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In this article, we formulate solutions to Einstein’s geometrical field equations derived
using our new approach. Our field equations exterior and interior to the mass distribu-
tion have only one unknown function determined by the mass or pressure distribution.
Our obtained solutions yield the unknown function as generalizations of Newton’s grav-
itational scalar potential. Thus, our solution puts Einstein’s geometrical theory of grav-
ity on same footing with Newton’s dynamical theory; with the dependence of the field
on one and only one unknown function comparable to Newton’s gravitational scalar po-
tential. Our results in this article are of much significance as the Sun and planets in the
solar system are known to be more precisely oblate spheroidal in geometry. The oblate
spheroidal geometries of these bodies have effects on their gravitational fields and the
motions of test particles and photons in these fields.

1 Introduction

After the publication of A. Einstein’s geometrical theory of
gravitation in 1915/1916, the search for exact solutions to its
inherent geometrical field equations for various mass distri-
butions began [1]. Four well known approaches have so far
been proposed.

The first approach is to seek a mapping under which the
metric tensor assumed a simple form, such as the vanishing of
the off-diagonal components.With sufficiently clever assump-
tions of this sort, it is often possible to reduce the Einstein
field equations to a much simpler system of equations, even a
single partial differential equation (as in the case of stationary
axisymmetric vacuum solutions, which are characterised by
the Ernst equation) or a system of ordinary differential equa-
tions (this led to the first exact analytical solution — the fa-
mous Schwarzschild’s solution [2]). A special generalization
of the Schwarzschild’s metric is the Kerr metric. This metric
describes the geometry of space time around a rotating mas-
sive body.

The second method assumes that the metric tensor has
symmetries-assumed forms of the Killing vectors. This led to
the solution found by Weyl and Levi-Civita [3–6]. The third
approach required that the metric tensor leads to a particular
type of the classifications of Weyl and Riemann — Christof-
fel tensors. These are often stated interms of Petrov classi-
fication of the possible symmetries of the Weyl tensor or the
Segre classification of the possible symmetries of the Ricci
tensor. This leds to plane fronted wave solutions [3–6]. It is
worth remarking that even after the symmetry reductions in
the three methods above, the reduced system of equations is
often difficult to solve. The fourth approach is to seek Taylor
series expansion of some initial value hyper surface, subject
to consistent initial value data. This method has not proved

successful in generating solutions [3–6].
Recently [7–12], we introduced our own method and ap-

proach to formulation of exact analytical solutions as an ex-
tension of Schwarzschild’s method. In this article, we show
how exact analytical solutions of order c�2 (where c is the
speed of light in vacuum) can be constructed in gravitational
fields interior and exterior to static homogeneous oblate
spheroids placed in empty space. For the sake of mathemat-
ical convenience we choose to use the 3rd (R33) field equa-
tion [7].

2 Exterior field equation

The covariant metric tensor in the gravitational field of a static
homogeneous oblate spheroid in oblate spheroidal coordina-
tes (�; �; �) has been obtained [7, 12] as
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g33 = �a2(1 + �2)(1� �2); (2.5)

g�� = 0; otherwise; (2.6)

Chifu E. N. Astrophysically Satisfactory Solutions to Einstein’s R-33 Gravitational Field Equations 73



Volume 4 PROGRESS IN PHYSICS October, 2009
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and the contravariant metric tensor is as shown in formulas
(2.7)–(2.12), where f (�; �) is an unknown function deter-
mined by the mass distribution. From this covariant met-
ric tensor, we can then construct our field equations for the
gravitational field after formulating the Coefficients of affine
connection, Riemann Christoffel tensor, Ricci tensor and the
Einstein tensor [7–12]. After the above steps, it can be shown
that the exterior R33 field equation in this gravitational field
is given as;

R33 � 1
2
Rg33 = 0 : (2.13)

or more explicitly interms of the affine connections, Ricci ten-
sor and covariant metric tensor as;
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with the symbols and numbers having their usual meaning
and

R = g00R00 + g11R11 + 2g12R12 + g22R22 + g33R33 :
(2.15)

Now, multiplying equation (2.13) by 2g33 and using the
fact that g33g33 = 1 yields

2g33R33 �R = 0 : (2.16)

Writing the expression for the curvature scalar,R as in
equation (2.15) gives;

�g00R00 � g11R11 � 2g12R12�
� g22R22 + g33R33 = 0 :

(2.17)

Writing the various terms of the field equation (2.17) ex-
plicitly in terms of the metric tensor gives our field equation
explicitly as (2.18).

Now, we realize that our covariant metric tensor (2.1)–
(2.6) can be written equally as

g�� (�; �) = h�� (�; �) + f�� (�; �) ; (2.19)

where h�� are the well known pure empty space components
and f�� are the contributions due to the oblate spheroidal
mass distribution. Consequently, as the mass distribution de-
cays out; f�� ! 0 and hence g�� ! h�� . Therefore, the
metric tensor reduces to the pure empty space metric tensor
as the distribution of mass decays out. Also,

g�� (�; �) = h�� (�; �) + f�� (�; �) ; (2.20)

where h�� are the well known pure empty space components
and f�� are the contributions due to the oblate spheroidal
mass distribution. Thus it can be shown that for this field,
the non zero metric components can be written as;
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f11 = � f11

(h11)2 + 0 (c�4) ; (2.34)

f12 � f21 = � f12

h11h22
+ 0 (c�4) ; (2.35)

f22 = � f22
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To begin the explicit formulation of the R33 field equa-
tion we note, first of all, that all the terms of order c0 cancel
out identically since the empty space time metric tensor h��
independently satisfies the homogeneous R33 field equation.
Therefore the lowest order of terms we expect in the exterior
R33 field equation is c�2. Hence in order to formulate the
exterior R33 field equation of order c�2, let us decompose
our covariant metric tensor g�� into pure empty space part
h�� (of order c0 only) and the nonempty space part f�� (of
order c�2 or higher). Similarly, let our contravariant metric
tensor g�� be decomposed into pure empty space part h��
(of order c0 only) and the nonempty space part f�� (of order
c�2 or higher). Substituting explicit expressions for equations
(2.19) and (2.20) into equation (2.18) and neglecting all terms
of order c0, the exterior R33 field equation can be written as
(2.37), where the coefficients are given as (2.38)–(2.58).
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S1 (�; �) f22;11 + S2 (�; �) f00;11 + S3 (�; �) f12;12 + S4 (�; �) f00;12 + S5 (�; �) f11;22 +
+S6 (�; �) f00;22 + S7 (�; �) f00;1 + S8 (�; �) f12;1 + S9 (�; �) f22;1 + S10 (�; �) f11;1 +
+S11 (�; �) f12;1 +S12 (�; �) f22;1 +S13 (�; �) f00;2 + S14 (�; �) f11;2 + S15 (�; �) f12;2 +
+S16 (�; �) f22;2 + S17 (�; �) f12;2 +S18 (�; �) f22;2 +S19 (�; �) f11 + S20 (�; �) f12 +
+S21 (�; �) f22 = 0

(2.37)
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K1 (�; �) f�� +K2 (�; �) f�� +K3 (�; �) f� � +K4 (�; �) f� +K5 (�; �) f� +K6 (�; �) f = 0 (2.59)
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Substituting the explicit expressions for the nonempty
space parts f�� and f�� into equation (2.37), simplifying and
grouping like terms yields (2.59), where the terms consisting
it are (2.60)–(2.65).

Equation (2.59) is thus our exact explicit R33 exterior
field equation to the order c�2. We can now conveniently
formulate astrophysical solutions for the equation in the next
section; which are convergent in the exterior space time of a
homogeneous massive oblate spheroid placed in empty space.

3 Formulation of R-33 exterior solution

In the exterior oblate spheroidal space time [7]:

� > �0 and � 1 6 � 6 1; �0 = constant (3.1)

Let us now seek a solution for the R33 field equation (2.59)
in the form of the power series

f (�; �) =
1X
n=0

P+
n (�) �n: (3.2)

where P+
n is a function to be determined for each value of n.

Substituting the proposed function into the field equation and
taking into consideration the fact that f�ng1n=0 is a linearly
independent set, we can thus equate the coefficients of �n on
both sides of the obtained equation. From the coefficients of
�0, we obtain the equation
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(3.3)

or more explicitly

0 = a3�3 �1 + �2 � a2�4�P+
2 (�) +

+ 2a3�3 �1 + �2�2 �P+
1 (�)

�0 + a3�2 �1 + �2�P+
1 (�) +

+ a3�3 �1 + �2�2 �P+
0 (�)

�00 + �1 + �2��
� ��1� 2a2�2 � �2 � a2�3 + 4a2�5� �P+

0 (�)
�0+

+
�
2a3�

�
4� 2�2 � a4�4 � a4�6

��
P+

0 (�) :

(3.4)
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Equation (3.4) is the first recurrence differential equation
for the unknown functions. All the other recurrence differen-
tial equations can thus follow, yielding infinitely many recur-
rence differential equations that can be used to determine all
the unknown functions.

The following profound points can thus be made. Firstly,
equation (3.4) determines P+

2 in terms of P+
0 and P+

1 , sim-
ilarly the other recurrence differential equations will deter-
mine the other unknown functions P+

3 ; : : : in terms of P+
0 and

P+
1 . Secondly, we note that we have the freedom to choose

our arbitrary functions to satisfy the physical requirements or
needs of any particular distribution or area of application.

Let us now recall that for any gravitational field [7, 13],

g00 � 1 +
2
c2

� (3.5)

where � is Newton’s gravitational scalar potential for the field
under consideration. Thus we can then deduce that the un-
known function in our field equation can be given approxi-
mately as

f (�; �) � �+ (�; �) (3.6)

where �+ (�; �) is Newton’s gravitational scalar potential ex-
terior to a homogeneous oblate spheroidal mass. Recently
[14], it has been shown that

�+ (�; �) =B0Q0 (�i�)P0 (�)+B2Q2 (�i�)P2 (�) (3.7)

where Q0 and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively;
B0 and B2 are constants.

Let us now seek our exact analytical exterior solution
(3.4) to be as close as possible to the approximate exterior
solution (3.7). Now since the approximate solution possesses
no term in the first power of �, let us choose

P+
0 (�) = B0Q0 (�i�)P0 +B2Q2 (�i�) (3.8)

and
P+

1 (�) � 0 : (3.9)

Hence, we can write P+
2 in terms of P+

0 as

P+
2 (�) = �

�
1 + �2

�2
(1 + �2 � a2�4)

�
P+

0 (�)
�00 �

� 2
�
1 + �2

� �
3a2�2 + 4a2�5 � �2 � 1

�
a2�3

�
P+

0 (�)
�0�

� 2
�

1� 2a3�2 � a7�4 � a7�6 + a3

a3�2 (1 + �2 � a2�4)

�
P+

0 (�) :

(3.10)

We now remark that the first three terms of our series so-
lution converge everywhere in the exterior space time. We
also remark that our solution of order c0 may be written as

f (�; �) = �+ (�; �) + �+
0 (�; �) (3.11)

where �+ (�; �) is the corresponding Newtonian gravitational
scalar potential given by (3.7) and �+

0 (�; �) is the pure Ein-
steinian or general relativistic or post Newtonian correction
of order c0.

Hence, we deduce that our exterior analytical solution is
of the general form

f (�; �) = �+ (�; �) + �+
0 (�; �) +

1X
n=1

�+
2n (�; �) : (3.12)

4 Formulation of interior R-33 field equation and solu-
tion

For the interior space time, Einstein’s field equations are well
known to be given as;

R�� � 1
2
Rg�� = �8�G

c4
T�� (4.1)

where T�� is the energy momentum tensor.
Now, let us assume that the homogeneous mass distribu-

tion is a “perfect fluid”. Thus, we can define the energy mo-
mentum tensor as

T�� = (�0 + P0)u�u� � P0g�� (4.2)

where �0 is the proper mass density and P0 is the proper pres-
sure and u� is the velocity four vector. Hence, the five non
trivial interior field equations can be written as;

R00 � 1
2
Rg00 = �8�G

c4
[(�0 + P0)u0u0 � P0g00] ; (4.3)

R11 � 1
2
Rg11 =

8�G
c4

P0g11 ; (4.4)

R12 � 1
2
Rg12 =

8�G
c4

P0g12 ; (4.5)

R22 � 1
2
Rg22 =

8�G
c4

P0g22 ; (4.6)

R33 � 1
2
Rg33 =

8�G
c4

P0g33 : (4.7)

Now, we formulate the solution of (4.7). For the sake of
mathematical convenience, we assume in this article that the
pressure is negligible compared to the mass density and hence

P0 � 0 : (4.8)

Multiplying equation (4.7) by 2g33 and using the fact that
g33g33 = 1 we obtain precisely as in the section 2;

�g00R00 � g11R11 � g22R22 + g33R33 � 2g12R12 = 0 : (4.9)

Similarly, we obtain the interior equation explicitly as

K1 (�; �) f�� +K2 (�; �) f�� +K3 (�; �) f� � +

+K4 (�; �) f� +K5 (�; �) f� +K6 (�; �) f = 0 :
(4.10)
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We now remark that, for the interior field we are required
to formulate interior solutions of (4.10) convergent in
the range

0 6 � 6 �0 ; �1 6 � 6 1: (4.11)

Let us thus seek a series solution of the form;

f� (�; �) =
1X
n=0

Z�n (�) �n: (4.12)

where Z�n are unknown functions to be determined. Now,
using the fact that f�ng1n=0 is a linearly independent set, we
may equate coefficients on both sides and hence obtain the
equations satisfied by Z�n . We proceed similarly as in the
case of the exterior solution to obtain recurrence differential
equations that determine the explicit expression for our exact
analytical solution. Equating the coefficients of �0, we obtain
the first recurrence differential equation as

K1 (�; �)
�
Z�0 (�)

�00 +K2 (�; �)
�
Z�1 (�)

�0 +

+K3 (�; �)Z�2 (�) +K4 (�; �)
�
Z�0 (�)

�0+
+K5 (�; �)Z�1 (�) +K6 (�; �)Z�0 (�) = 0 :

(4.13)

In a similar manner, the other recurrence differential equa-
tions follow.

We can now proceed as in the previous section to choose
the most astrophysically satisfactory solution to be as close as
possible to the approximate solution. The gravitational scalar
potential interior to a homogeneous oblate spheroid is well
known [14] to be given as

�� (�; �) =
�
A0 � 1

2
A2P2(�)

�
� 3=2A2P2(�) �2; (4.14)

where P2 is Legendre’s polynomial of order 2 and A0, A2,
are constants.

Since (4.14) converges for all values in the interval (4.11),
it is very satisfactory for us to choose;

Z�0 (�) = A0 � 1
2
A2P2(�) (4.15)

and
Z�1 (�) � 0 : (4.16)

Thus the first recurrence differential equation determines
Z�2 in terms of Z�0 . Similarly, all the other recurrence differ-
ential equations will determine all the other functions in terms
of Z�0 . Hence we obtain our unique astrophysically most sat-
isfactory interior solution. It is obvious that this unique solu-
tion will converge, precisely as the first two terms. Moreover,
it is obvious that our unique solution reduces to the corre-
sponding pure Newtonian gravitational scalar potential in the
limit of the first two terms. This solution may be written as

f� (�; �) = �� (�; �) + ��0 (�; �) (4.17)

where �� (�; �) is the corresponding Newtonian gravitational
scalar potential given by (4.14) and ��0 (�; �) is the pure in-
structively Einstenian (or general relativistic or post Newto-
nian correction) of order c0.

Proceeding exactly as above we may derive all the cor-
responding solutions of all the other non-trivial interior Ein-
stein’s field equations for the sake of mathematical complete-
ness, comparison with those of the R33 equation and theoret-
ical applications where and when necessary in Physics. It is
clearly obvious how to extend the derivation of the interior
Einstein field equations above to include any given pressure
functionP0 (�; �), wherever and whenever necessary and use-
ful in physical theory.

5 Conclusions

Interestingly, the single dependent function f in our math-
ematically most simple and astrophysically most satisfactory
solution turns out as the corresponding well known pure
Newtonian exterior/interior gravitational scalar potential aug-
mented by hitherto unknown pure Einsteinian (or general rel-
ativistic or post-Newtonian) gravitational scalar potential
terms of orders c0, c�2, c�4, . . . Hence, this article has re-
vealed a hitherto unknown sense in which the exterior/interior
Einstein’s geometrical gravitational field equations are ob-
tained as a generalization or completion of Newton’s dynam-
ical gravitational field equations.

With the formulation of our mathematically most simple
and astrophysically most satisfactory solutions in this article,
the way is opened up for the formulation and solution of the
general relativistic equations of motion for all test particles in
the gravitational fields of all static homogeneous distributions
of mass within oblate spheroidal regions in the universe. And
precisely because these equations contain the pure Newtonian
as well as post-Newtonian gravitational scalar potentials all
their predictions shall be most naturally comparable to the
corresponding predictions from the pure Newtonian theory.
This is most satisfactory indeed.

It is now obvious how our work in this article may by
emulated to (i) derive a mathematically most simple structure
for all the metric tensors in the space times exterior or inte-
rior to any distribution of mass within any region having any
of the 14 regular geometries in nature, (ii) formulate all the
nontrivial Einstein geometrical gravitational field equations
and derive all their general solutions and (iii) derive astro-
physically most satisfactory unique solutions for application
to the motions of all test particles and comparison with cor-
responding pure Newtonian results and applications. There-
fore our goal in this article has been completely achieved:
to use the case of a spheroidal distribution of mass to show
how the much vaunted Einstein’s geometrical gravitational
field equations may be solved exactly and analytically for
any given distribution of mass within any region having any
geometry.
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Finally, we conclude that at very long last — 93 years
after the publication of the laws of General Relativity by Ein-
stein in 1915 — we have found a method and process for
(1) deriving a unique approximate astrophysically most sat-
isfactory solutions for the space times exterior and interior to
every distribution of mass within any region having any of the
14 regular geometries in nature, in terms of the correspond-
ing pure Newton’s gravitational scalar potential, without even
formulating the field equation; and (2) systematically formu-
lating and solving the geometrical gravitational field equa-
tions in the space times of all distributions of mass in nature.
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