leads in turn to infinite
energy densities and renormalization masses. A number of models have been put for-
ward to truncate the integrals so that these densities and masses are finite. Unfortunately
the truncation apparently destroys the Lorentz invariance of the integrals. This note ar-
gues that the integrals are naturally truncated by the graininess of the negative-energy
Planck vacuum state from which the zero-point vacuum arises, and are thus automati-
cally Lorentz invariant.

1 Introduction

Sakharov [1] hypothesized that Newton’s gravitational con-
stant is inversely proportional to a truncated integral over the
momenta of the virtual particles in the quantum vacuum [2]
(QV), and that the cutoff wavenumber “. . . determines the
mass of the heaviest particles existing in nature. . . ” accord-
ing to a suggestion by M. A. Markov. Inverting the Markov
suggestion, the Planck vacuum (PV) model [3, 4] assumes
that these “heaviest particles” are the Planck particles (PPs)
constituting the degenerate negative-energy PV state, and that
it is the separation between these PPs that leads to the cutoff

wavenumber. Puthoff [5, 4] furthers the Sakharov argument
by calculating the cutoff wavenumber to be
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where G is Newton’s gravitational constant and r� is the
Planck length. The ratio in the bracket is derived by substi-
tuting the constants ~ = e2�=c, G = e2�=m2�, and the Compton
relation r�m�c2 = e2� from the PV model, where m� is the
Planck mass and e� is the bare (true) charge common to the
charged elementary particles.

It is accepted knowledge that the truncation of the vacuum
integrals destroys their Lorentz invariance. For example, a
stochastic electrodynamic version of the zero-point (ZP) elec-
tric field can be expressed as [5]
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where the cutoff wavenumber kc� apparently destroys the Lo-
rentz invariance of the field. The accepted Lorentz-invariant
version of (2) replaces kc� by1. By giving the cutoff wave-
number an interpretation different from a momentum wave-

number, however, this note argues that (2) is Lorentz invariant
as it stands. The next section presents this argument.

The virtual-particle field consists of virtual photons and
massive virtual-particle pairs, the collection being the QV. It
is assumed that the structure of the PV and the ZP agitation of
its PPs are responsible for the structure of the virtual-particle
field, the corresponding average of the photon field being the
ZP electric field in (2). While the negative-energy PV is as-
sumed to be invisible (not directly observable), it offspring
the QV appears in free space and interacts with the free par-
ticles therein. The argument in the next section assumes this
perspective.

2 Cutoff wavenumber

The set of orthogonal modes associated with a continuous
medium contains an infinite number of eigenfunctions. If the
medium is quasi-continuous like the PV, however, the number
is finite. Using this fact, the development of the ZP electric
field is reviewed below to show that the cutoff wavenumber
is associated with the number of PPs per unit volume in the
PV and is not fundamentally a momentum wavenumber for
the QV fields. Thus being associated with the PP density,
the cutoff wavenumber is not dependent upon the free-space
Lorentz frames observing the QV.

The ZP electric field can be expressed as [6, p.73]
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where the first sum is over the two polarizations of the field,
k = jkj, V =L3 is the box-normalization volume, ek;� is the
polarization vector,
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yields the amplitude factor Ak which is proportional to the
bare charge e� of the PPs in the PV, and �� is the random
phase that gives Ezp its stochastic character. The two ratios
in (4) are the ZP energy of the individual field modes. The
field satisfies the periodicity condition

Ezp(x+ L; y + L; z + L; t) = Ezp(x; y; z; t) (5)

or equivalently

k = (kx; ky; kz) = (2�=L)(nx; ny; nz) = (2�=L)n ; (6)

where k = (2�=L)n, and where ordinarily the ni can assume
any positive or negative integer and zero.

An unbounded mode index ni in (6) leads to the infinite
energy densities and renormalization masses that plague both
the quantum field theory and the stochastic electrodynamic
theory. However, if the normal mode functions of the ZP
field are assumed to be waves supported by the collection of
PPs within the PV [4], then the number of modes ni along
the side of the box of length L is bounded and obeys the in-
equality jnij6 (L=2�)kc�=L=2

p
� r�. So it is the “graini-

ness” (r� , 0) associated with the minimum separation r� of
the PPs that leads to a bounded ki and ni for (6), and which is
thus responsible for finite energy densities and renormaliza-
tion masses [4]. Unfortunately this truncation of the second
sum in (3) leads to apparently non-Lorentz-invariant integrals
for the “continuum” version of that equation developed be-
low.
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in (3) and truncating the field densities at kc�=
p
�=r� leads

to [5, 4]
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where d
k is the k-space solid-angle differential. As shown
below in (10) and(11) this cutoff wavenumber kc� is funda-
mentally related to the number of PPs per unit volume consti-
tuting the PV.

The ZP electromagnetic energy density of the QV calcu-
lated from (8) is


E2
zp
�

4�
=
Z kc�

0

e2�k
2
� k2 dk
�2 ; (10)

where the first ratio under the integral sign is the ZP energy
of the individual modes. The second ratio is the number of
modes per unit volume between k and k+ dk; so the number
of modes in that range is k2V dk=�2. If the total number
of PP oscillators (with three degrees of freedom each) in the
volume V is N , then the total number of modes in V is [7]Z kc�

0

k2V dk
�2 = 3N ; (11)

which provides an estimate for N=V . Integrating (10) gives
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for the number of PPs per unit volume. The equation outside
the brackets shows that kc� is proportional to the cube root
of this PP density. The ratio in the bracket shows that the
average separation of the PPs is approximately 2.5 times their
Compton radii r�, a very reasonable result considering the
roughness of the calculations.

From (11) the previous paragraph shows that the cutoff

wavenumber kc� in (8) and (9) is associated with the mode
counting in (10) taking place within the invisible PV. Since
the number of these PV modes is not influenced by the free-
space Lorentz frame observing the QV, the kc� in (8) and (9)
must be independent of the Lorentz frame. Thus (8) and (9)
are Lorentz invariant as they stand since kc� is frame indepen-
dent and the integrands are already Lorentz invariant [8]. That
is, when viewed from different Lorentz frames, the wave-
number kc� remains the same; so the integrals are Lorentz
invariant.

3 Review and comments

From the beginning of the ZP theory the medium upon which
calculations are based is the free-space continuum with its un-
bounded mode density. So if the spectral density is truncated,
the ZP fields naturally lose their Lorentz-invariant character
because the truncation and the Lorentz viewing frames exist
in the same space. This contrasts with the development in the
preceding section where the truncation takes place in the in-
visible PV while the viewing is in the free space containing
the QV.

One way of truncating in free space without losing Lo-
rentz invariance [9, 10] is to assume that the so-called elemen-
tary particles are constructed from small sub-particles called
partons, so that the components of the parton driving-field
Ezp with wavelengths smaller than the parton size (� r�) are
ineffective in producing translational motion of the parton as
a whole, effectively truncating the integral expressions at or
near the Planck frequency c=r�. The parton mass turns out
to be
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where m� is the Planck mass, m is the particle mass, and rc
is the particle Compton radius. The parenthetical ratio in the
second expression is roughly 1020 for the observed elemen-
tary particles; i.e., for the observed particles, the parton mass
is about twenty orders of magnitude greater than the Planck
mass.

It is difficult to explain the inordinately large (1020m�)
parton mass in (12) that is due to the equation of motion

m0�r = e�Ezp (14)

at the core of the Abraham-Lorentz-Dirac equation used in
[9], where �r is the acceleration of the mass about its average
position at hri = 0. Equation (13) is easily transformed into
the equation of motion

e��r =
3c3�

2
Ezp (15)

for the charge e�, where �r is the charge acceleration. If the
time constant � is treated as a constant to be determined from
experiment [5, 4], then solving (14) leads to

� =
�
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where r�=c is the Planck time. Unlike the m0 in (12) and
(13), this inordinately small time constant can be accounted
for: it is due to the large number (N=V � 1097 per cm3) of
agitated PPs in the PV contributing simultaneously to the ZP
field fluctuations described by (8). It is noted in passing that
the size of the parton (� r�) is not connected to its mass m0
by the usual Compton relation (i.e., r�m0c2 , e2�) as is the
case for the PP (r�m�c2 = e2�).
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