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Here, we present a profound and complete analytical solution to Einstein’s gravitational
field equations exterior to astrophysically real or hypothetical time varying distribu-
tions of mass or pressure within regions of spherical geometry. The single arbitrary
function f in our proposed exterior metric tensor and constructed field equations makes
our method unique, mathematically less combersome and astrophysically satisfactory.
The obtained solution of Einstein’s gravitational field equations tends out to be a gen-
eralization of Newton’s gravitational scalar potential exterior to the spherical mass or
pressure distribution under consideration.

1 Introduction

After the publication of Einstein’s geometrical gravitational
field equations in 1915, the search for their exact and analyt-
ical solutions for all the gravitational fields in nature began
[1]. In recent publications [2–4], we have presented a stan-
dard generalization of Schwarzschild’s metric to obtain the
mathematically most simple and astrophysically most satis-
factory metric tensors exterior to various mass distributions
within regions of spherical geometry. Our method of gen-
erating metric tensors for gravitational fields is unique as it
introduces the dependence of the field on one and only one
dependent function f and thus the geometrical field equations
for a gravitational field exterior to any astrophysically real or
hypothetical massive spherical body has only one unknown f .

In this article, the equation satisfied by the function f in
the gravitational field produced at an external point by a time
varying spherical mass distribution situated in empty space
is considered and an analytical solution for it proposed. A
possible astrophysical example of such a distribution is when
one considers the vacuum gravitational field produced by a
spherically symmetric star in which the material in the star
experiences radial displacement or explosion.

2 Gravitational radiation and propagation field equa-
tion exterior to a time varying spherical mass distri-
bution

The covariant metric tensor exterior to a homogeneous time
varying distribution of mass within regions of spherical ge-
ometry [2] is
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g33 = � r2 sin2� ; (2.4)

g�� = 0; otherwise: (2.5)

The corresponding contravariant metric tensor for this
field, is then constructed trivially using the Quotient Theorem
of tensor analysis and used to compute the affine coefficients,
given explicitly as
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The Riemann-Christoffel or curvature tensor for the gravi-
tational field is then constructed and the Ricci tensor obtained
from it as (2.18)–(2.22).

From the Ricci tensor, we construct the curvature scalar
R as (2.23).

Now, with the Ricci tensor and the curvature scalar, Ein-
stein’s gravitational field equations for a region exterior to a
time varying spherical mass distribution is eminent. The field
equations are given generally as

R�� � 1
2
Rg�� = 0 : (2.24)

Substituting the expressions for the Ricci tensor, curva-
ture scalar and the covariant metric tensor; the R22 and R33
equations reduce identically to zero. The R00 and R11 field
equations reduce identically to the single equation (2.25), or

equivalently (2.26).
It is interesting and instructive to note that to the order of

c0, the geometrical wave equation (2.26) reduces to
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Equation (2.27) admits a wave solution with a phase ve-
locity v given as

v = i m s�1; (2.28)

where i =
p�1. Thus, such a wave exists only in imagina-

tion and is not physically or astrophysically real.
It is also worth noting that, to the order of c2, the geo-

metrical wave equation (2.26) reduces, in the limit of weak
gravitational fields, to

r2f (t; r) +
1
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@2f (t; r)
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= 0 (2.29)

and equation (2.28) is the wave equation of a wave propagat-
ing with an imaginary speed ic in vacuum.

We now, present a profound and complete analytical so-
lution to the field equation (2.26).
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3 Formulation of analytical solution to Einstein’s geo-
metrical gravitational field equation

The field equation for the gravitational field exterior to a time
varying mass distribution within regions of spherical geome-
try are found to be given equally as equation (2.25) or (2.26).

For small gravitational fields (weak fields), the geometri-
cal wave equation (1.1) reduces to (3.1) or equally (3.2).

We now seek a possible solution of equation (3.2) in the
form
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where Rn are functions of r only. Thus, by evaluating the
first and second partial derivatives of our proposed solution
for f (t; r) in equation (3.3); it can be trivially shown that
the separate terms of our expanded field equation (3.2) can
be written as (3.4), (3.5), (3.6), (3.7), and (3.8), where the
primes on the function R denote differentiation with respect
to r. Now, substituting equations (3.4) to (3.8) into our field
equation (3.2) and equating coefficients on both sides yields
the following:

Equating coefficients of exp(0) gives

R000 +
2
r
R00 = 0 : (3.9)

Thus, we can conveniently choose the best astrophysical

solution for equation (3.9) as

R0 (r) = �k
r

(3.10)

where k = GM0; by deduction from Schwarzschild’s metric
and Newton’s theory of gravitation; with G being the univer-
sal gravitational constant and M0 the total mass of the spher-
ical body. Thus at this level, we note that the field equation
yields a value for the arbitrary function f in our field equal to
that in Schwarzschild’s field. This is profound and interesting
indeed as the link between our solution, Schwarzschild’s so-
lution and Newton’s dynamical theory of gravitation becomes
quite clear and obvious.
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This is our exact differential equation for R1 and it deter-
mines R1 in terms of R0. Thus, the solution admits an exact
wave solution which reduces in the order of c0 to:
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This is our exact equation for R2 (r) in terms of R0 (r)
and R1 (r). Similarly, all the other unknown functions
Rn (r), n > 2 are determined in terms of R0 (r) by the other
recurrence differential equations. Hence we obtain our unique
astrophysically most satisfactory exterior solution of order c4.

4 Conclusion

Interestingly, we note that the terms of our unique series so-
lution (3.10), (3.11), (3.12) and (3.13) converge everywhere
in the exterior space-time. Similarly, all the solutions of the
other recurrence differential equations will also converge ev-
erywhere in the exterior space-time.

Instructively, we realize that our solution has a unique link
to the pure Newtonian gravitational scalar potential for the
gravitational field and thus puts Einstein’s geometrical gravi-
tational field on same footing with the Newtonian dynamical
theory. This method introduces the dependence of geometri-
cal gravitational field on one and only one dependent function
f , comparable to one and only one gravitational scalar poten-
tial in Newton’s dynamical theory of gravitation [4].

Hence, we have obtained a complete solution of Ein-
stein’s field equations in this gravitational field. Our met-
ric tensor, which is the fundamental parameter in this field is
thus completely defined.The door is thus open for the com-
plete study of the motion of test particles and photons in this
gravitational field introduced in the articles [5] and [6].
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