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In this work the uncopled thermoelastic model based on the Dual Phase Lag (DPL) heat
conduction equation is used to investigate the thermoelastic properties of a semi-infinite
medium induced by a homogeneously illuminating ultrashort pulsed laser heating. The
exact solution for the temperature, the displacement and the stresses distributions ob-
tained analytically using the separation of variables method (SVM) hybrid with the
source term structure. The results are tested numerically for Cu as a target and pre-
sented graphically. The obtained results indicate that at very small time duration distur-
bance by the pulsed laser the behavior of the temperature, stress and the displacement
distribution have wave like behaviour with finite speed.

1 Introduction

Heat transport and thermal stresses response of the medium
at small scales becomes recently in the spot of interest due
to application in micro-electronics [1] and biology [2, 3] and
due to its wide applications in welding, cutting, drilling sur-
face hardening, machining of brittle materials. Because of the
unique capability of very high precision control of the ultra-
short pulsed laser it is interesting to investigate the thermoe-
lastic properties of the medium due to the ultrashort pulsed
laser heating. The different models of thermoelasticity the-
ory based on the equation of heat convection and the elastic-
ity equations. The main categories of these models are the
coupled thermoelasticity theory formulated by Biot [4], and
the coupled thermoelasticity theory with one relaxation time
[5], the two-temperature theory of thermoelasticity [6], the
uncoupled classical linear theory of thermoelasticity based
on Fourier’a law [7], the uncoupled thermoelasticity theory
based on the Maxwell-Cattaneo modification of heat convec-
tion to include one time lag between heat flux and the tem-
perature gradient [8, 9].

The coupled and uncoupled models have been used to
solve some problems on the macroscale where the length and
time scales are relatively large. The technological needs of
a high precision control of the ultrashort pulsed laser appli-
cations processes at the microscales (< 10�12 s), with high
heating rates processes are not compatible with the Fourier’s
model of heat conduction because it implies to an infinite
speed for heat propagation and infinite thermal flux on the
boundaries. To overcome the deficiencies of Fourier’s law in
describing high rate heating processes the concept of wave
nature of heat convection had been introduced [10]. Tzou
[11, 12] had introduced another modification to Fourier law,
by inventing two time lags, Dual Phase Lag (DPL), between
the heat flux and the temperature gradient namely the heat
flux time lag and the temperature gradient time lag. There-

fore he had used the dual phase lag heat convection equation
with the energy conservation law to obtain the dual phase lag
model for heat convection.

The purpose of the present work is to study the induced
thermoelastic waves in a homogeneous isotropic semi-infinite
medium caused by an ultrashort pulsed laser heating expo-
nentially decay, based on the dual phase lag modification of
Fourier’s law. The problem is formulated in the dimension-
less form and then solved analytically by inventing a new sort
of the separation of variables hybridized by the source struc-
ture function. The stress, the displacement and the temper-
ature solutions are obtained and tested by a numerical study
using the parameters of Cu as a target. The results performed
and presented graphically and concluding remarks are given.

2 Problem formulation

In this investigation I considered a homogeneous isotropic
semi-infinite medium with mass density �, specific heat cE ,
thermal conductivity k, and thermal diffusivity � = k

�cE .
The medium occupy the half space region z > 0 considering
the Cartesian coordinates (x; y; z). the medium is assumed
to be traction free, initially at uniform temperature T0, and
subjected to heating process by a ultrashort pulsed laser heat

source its structure function; g(z; t) = I0(1�R)
tp�
p
� e
� z
' e�

�� t�tp
tp

��
,

at the surface z = 0 as in Fig. 1. where the constants charac-
terize this laser pulse are: I0, the laser intensity, R the reflec-
tivity of the irradiated surface of the medium, � the absorption
depth, and tp the laser pulse duration. The Cartesian coordi-
nates (x; y; z) are considered and z-axis pointing vertically
into the medium. Therefore the governing equations are: The
equation of motion in the absence of body forces

�ji;j = ��ui i; j = x; y; z ; (1)

where �ij is the stress tensor components, ui = (0; 0; w) are
the displacement vector components. The constitutive rela-
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tion
�ij =

�
�divui � 
 (T � T0)

�
�ij + 2�eij (2)

by which the stress components are

�xx = �yy = �wz � 
 (T � T0)

�zz = (�+ 2�)wz � 
 (T � T0)

�xy = 0; �xz = 0; �yz = 0 :

(3)

The volume dilation e takes the form

e = exx + eyy + ezz =
@w
@z

: (4)

Where the strain-displacement components eij , read;

eij =
1
2

(ui;j + uj;i) i; j = x; y; z ;

ezz =
@w
@z

; exx = eyy = exy = exz = eyz = 0 ;
(5)

substituting from the constitutive relation into the equation of
motion using the equation of motion we get:
� The displacement equation

(�+ 2�)wzz � 
 (T � T0)z = � �w ; (6)

� The energy conservation

�� cE _T = qz : (7)

Since the response of the medium to external heating ef-
fect comes later after the pulsed laser heating interacts with
the medium surface then there is a time lag, and by using the
dual phase lag modification of the Fourier’s law as invented
by Tzou;

q(z; t+ �q) = � k Tz(z; t+ �T ) ;

q + �q _q = � k Tz � k �T _Tz :
(8)

Then the energy transport equation of hyperbolic type can
be obtained by substituting in the energy conservation law
and considering the laser heat source

�q
�

�T +
1
�

_T = Tzz + �T _Tzz � 1
�cE

g(z; t)� �q _g(z; t) : (9)

This equation shows that the dual lagging should be con-
sidered for the processes whose characteristic time are scale
comparable to �q and �T . It describes a heat propagation
with finite speed. where �q is represents the effect of ther-
mal inertia, it is the delay in heat flux and the associated con-
duction through the medium, and �T is represents the delay
in the temperature gradient across the medium during which
conduction occurs through its microstructure. For �T = 0
one obtain the Maxwell-Cattaneo model, and Fourier law ob-
tained if �T = �q = 0.

The boundary conditions are;

�k Tz(z; t) = g(z; t) ; w = 0 ; �zz = 0; at z = 0 ;

�zz = 0; w = 0 ; T = 0 ; as z !1 :
(10)

Introducing the dimensionless transformations
z� = zp��q , w� = wp��q , ��ij = �ij

� , t� = t
�q , t�p = tp

�q ,

'� = 'p��q , � � = �T
�q , �0�� = T � T0, ��1 = �

� ,

��2 = �+2�
� , 
0 = 
�0

� , �0 = I0(1�R)
k

q
�
��q , substituting

in the governing equations and in boundary conditions of the
problem by the above dimensionless transformations and then
omitting the (�) from the resulting equations we obtain the
dimensionless set of the governing equations and boundary
conditions:
� The dimensionless temperature equation

�� + _� = �zz + � _�zz +
�

1� tp
t2p '

�
e� z

' e�
�� t�2tp

tp

��
; (11)

� The dimensionless displacement equation

wzz �B2 �w = G�z ; (12)

where B2 = ��
�qt2p(�+2�) and G = 
0�0

(�+2�) ;

� The dimensionless stresses equations

�zz = �2wz � 
0 � ;

�xx = �yy = �1wz � 
0 � ;
(13)

� Dimensionless boundary conditions

w = 0 ; �zz = 0 ; at z = 0 ;

�z(z; t) = � 1
kp��q e

�
�� t�2tp

tp

��
; at z = 0 ;

�zz = 0 ; w = 0 ; T = 0 ; as z !1 :

(14)

3 Solution of the problem

In this section I introduced the hybrid separation of variables
method (HSVM) to get the solution of equations (11) and
(12). Using this method one can construct the analytic so-
lution for some type of nonhomogeneous partial differential
equations (or system). Its idea based on using the structure
of the nonhomogeneous term to invent the form of separa-
tion of variables. Therefore the PDE (or system) will reduced
to ODE (or system) which can be solved. To illustrate the
(HSVM) we use it to solve the problem in this paper. In-
troducing the following separation of variables based on the
structure of the source function, which represents the inho-
mogeneous term,

�(z; t) = Z(z)e�
�� t�2tp

tp

��
; w(z; t) = W (z)e�

�� t�2tp
tp

��
(15)
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Fig. 1: The strcture function of the ultrashort pulsed laser of expo-
nentially decay.

Fig. 2: The dimensionless temperature distribution.

Fig. 3: The dimensionless w-displacement distribution.

Fig. 4: The dimensionless stresses �xx = �yy distributions.

Fig. 5: The dimensionless volume dilation e.

Fig. 6: The dimensionless stresses �zz distributions.
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the equations (11) and (12) will be reduced to a separable
form and can be solved directly and therefore using the di-
mensionless boundary conditions we obtain:
� The solution of the dimensionless temperature equation

�(z; t) =
h
#1e�Az + #2e�

z
'

i
e�
�� t�2tp

tp

��
; (16)

where A2 = (1�tp)
tp(tp��) , H = (tp�1)

tp' ,

#1 =
� 1
Atp'

p��p � H
A'( 1

'2�A2)

�
, #2 = H

( 1
'2�A2) ;

� The solution of the dimensionless displacement equa-
tion

w(z; t) =
h
W1e�Bz+W2e�Az+W3e�

z
'

i
e�
�� t�2tp

tp

��
; (17)

where W1 =
h

GA#1

(A2�B2
t2p

)
+ G#2

'(A2�B2
t2p

)

i
, W2 = � GA#1

(A2�B2
t2p

)
,

W3 = � G#2

'( 1
'2�B2

t2p
)
;

� The solution of the dimensionless stresses equation

�xx = �yy = �e�
�� t�2tp

tp

���

0

�
#1e�Az + #2e�

z
'

�
+

+�1

�
W1Be�Bz +W2Ae�Az +W3

1
'
e� z

'

��
;

(18)

�zz = �e�
�� t�2tp

tp

���

0(#1e�Az + #2e�

z
' ) +

+�2

�
W1Be�Bz +W2Ae�Az +W3

1
'
e� z

'

��
;

(19)

where � = 7:76�1010 kg/m sec2,
� = 8954 Kg/m3, � = 3:86�1010 kg/m sec2,
�t = 1:78�10�5, cE = 383:1 J/kgK, tp = 0:1 sec,
k = 386 W/mK, �+ 2� = 1:548�1011 kg/m sec2,
�q = 0:7�10�12 sec, �� = 89�10�12 sec,
' = 0:2 m, 
 = (3�+ 2�)�t = 5:518�106 kg/m sec2,
� = 2�1013, � = 1:7�10�6, A = ��q = 14,
I1 = I0(1�R) = 1�1013 W/m2.

4 Discussion and conclusion

In this paper the thermoelastic waves in a homogeneous iso-
tropic semi-infinite medium caused by an ultrashort pulsed
laser heating having exponentially decay, based on the dual
phase lag modification of Fourier’s law have been investi-
gated. The problem formulated in the dimensionless form and
then solved analytically for the temperature, the stress, and
the displacement by inventing a new sort of the hybridized
separation of variables by the source structure function. The
obtained analytical solutions are tested numerically using for
Cu as a target medium.

The results are presented graphically. The obtained re-
sults indicated that due to the very high power of the laser

pulse at the surface in a very short duration the temperature
distribution possessing a wave nature with finite speed as in
Fig. 2. The medium responses to the laser heating by increas-
ing change in the displacement distribution with increasing
time duration as in Fig. 3. The thermoelastic characteristics
(stresses components �xx =�yy and volume dilation e = @w

@z )
of the medium possess wave nature as in Fig. 4 and Fig. 5.
Fig. 6. depicts that the stress component �zz have wave na-
ture with wave front has its maximum at the average of the
laser pulse duration. By these results it is expected that the
dual phase lag heat conduction model will serve to be more
realistic to handle practically the laser problems with very
high heat flux and/or ultrashort time heating duration.
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