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The equations of gravitation related to the field of a spherical charged source imply the
existence of an interdependence between gravitation and electricity [5]. The present
paper deals with the joint action of gravitation and electricity in the case of a stationary
charged spherical source. Let m and " be respectively the mass and the charge of the
source, and let k be the gravitational constant. Then the equations of gravitation need
specific discussion according as j"j < m

p
k (source weakly charged) or j"j = m

p
k

or j"j > m
p
k (source strongly charged). In any case the curvature radius of the sphere

bounding the matter possesses a strictly positive greatest lower hound, so that the source
is necessarily an extended object. Pointwise sources do not exist. In particular, charged
black holes do not exist.

1 Introduction

We recall that the field of an isotropic stationary spherical
charged source is defined by solutions of the Einstein equa-
tions related to the stationary �(4)-invariant metric

ds2 =
�
f (�) dt+ f1 (�) (xdx)

�2�
�
24(l1 (�))2 dx2 +

�
(l (�))2 � (l1 (�))2

�
�2 (xdx)2

35 ; (1.1)

(� = kxk =
p
x2

1 + x2
2 + x2

3, l(0) = l1(0)). The functions
of one variable f(�), f1(�), l1(�), l(�) are supposed to be
C1 with respect to � = kxk on the half-line [0;+1[ (or,
possibly, on the entire real line ] � 1;+1[), but since the
norm kxk is not differentiable at the origin with respect to the
coordinates x1, x2, x3, these functions are not either. So, in
general, the origin will appear as a singularity without physi-
cal meaning. In order to avoid the singularity, the considered
functions must be smooth functions of the norm in the sense
of the following definition.

Definition 1.1 A function of the norm kxk, say f(kxk), will
be called smooth function of the norm, if:

a). f(kxk) is C1 on R3 � f(0; 0; 0)g with respect to the
coordinates x1, x2, x3.

b). Every derivative of f(kxk) with respect to the coordi-
nates x1, x2, x3 at the points x 2 R3�f(0; 0; 0)g tends
to a definite value as x! (0; 0; 0).

Remark 1.1 In [3], [4] a smooth function of the norm is con-
sidered as a functionC1 onR. However this last characteri-
sation neglects the fact that the derivatives of the function are
not directly defined at the origin.

The proof of the following theorem appears in [3].

Theorem 1.1 f(kxk) is a smooth function of the norm if and
only if the function of one variable f(u) is C1 on [0;1[ and
its right derivatives of odd order at u = 0 vanish.

This being said, a significant simplification of the problem
results from the introduction of the radial geodesic distance

� =
�Z

0

l(u) du = �(�); (�(0) = 0);

which makes sense in the case of stationary fields.
Since �(�) is a strictly increasing C1 function tending to

+1 as �! +1, the inverse function � = (�) is also a C1
strictly increasing function of � tending to +1 as � ! +1.
So to the distance � there corresponds a transformation of
space coordinates:

yi =
�
�
xi =

�(�)
�

xi; (i = 1; 2; 3);

with inverse

xi =
�

�(�)
yi =

(�)
�

yi; (i = 1; 2; 3):

As shown in [4], these transformations involve smooth
functions of the norm and since

xdx =
3X
i=1

xidxi =
0
�

(ydy) ;

dx2 =
3X
i=1

dx2
i =

�
02
�2 � 2

�4

�
(ydy)2 +

02
�2 dy

2

by setting

F (�) = f((�)); F1(�) = f1((�))
(�)0(�)

�
;

L1(�) = l1((�))
(�)
�
;

66 Nikias Stavroulakis. On the Field of a Stationary Charged Spherical Source



April, 2009 PROGRESS IN PHYSICS Volume 2

and taking into account that

L(�) = l((�)) 0(�) = 1

we get the transformed metric:

ds2 = (Fdt+ F1 (ydy))2�
�
�
L2

1dy
2 +

1� L2
1

�2 (ydy)2
�
: (1.2)

Then �= kyk and the curvature radius of the spheres �=
= const, is given by the function

G = G(�) = �L1(�) :

Moreover, instead of h= �f1, we have now the function

H = H(�) = �F1(�) :

This being said, we recall [5] that, with respect to (1.1),
the field outside the charged spherical source is defined by the
equations

fl = c
dg
d�
;

dg
d�

= l

s
1� 2�

g
+
�2

g2 = l
p
g2 � 2�g + �2

g
;

(�= km
c2 , �=

p
k

c2 j"j, g2� 2�g+ �2> 0, where k is the grav-
itational constant, m and " being respectively the mass and
the charge of the source).

The function h= �f1 does not appear in these equations.
Every function h= �f1 satisfying the required conditions of
differentiability and such that jhj 6 l is allowable.

We obtain a simpler system of equations if we refer to the
metric (1.2). Then

F = c
dG
d�

= c
r

1� 2�
G

+
�2

G2 ; (1.3)

dG
d�

=
r

1� 2�
G

+
�2

G2 =
p
G2 � 2�G+ �2

G
; (1.4)

jHj 6 1 :

So our problem reduces essentially to the definition of
the curvature radius G(�) by means of the equation (1.4) the
study of which depends on the sign of the difference

�2 � �2 =
k
c4
�
"2 � km2� :

A concise approach to this problem appeared first in the
paper [1].

2 Source weakly charged (�2 < �2 or j"j < m
p
k)

G2� 2�G+ �2 = (G��)2 + �2��2 vanishes for G=
=��p�2� �2 and G=�+

p
�2� �2. Moreover G2�

� 2�G+ �2< 0 if ��p�2� �2<G<�+
p
�2� �2 and

G2� 2�G+ �2> 0 if G<��p�2� �2 or G>�+
+
p
�2� �2. Since negative values ofG are not allowed and

since the solution must be topologically connected, we have
to consider two cases according as

0 < G 6 �� p�2 � �2

or
�+

p
�2 � �2 6 G < +1:

The first case gives an unphysical solution, because
G cannot be bounded outside the source. So, it remains to
solve the equation (1.4) when G describes the half-line�
� +

p
�2 � �2; +1� . The value � +

p
�2 � �2 is the

greatest lower bound of the values of G and is not reachable
physically, because F vanishes, and hence the metric degen-
erates for this value. However the value �+

p
�2 � �2 must

be taken into account for the definition of the mathematical
solution. So, on account of (1.4) the function G(�) is defined
as an implicit function by the equation

�0 +
GZ

�+
p
�2��2

udup
u2 � 2�u+ �2

= �; (�0 = const);

or, after integration,

�0 +
p
G2 � 2�G+ �2 +

+ � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

= � (2.1)

with G > �+
p
�2 � �2.

We see that the solution involves a new constant �0 which
is not defined classically. To given mass and charge there
correspond many possible values of �0 depending probably
on the size of the source as well as on its previous history,
namely on its dynamical states preceding the considered sta-
tionary one. From the mathematical point of view, the deter-
mination of �0 necessitates an initial condition, for instance
the value of the curvature radius of the sphere bounding the
matter.

Let us denote by E(G) the left hand side of (2.1). The
function E(G) is a strictly increasing function of G such that
E(G)!+1 as G!+1. Consequently (2.1) possesses a
unique strictly increasing solution G(�) tending to +1 as
� ! +1

The equation (2.1) allows to obtain two significant rela-
tions:
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a) Since

� �G(�) = E(G)�G =

= �0 + � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

+

+
p
G2 � 2�G+ �2 �G =

= �0 + � ln
G� �+

p
G2 � 2�G+ �2p
�2 � �2

+

+
�2�+ �2

G

1 +
q

1� 2�
G + �2

G2

! +1 as G! +1;

it follows that � �G(�)!+1 as �!+1.

b) Since

�
G(�)

=
E(G)
G

=
�0
G

+
r

1� 2�
G

+
�2

G2 +

+ �
lnG
G

+
�
G

ln
1� �

G +
q

1� 2�
G + �2

G2p
�2 � �2

! 1

as G! +1;
it follows that �

G(�)! 1 as �!+1.
Moreover from (2.1), it follows that the greatest lower

bound � +
p
�2 � �2 of the values of G(�) is obtained for

� = �0. The characteristics of the solution depend on the sign
of �0.

Suppose first that �0< 0. Since function G(�) is strictly
increasing, we have G(0) > �+

p
�2 � �2, which is physi-

cally impossible, because the physical solutionG(�) vanishes
for � = 0. Consequently there exists a strictly positive value
�1 (the radius of the sphere bounding the matter) such that the
solution is valid only for � > �1. So, there exists no vacuum
solution inside the ball kxk < �1. In other words, the ball
kxk < �1 lies inside the matter.

Suppose secondly that �0 = 0. Then

G(0) = �+
p
�2 � �2 > 0;

which contradicts also the properties of the globally defined
physical solution. Consequently there exists a strictly positive
value �1 (the radius of the sphere bounding the matter) such
that the solution is valid for � > �1.

Suppose thirdly that �0> 0. Since

G(�0) = �+
p
�2 � �2 ;

the derivative

G0(�0) =

q
(G(�0))2 � 2�G(�0) + �2

G(�0)

Fig. 1: Graph of G in the case where �2<�2.

vanishes, so that F (�0) = cG0(�0) = 0. The vanishing of
F (�0) implies the degeneracy of the spacetime metric for
�= �0 and since degenerate metrics have no physical mean-
ing, there exists a value �1>�0 such that the metric is phys-
ically valid for � > �1. There exists no vacuum solution for
� 6 �0. The ball kxk6 �0 lies inside the matter.

From the preceding considerations it follows, in particu-
lar, that, whatever the case may be, a weakly charged source
cannot be reduced to a point.

3 Source with �2 = �2 (or j"j = m
p
k)

Since �2 = �2, we have G2� 2�G+ �2 = (G��)2, so that
the equation (1.4) is written as

dG
d�

=
jG� �j
G

:

Consider first the case where G<�. Then

dG
d�

=
G� �
G

or
�

1� �
��G

�
dG = � d� ;

whence

a0 +G+ � ln
�

1� G
�

�
= � � ; (a0 = const) :

If G!�, then �!+1, thus introducing a sphere with
infinite radius and finite measure. This solution is unphysical.
It remains to examine the case where G>�. Then�

1 +
�

G� �
�
dG = d� ;

whence

a0 +G+ � ln
�
G
�
� 1
�

= � ; (a0 = const) :

To the infinity of values of a0 there correspond an infinity
of solutions which results from one of them, for instance from
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Fig. 2: Graph of G in the case where �2 =�2.

the solution obtained for a0 = 0, by means of translations
parallel to �-axis.

For each value of a0, we have �!+1 as G!�. The
value � is the unreachable greatest lower bound of the values
of the corresponding solution G(�) which is mathematically
defined on the entire real line. If �1 > 0 is the radius of the
sphere bounding the matter, only the restriction of the solu-
tion to the half-line [�1;+1[ is physically valid. In order to
define the solution, we need the value of the corresponding
constant a0, the determination of which necessitates an ini-
tial condition, for instance the value G(�1). In any case, the
values of G(�) for � 6 0 are unphysical.

Finally we remark that

� �G(�)! +1 and
�

G(�)
! 1 as � ! +1:

4 Source strongly charged (�2 > �2 or j"j > m
p
k)

Since G2 � 2�G + �2 = (G � �)2 + �2 � �2, we have
G2 � 2�G + �2 > 0 for every value of G. Regarding the
function

�(G) = 1� 2�
G

+
�2

G2 =
G2 � 2�G+ �2

G2 ;

we have

�(G)! +1 as G! 0 and �(G)! 1 as G! +1:
On the other hand the derivative

�0(G) =
2
G2

�
�� �2

G

�
;

vanishes for

G =
�2

�
=

"2

mc2

and moreover

�0(G) < 0 for G <
�2

�
;

�0(G) > 0 for G >
�2

�
:

It follows that the function �(G) is strictly decreasing
on the interval ] 0; �

2

� [, strictly increasing on the half-line

[ �
2

� ;+1[, so that

�
�
�2

�

�
= 1� �2

�2 = 1�
�
m
p
k

"

�2

is the minimum of �(G).
The behaviour of the solution on the half-line [ �

2

� ;+1[
is quite different from that on the interval ] 0; �

2

� [. Several
arguments suggest that only the restriction of the solution to
the half-line [ �

2

� ;+1[ is physically valid.
a) Let �0 be the radius of the spherical source. In order to
prove that the restriction of the solution to ] 0; �

2

� [ is unphysi-

cal, we have only to prove that G(�0)> �
2

� . We argue by con-

tradiction assuming thatG(�0)< �2

� . SinceG(�) is unbound-

ed, there exists a value �1>�0 such that G(�1) = �2

� . On the
other hand, since G(�) satisfies the equation (1.4), namely

dG
d�

=
r

1� 2�
G

+
�2

G2 =
p

�(G);

the function
F = c

dG
d�

= c
p

�(G)

is strictly decreasing on the interval ] 0; �
2

� [, and strictly in-

creasing on the half-line [ �
2

� ;+1[. Such a behaviour of the
important function F , which is involved in the law of prop-
agation of light, is unexplained. We cannot indicate a cause
compelling the function F first to decrease and then to in-
crease outside the spherical source. The solution cannot be
valid physically in both intervals ] 0; �

2

� [ and [ �
2

� ;+1[, and
since the great values of G are necessarily involved in the
solution, it follows that only the half-line [ �

2

� ;+1[ must be

taken into account. The assumption that G(�0) < �2

� is to be
rejected.
b) The non-Euclidean (or, more precisely, non-pseudo-Eucli-
dean) properties of the spacetime metric are induced by the
matter, and this is why they become more and more apparent
in the neighbourhood of the spherical source. On the contrary,
when � (or G) increases the spacetime metric tends progres-
sively to a pseudo-Euclidean form. This situation is expressed
by the solution itself. In order to see this, we choose a posi-
tive value b1 and integrate the equation (1.4) in the half-line
[b1;+1[,

b0 +
GZ
b1

udup
u2 � 2�u+ �2

= � ; (b0 = const);

and then writing down the explicit expression resulting from
the integration, we find, as previously, that

� �G(�)! +1 and
�

G(�)
! 1 as � ! +1:
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But, since

L1(�) =
G(�)
�
! 1 and F = c

p
�(G(�))! c

as � ! +1, the metric (1.2) tends effectively to a pseudo-
Euclidean form as � ! +1. Now, if � decreases, the non-
Euclidean properties become more and more apparent, so that

the minimum c
q

1� �2

�2 of F , obtained for G = �2

� , is re-
lated to the ”strongest non-Euclidean character of the metric”.
For values of G less than �2

� , the behaviour of the mathemat-
ical solution becomes unphysical. In fact, the metric loses
progressively its non-Euclidean properties, and, in particular,
for G = �2

2� , we have

�
�
�2

2�

�
= 1� 4�2

�2 +
4�2

�2 = 1;

hence F
�
�2

2�

�
= c and dG

d� = 1.
On account of G = �L1, the last condition implies

1 =
dG
d�

= L1 + �
dL1

d�
and since we have to do physically with very small values of
� (in the neighbourhood of the origin), we conclude that

L1

�
�2

2�

�
� 1:

and since F
�
�2

2�

�
= c, the metric is almost pseudo-Eucli-

dean, a phenomenon inadmissible physically in the neigh-
bourhood of the source. So we are led to reject the restric-
tion of the mathematical solution to the interval [ �

2

2� ;
�2

� [. For

values less than �2

2� , the function F (G) increases rapidly and
tends to +1 as G decreases, so that the restriction of the
mathematical solution to the interval ] 0; �

2

2� [ is also physically
inadmissible. It follows that the restriction of the solution to
the entire interval ] 0; �

2

� [ is unphysical.

c) Another argument supporting the above assertion is given
in [2].

Let �1 be the radius of the spherical source and assume
thatG(�1) > �2

� . A radiation emitted radially from the sphere
bounding the matter is redshifted, and its redshift at the points
of a sphere kxk = � with � > �1 is given by the formula

Z(�; �1) = �1 +
F (G(�))
F (G(�1))

= �1 +

s
�(G(�))
�(G(�1))

:

Suppose � fixed and let us examine the variation of
Z(�; �1) considered as function of �1. If �1 (or G(�1)) de-
creases, Z(�; �1) increases and tends to its maximum, ob-
tained for G(�1) = �2

� ,

maxZ(�; �1) = �1 +

s
�(G(�))
1� �2

�2

:

Fig. 3: Graph of G in the case where �2 > �2.

If G(�1) takes values less than �2

� , the phenomenon is
inverted: The redshift first decreases and then vanishes for a
unique value G(�1) 2 ] �

2

2� ;
�2

� [ with �(G(�1)) = �(G(�)).
If G(�1) decreases further, instead of a redshift, we have a
blueshift. This situation seems quite unphysical, inasmuch
as the vanishing of the redshift depends on the position of
the observer. In order to observe constantly a redshift, the
condition G(�1) > �2

� is necessary.
From the preceding considerations we conclude that the

value
�2

�
=

"2

mc2

is the greatest lower bound of the curvature radius G(�) out-
side the spherical strongly charged source. In particular, the
curvature radius of the sphere bounding the matter is > "2

mc2 ,
so that a strongly charged source cannot be reduced to a point.
Our study does not exclude the case where the solution G(�)
attains its greatest lower bound, namely the case where the
curvature radius of the sphere bounding the matter is exactly
equal to "2

mc2 . So, in order to take into account all possible
cases, the equation (1.4) must be integrated as follows

a0 +
GZ

�2=�

udup
u2 � 2�u+ �2

= � ; (a0 = const) :

If a0 6 0, there exists a value �1> 0 such that the solution
is valid only for � > �1.

If a0> 0, the solution is valid for � > a0, only if the sphere
bounding the matter has the curvature radius �2

� . Otherwise
there exists a value �1>a0 such that the solution is valid for
� > �1.

The expression "2
mc2 is also known in classical electrody-

namics, but in the present situation it appears on the basis
of new principles and with a different signification. Con-
sider, for instance, the case of the electron. Then j"j

m
p
k

=
= 2:02�1021, so that the electron is strongly charged, and,
from the point of view of the classical electrodynamics, is a
spherical object with radius "2

mc2 = 2:75�10�13 cm.
Regarding the present theory, we can only assert that, if
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the electron is a stationary spherical object, then it is a non-
Euclidean ball such that the value 2:75�10�13 cm is the great-
est lower bound of the possible values of the curvature radius
of the sphere bounding it. The radius of the electron cannot
be deduced from the present theory.

The proton is also strongly charged with j"j
m
p
k
=1:1�1018.

The corresponding value "2
mc2 = 1:5�10�16 cm is less than

that related to the electron by a factor of the order 10�3. So,
if the proton is assumed to be spherical and stationary, it is
not reasonable to accept that this value represents its radius.
This last is not definable by the present theory.
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3. Stavroulakis N. Vérité scientifique et trous noires (deuxième
partie) Symétries relatives au groupe des rotations. Annales
Fond. Louis de Broglie, 2000, v. 25(2), 223–266.

4. Stavroulakis N. Non-Euclidean geometry and gravitation.
Progress in Physics, 2006, v. 2, 68–75.

5. Stavroulakis N. Gravitation and electricity. Progress in Physics,
2008, v. 2, 91–96.

Nikias Stavroulakis. On the Field of a Stationary Charged Spherical Source 71


