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A theory of gravitation satisfying all experimental results was previously proposed in
this journal. The dynamics was determined by a proposed Lagrangian. In this paper it
is shown how this Lagrangian can be derived heuristically. A Newtonian approach is
used, as well as other methods.

1 Introduction

A theory proposed in previous articles in this journal [1–4]
relied on two postulates, one of which is that the dynamics of
a system is determined by a Lagrangian,

L = −m0

(
c2 + v2

)
exp

R
r
, (1)

where m0 is the gravitational rest mass of a test body moving
at velocity v in the vicinity of a massive, central body of mass
M, γ = 1/

√
1 − v2/c2 and R = 2GM/c2 is the Schwarzschild

radius of the central body.
This Lagrangian leads to equations of motion that satisfy

all experimental observation of gravitational effects. It also
leads to expressions for electromagnetic and nuclear interac-
tions. In this regard it gives the fine spectrum of the hydrogen
atom and the Yukawa potential for the nuclear force.

No explanation was given of how this Lagrangian had
been determined, but only that its validity is confirmed by the
consistency of its resultant equations of motion and agree-
ment with experiment.

It is informative to show how such a Lagrangian can be
derived. The procedure leads to an understanding of the cre-
ation and development of physical theories.

When a Lagrangian embodies the fundamentals of a phys-
ical model it cannot be derived from first principles. What
is needed is an inspired guess to start with. The equations
of motion derived from the initial Lagrangian are compared
with observation. If they do not fit satisfactorily with the first
try, then one adjusts the Lagrangian to conform closer to ex-
perimental results. This modelling cycle is repeated until a
satisfactory agreement is found with observation.

In the case of the above Lagrangian various approaches
are possible. We consider some of them.

2 Newton’s approach

We follow a Gedanken speculation of how Isaac Newton
would have derived a law of gravitation if he had been aware
of the modern classical tests for a theory of gravitation.

The development of theories of gravitation at the begin-
ning of the previous century is well documented [5, 6]. The
essential test for a theory of gravitation at that time was

whether it explained the anomalous perihelion precession of
the orbit of Mercury, first calculated by Leverrier in 1859.
This was satisfactorily explained by Einstein’s theory of gen-
eral relativity. Further predictions of this theory, i.e. the bend-
ing of light by a massive body and of gravitational redshift,
have subsequently become part of the three benchmark tests
for a model of gravitation.

2.1 Modern Newton

It is not generally known that Newton first derived his inverse
square law of gravitation by first considering circular orbits
[7, 8]. He applied Huygens’s law for the acceleration in a
circular orbit,

a =
v2

r
, (2)

and Kepler’s third law to arrive at the inverse-square rela-
tion. He then proceeded to show in his Philosophiae Natu-
ralis Principia Mathematica (there is some doubt about this
[9]) that elliptical motion follows in general from this rela-
tion.

We follow a similar procedure by assuming a scenario
along which Newton could have reasoned today to arrive at
a refinement of his law of gravitation.

He would have been aware of the three classical tests for
a theory of gravitation and that particles traveling near the
speed of light obey relativistic mechanics. Following an iter-
ative procedure he would have started with the simple model
of circular orbits, derived the appropriate law of gravity, but
modified to accommodate relativistic effects and then gener-
alised it to include the other conical sections. It would finally
be compared with other experimental results.

2.2 Finding a Lagrangian

For motion in a circular orbit under the gravitational attraction
of a mass M one must have:

v2

r
=

GM
r2 . (3)

Because of relativistic considerations, the ratio v2/c2 must
be compared relative to unity, i.e.

1 − v
2

c2 = 1 − GM
r c2 . (4)
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Note that (4) is not an approximation of (2) for v � c.
If we surmise that the inverse square law is only valid for
r � R, one could incorporate higher order gravitational ef-
fects by generalising the right-hand side of (4) to a polyno-
mial. Furthermore, to allow other motion besides circles, we
multiply the right-hand side by an arbitrary constant K:

1 − v
2

c2 =

(
1 +

a′R
r

+
b′R2

r2 + . . .

)
K ,

= KP′(r) ,
(5)

or (
1 − v

2

c2

)
P(r) = K , (6)

where

P(r) = 1 +
aR
r

+
bR2

r2 . . . , (7)

is the inverse of P′(r).
In order to compare (6) with experiment, we have to con-

vert it to some standard form in physics. To do this we first
rewrite (6) as:

(1 − K)
c2

2
=
v2

2
− GMa

r
− av2R

2r
+ . . . (8)

If we multiply this equation by a constant, m0, with the
dimension of mass, we obtain a conservation equation with
the dimensions of energy:

(1 − K)
m0 c2

2
=

m0 v
2

2
− GMm0a

r
− m0 av2R

2r
+ . . . (9)

For r � R, this equation must approach the Newtonian
limit:

m0 v
2

2
− m0MGa

r
= EN , (10)

where EN is the total Newtonian energy. Comparison of (10)
with the Newtonian expression gives a = 1.

To simplify the notation, we define a constant E with di-
mensions of energy, such that

K =
E

m0c2 . (11)

From (6),

E = m0c2
(
1 − v

2

c2

)
P(r) . (12)

If we consider (12) as the total energy of the system, we
can find a corresponding Lagrangian by separating the poten-
tial and kinetic energies:

T = −m0 v
2P(r) ,

V = m0 c2P (r) .

The corresponding Lagrangian is therefore:

L = T − V = −m0

(
c2 + v2

)
P(r) . (13)

Applying the Euler-Lagrange equations to this Lagran-
gian one can find the equations of motion of the system. The
conservation of energy (12) follows again, while for the con-
servation of angular momentum we find

P (r)r2 θ̇ = constant = h. (14)

The equations of motion for the system can then be de-
rived from (12) and (14) as a generalised Kepler problem.
From these equations one finds a differential equation of mo-
tion of the form

dθ
du

= Au2 + Bu + C , (15)

where

u =
1
r
,

A = bR2 4 − E
2h

− 1 , (16)

B =
R (2 − E)

h2 , (17)

C =
1 − E

h2 . (18)

The convention m0 = c = 1 was used, and terms higher
than R2/r2 were ignored.

2.3 Perihelion precession

In the case of an ellipse, the presence of the coefficient A gives
rise to a precession of the perihelion. For one revolution this
can be calculated as:

6bπcR
ā (1 − e2)

, (19)

where ā is the semi-major axis and e is the eccentricity of
the ellipse. Comparison with the observed value for Mercury
gives b = 1/2. With this result the polynomial of (7) be-
comes:

P (r) = 1 +
R
r

+
R2

2r2 + . . . (20)

Equation (20) could be regarded as simply a fit to experi-
mental data. The theoretical physicist, however, will look for
a pattern or a generalisation of some underlying physical law.
The form of the equation leads one to propose that the above
terms are the first three terms in the Taylor expansion of

P(r) = exp
R
r
. (21)

Confirmation of this form, which is aesthetically more ac-
ceptable, must come from other experimental results, such as
the bending of light by a massive object. This is shown in the
first article referred to above [1].

The Lagrangian of (13) can now be rewritten in the form
of (1):

L = −m0

(
c2 + v2

)
exp

R
r
, (22)
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or in terms of the potential Φ as

L = −m0

(
c2 + v2

)
exp

2Φ

c2 . (23)

The conservation of energy equation (12) can be writ-
ten as

E = m0 c2 eR/r

γ2 . (24)

We define a variable gravitational mass as

m =
m0

γ2 , (25)

so that (24) can also be written as

E = mc2 eR/r. (26)

3 A gravitational redshift approach

We continue with the hypothetical Newton, but starting from
another experimental observation. In the presence of a body
of mass M a photon undergoes a frequency shift relative to its
frequency ν0 in the absence of the body:

ν = ν0

(
1 − R

2r

)
,

where ν0 is an invariant.
In line with our inspired guess approach, we surmise that

the right-hand side of this equation is a first order approxima-
tion to

ν = ν0 e−R/2r, (27)

or
ν0 = νeR/2r. (28)

Substituting time for the frequency, ν = 1/t and rearrang-
ing:

dt = B eR/2rdτ , (29)

where dτ is an invariant time interval, or proper time, and B is
a proportionality constant. Substituting the special relativity
relation dt = γdτ in (29),

1
B

=
eR/2r

γ
. (30)

This is a conservation equation involving the variables r, v
and M. In order to relate this equation to the classical conser-
vation of energy equation and its Newtonian limit, the equa-
tion must be squared and multiplied by m0 c2:

m0 c2

B2 = m0 c2 eR/r

γ2 . (31)

This is the same equation as (24) for E = m0c2/B2.
From (11) we note that B2 = 1/K. Separating the kinetic

and potential energy terms we again find the Lagrangian
of (1).

4 An Einstein approach

It is understandable that the large corpus of publications on
general relativity (GR) over the past few decades tend to un-
derrate the heuristic approach, or inspired guesses, which are
used to derive the field equations of GR. The classic texts do
not. On page 152 of Weinberg’s Gravitation and Cosmol-
ogy [10] the author emphasises the guesswork that leads to
the field equations. Eddington [11, p.82] mentions that “This
preliminary argument need not be rigorous; the final test is
whether the formulae suggested by it satisfy the equations to
be solved”. This is a classical heuristic argument.

One can therefore wonder why the heuristic derivation
was not continued to generalise the metric of GR,

ds2 =

(
1 − R

r

)
dt2 −

− 1

1 − R
r

dr2 − r2dθ2 − r2 sin2θ dφ2, (32)

to an exponential form:

ds2 = e−R/rdt2 − eR/r(dr2 + r2dθ2 + r2 sin2θ dφ2) . (33)

The equations of motion derived from this metric are the
same as those derived from the Lagrangian of (1), but are con-
ceptually and mathematically simpler [1]. From the resulting
conservation equations one can, similarly to the procedures
above, derive our Lagrangian.

5 Nordström’s first theory

Although not an example of a heuristic derivation, Gunnar
Nordström’s first theory [12, 13] is an intriguing example of
how theories of gravitation could have taken a different direc-
tion in 1912.

Nordström’s theory, a noncovariant one, is based on a La-
grangian,

L = exp
R
2r
. (34)

In the case of a static, spherically symmetrical field the
Lagrangian gives a conservation equation,

γ exp
(
− R

2r

)
= AN . (35)

Comparison with (30) shows that AN = B. Nordström’s
first theory therefore gives the same conservation of energy
equation as our theory.

The absence of the
(
c2 + v2

)
term in Nordström’s Lagran-

gian accounts for its difference from our theory and Nord-
ström’s wrong predictions. This shows up in his conservation
of angular momentum,

r2 dθ
dt

= h , (36)

where h = constant.
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Nordström’s theory [14] also gives a variation of mass,

m = m0 e−R/2r. (37)

From (11) and (26) our theory gives

m = Km0 e−R/r. (38)

The close correlation between our theory and that of
Nordström raises the possibility of Nordström, or anyone else
reading his paper of 1912, deriving the Lagrangian of (1).
If this had happened, and the resultant agreement with Mer-
cury’s perihelion precession were found, then the study of
gravitation could have followed a different direction.
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