
January, 2010 PROGRESS IN PHYSICS Volume 1

LETTERS TO PROGRESS IN PHYSICS

Coordinate Transformations and Metric Extension: a Rebuttal
to the Relativistic Claims of Stephen J. Crothers

Jason J. Sharples
School of Physical, Environmental and Mathematical Sciences, University of New South Wales

at the Australian Defence Force Academy, Canberra 2600, Australia
E-mail: j.sharples@adfa.edu.au

The concept of coordinate transformation is fundamental to the theory of differentiable
manifolds, which in turn plays a central role in many modern physical theories. The
notion of metric extension is also important in these respects. In this short note we
provide some simple examples illustrating these concepts, with the intent of alleviating
the confusion that often arises in their use. While the examples themselves can be
considered unrelated to the theory of general relativity, they have clear implications for
the results cited in a number of recent publications dealing with the subject. These
implications are discussed.

1 Introduction
Differentiable manifolds play a central role in modern phys-
ical theories. Roughly speaking, a differentiable manifold
(hereafter manifold) is a topological space whose local equiv-
alence to Euclidean space permits a global calculus. In more
precise mathematical terms, a manifold is a topological space
M with a collection of coordinate systems that cover all of M.
Thus the concept of a coordinate system is fundamental to the
notion of manifold.

A coordinate system is defined as a mapping φ (with cer-
tain properties) from an open set U of a topological space
onto an open set φ(U) of Euclidean space. The open set U
is called the coordinate neighborhood of φ and the functions
x1, . . . , xn on U such that φ =

(
x1, . . . , xn

)
, are the coordinate

functions, or more simply the coordinates. A manifold can
have an infinite number of equally valid coordinates defined
on it.

As an example consider the topological space S 2 (the unit
sphere). Further consider the northern and southern hemi-
spheres of the sphere, which are both open subsets of S 2. On
each of the hemispheres we can define stereographic coor-
dinates by projecting the respective hemispheres onto two-
dimensional Euclidean space. Each of the projections defines
a coordinate system, which when taken together cover all of
S 2. Thus S 2 is a manifold.

The notion of a metric tensor g on a manifold M is funda-
mental to the theory of differential geometry (indeed, the met-
ric tensor is alternatively called the first fundamental form).
Explicitly, g is a type-(0,2) tensor that defines a scalar product
g(p) on the tangent space Tp(M), for each point p ∈ M. On
a domain U, corresponding to a particular coordinate system
{x1, . . . , xn}, the components of the metric tensor are gi j =

g(∂i, ∂ j). It is important to note that the metric components
gi j are functions, not tensors. The metric tensor itself is given
by g = gi j dxi ⊗ dx j, where summation over the indices is
implied. It must be stressed that a metric, by virtue of the fact

that it is a tensor, is independent of the coordinate system
which is used to express the component functions gi j.

The metric tensor can be represented by its line-element
ds2, which gives the associated quadratic form of g(p). We
stress that a line-element is not a tensor. A line-element can
be expressed in terms of a coordinate system as

ds2 = gi j dxi dx j.

Representing the metric in a particular coordinate system
by the associated quadratic form is equivalent to expressing
it as a square matrix with respect to the coordinate basis. For
example, on the unit sphere the metric σ is often written in
terms of the line-element with respect to spherical coordi-
nates {θ, ϕ} as

ds2 = dθ2 + sin2 θ dϕ2,

or equivalently as the matrix

[σ]{θ,ϕ} =

(
1 0
0 sin2 θ

)
.

It is important when practicing differential geometry to
distinguish between coordinate dependent quantities and co-
ordinate invariant quantities. We have already seen some ex-
amples of these: the metric tensor is coordinate invariant (as
is any tensor), while the line-element is coordinate dependent.
Another example of a coordinate dependent quantity are the
Christoffel symbols

Γi
jk = gim

(
∂kgm j + ∂ jgmk − ∂mg jk

)

while the scalar curvature (Kretschmann scalar), which is de-
rived from them as

f = gab
(
∂cΓ

c
ab − ∂bΓc

ac + Γd
abΓc

cd − Γd
acΓ

c
bd

)
,

is coordinate invariant. Another example of a coordinate in-
variant quantity is the metric length of a path in a manifold.
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Suppose now that we have two different sets of coordi-
nates defined on an open set U ⊂ M. That is to say that we
have two mappings φ1 and φ2 that act from U onto two (pos-
sibly different) open sets V1 and V2 in Euclidean space. It
is apparent that we can change from one coordinate system
to the other with the maps φ2 ◦ φ−1

1 or φ1 ◦ φ−1
2 . Such maps

define a change of coordinates or coordinate transformation.
Alternatively if we have a mapping ζ from V1 into V2 and a
coordinate system (mapping) φ from U onto V1, then the map-
ping ζ ◦ φ also defines a coordinate system. In this context ζ
is the coordinate transformation. Coordinate invariant quan-
tities, such as the metric, the scalar curvature and lengths, do
not change under the action of a coordinate transformation

In what follows we illustrate these concepts by means of
some simple examples and discuss some of their implications.

2 Some simple examples

We begin by illustrating the concept of coordinate transfor-
mation with a simple example in ordinary Euclidean 3-space
(E3). Suppose that (r, θ, ϕ) are the usual spherical coordinates
on E3 and consider the spherically symmetric line-element

ds2 = r2 dr2 + r2 dΩ2, (1)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the usual shorthand for the
line-element on the unit sphere S 2.

Defining a new radial coodinate ρ by 2ρ = r2, the line-
element can be written in terms of the coordinates (ρ, θ, ϕ) as

ds2 = dρ2 + 2ρ dΩ2. (2)

Note that if ρ is held constant then the line-element re-
duces to the standard line-element for a sphere of radius√

2ρ = r.
Note that the coordinate transformation has changed noth-

ing. The metrics corresponding to the line-elements given by
(1) and (2) are exactly the same tensor, they have just been ex-
pressed in two different sets of coordinates. To illustrate this
consider calculating metric length along a radial line. Specif-
ically, consider the path defined in terms of the (r, θ, φ) coor-
dinates by

γa = {(r, θ, ϕ) : r ∈ (0, a), θ = π/4, ϕ = 0}.
Equivalently, we can define the path in terms of the

(ρ, θ, ϕ) coordinates as

γa = {(ρ, θ, ϕ) : ρ ∈ (0, a2/2), θ = π/4, ϕ = 0}.
Thus calculating the metric length of the path γa with re-

spect to the line-element (1) we find

L(γa) =

∫ r=a

r=0
r dr =

a2

2
,

while if we calculate it with respect to the line-element (2) we
find that

L(γa) =

∫ ρ=a2/2

ρ=0
dρ =

a2

2
.

This confirms that the metric length does not depend on
the particular coordinate expression (line-element) represent-
ing the metric.

This example also illustrates another interesting property
of the metric corresponding to (1) or (2). If we set ρ = b,
where b is a constant, the line-element (2) reduces to the 2D
line-element:

ds2 = 2b dΩ2.

This is the line-element of a 2-sphere with a radius of cur-
vature of

√
2b, i.e. the Gaussian curvature is 1/2b. However,

calculating the metric distance d from the origin (ρ = 0) to
this sperical shell (ρ = b), we find that

d =

∫ b

0
dρ = b.

Hence, the metric radius and the radius of curvature are
not equal in general. Repeating the calulation with (1) yields
the same result.

As another example consider the two-dimensional, non-
Euclidean metric

ds2
1 = −x2 dt2 + dx2, (3)

where it is assumed that t ∈ (−∞,∞) and x ∈ (0,∞). In terms
of the coordinates {t, x} the metric tensor g1 can therefore be
represented as

[g1]{t,x} =

( −x2 0
0 1

)
, (4)

with a metric determinant of |g1| = −x2, which suggests that
as x→ 0 the metric becomes singular.

However, calculating the scalar curvature of the metric we
find that Rg1 = 0, which is independent of x. The metric g1
therefore defines a flat manifold (N, g1). The fact that the sin-
gularity arises in the coordinate dependent form of the metric,
but not in the coordinate invariant scalar curvature, indicates
that the apparent singularity may in fact be due solely to a
breakdown in the coordinate system {t, x} that was chosen to
represent the metric, i.e. it may merely be a coordinate singu-
larity rather than a true singularity of the manifold described
by g1. A coordinate singularity can be removed by a good
choice of coordinates, whereas a true singularity cannot.

Introducing new coordinates {T, X}, which are defined in
terms of the old coordinates {t, x} by

X = x cosh t

T = x sinh t,

the line-element ds2
1 may be written as

ds2
1 = −dT 2 + dX2. (5)

Note that t ∈ (−∞,∞) and x ∈ (0,∞) implies that T ∈
(−∞,∞) and X ∈ (0,∞) also.

L2 J. J. Sharples. Coordinate Transformations and Metric Extension: a Rebuttal to the Relativistic Claims of Stephen J. Crothers



January, 2010 PROGRESS IN PHYSICS Volume 1

In terms of the {T, X} coordinates, the metric tensor g1 is
represented by

[g1]{T,X} =

( −1 0
0 1

)
. (6)

and so the metric determinant is |g1| = −1. The apparent
singularity has been removed by invoking a good choice of
coordinates.

We note further that even though the line-element (5) was
only defined for X ∈ (0,∞) there is now nothing stopping us
from extending the definition to include X ∈ (−∞,∞). We
thus make the distinction between the line-element ds2

1, de-
fined above, and the line-element ds2

2 defined as

ds2
1 = −dτ2 + dξ2, (7)

with coordinates τ, ξ ∈ (−∞,∞). The metric corresponding
to the line-element (7), denoted by g2, defines a manifold
(M, g2) that can be thought of as 2D Minkowski space. By
restricting the coordinate ξ to the semi-finite interval (0,∞)
we recover the metric g1, that is

g2|ξ>0 = g1.

It follows that the manifold (N, g1) is a submanifold of the
Minkowski space (M, g2). Alternatively we say that (M, g2) is
a coordinate extension of the manifold (N, g1). The manifold
(N, g1) is known as the Rindler wedge and corresponds to that
part of (M, g2) defined by |τ| < ξ.
3 Implications

In [1] the author notes that the line-element written in terms
of coordinates {t, r, θ, ϕ} as

ds2 = A(r) dt2 + B(r) dr2 + C(r) dΩ2 (8)

corresponds to the most general spacetime metric that is static
and spherically symmetric. He then goes on to claim that the
line-element written in terms of coordinates {t, ρ, θ, φ} as

ds2 = A∗(ρ) dt2 + B∗(ρ) dρ2 + ρ2 dΩ2 (9)

does not correspond to the most general metric that is static
and spherically symmetric∗. This claim is false, as we will
now demonstrate.

Consider the line-element (9) and define the coordinate
transformation ρ =

√
C(r), where C is some function inde-

pendent of the functions A∗ and B∗. Taking the differential
we find that

dρ =
C′(r)

2
√

C(r)
dr

and so the line-element (9) can be written in terms of the co-
ordinates {t, r, θ, ϕ} as

ds2 = E(r) dt2 + D(r) dr2 + C(r) dΩ2, (10)
∗Note that in [1] the author has used r again instead of ρ. We use the

different symbol ρ to avoid confusion.

where

E(r) = A∗
(√

C(r)
)

and D(r) =
B∗

(√
C(r)

)
C′(r)2

4C(r)
.

Since the functions A∗ and B∗ are independent of the func-
tion C, the functions E and D are also independent of the
function C. The line-element (10) is identical to (8) and it fol-
lows that the metrics represented by (8) and (9) are the same
metric (just expressed in terms of different coordinates), and
therefore that both line-elements represent the most general
static, sperically symmetric spacetime metric.

Based on the claim of [1], just shown is false, the author
goes on to conclude that solutions of the gravitational field
equations that are derived from the metric ansatz (9) are par-
ticular solutions rather than general solutions. These claims
are also false for the same reasons as illustrated above.

The foregoing considerations therefore have bearing on
the relativistic arguments contained in [1] and subsequent pa-
pers by the author. For example, in [1–8] the author repeat-
edly makes the following claims:

1. The coordinate ρ, appearing in (9), is not a proper ra-
dius;

2. The “Schwarzschild” solution, as espoused by Hilbert
and others is different to the Schwarzschild solution ob-
tained originally by Schwarzschild [9];

3. The original Schwarzschild solution is a complete (i.e.
inextendible) metric;

4. There are an infinite number of solutions to the static,
spherically symmetric solutions to the field equations
correponding to a point mass;

5. For line-elements of Schwarzschild form†, the scalar
curvature f remains bounded everywhere, and hence
there is no “black hole”.

We will now address and dismiss each of these claims.

Claim 1. The claim that ρ is not a proper radius stems from a
calculation in [1]. The author defines the proper radius as

Rp =

∫ √
B(r) dr (11)

where B is the function appearing in (8). Strictly speaking
this is not a radius, per se, but a function of the coordinate r.
In more precise terms, the proper radius should be defined as
the metric length of the radial path γa defined by‡

γa = {(t, r, θ, ϕ) : r ∈ (a1, a2), t, θ, ϕ = constant}.
This then implies that the proper radius is defined as

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr . (12)

†Line-elements of “Schwarzschild form” are defined in [2].
‡We believe that this is what the definition in [1] was actually aiming at.
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The claim in [1] relates to the fact that Rp, as defined by
(11), is equal to r only if B(r) = 1. This conclusion is based
on an imprecise definition of the proper radius and does not
take into account the effect of coordinate transformation. If
we work in terms of the coordinates appearing in the line-
element (9), which we have already shown represents the
same metric as (8), then the path γa is defined as

γa = {(t, ρ, θ, ϕ) : ρ ∈ (ρ1, ρ2), t, θ, ϕ = constant},
with ρ1 =

√
C(a1) and ρ2 =

√
C(a2). In terms of the line-

element (9) the metric length of γa is given by

L2(γa) =

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ.

Noting the effect of the coordinate transformation, that
was established earlier, we then find that

Rp = L1(γa) =

∫ a2

a1

√
B(r) dr

=

∫ a2

a1

[
B∗(

√
C(r)

]1/2 C′(r)
2
√

C(r)
dr

=

∫ √
C(a2)

√
C(a1)

√
B∗(ρ) dρ

= L2(γa) .

Hence the proper radius does not depend on the form of
the line-element. Proper radius (i.e. a metric length) can be
equivalently defined in terms of either of the “radial” coordi-
nates r or ρ.

Claims 2 and 3. The original Schwarzschild solution ob-
tained in [9] is given as the line-element

ds2 = A(R)dt2 − A(R)−1dR2 − R2dΩ2, (13)

where
A(R) = 1 − α

R
and R = (r3 + α3)1/3.

The coordinate r ∈ (0,∞) that appears is the standard
spherical radial coordinate. The expression R = (r3 + α3)1/3

defines a transformation of the radial coordinate r into the
auxilliary radial coordinate R. The constant α is related to
the value of the mass at the origin [9]. Indeed, by imposing
the additional boundary condition at infinity, that the solution
be consistent with the predictions of Newtonian gravitational
theory, it is found that the constant α = 2m, where m is the
mass at the origin. The line-element (13) can therefore be
written as

ds2 =

(
1 − 2m

R

)
dt2 −

(
1 − 2m

R

)−1

dR2 − R2dΩ2, (14)

with R ∈ (2m,∞). Note that if R and t are held constant
(say R = a and t = t0) the line-element reduces to that of a

2-sphere with radius a > 2m. The line-element therefore de-
fines a manifold that is foliated by 2-spheres with radii greater
than 2m.

The line-element is of precisely the same form as the line-
element derived by Hilbert [10], i.e.

ds2 =

(
1 − 2m

ρ

)
dt2 −

(
1 − 2m

ρ

)−1

dρ2 − ρ2dΩ2, (15)

where ρ ∈ (0, 2m) ∪ (2m,∞). The only difference is that (14)
is defined over a subset of the domain over which (15) is de-
fined. To obtain the line-element (15) the radial coordinate
has been extended to values less than 2m in much the same
way that the metric corresponding to (5) was extended to the
metric corresponding to (7). The only real difference is that
in the case at hand there remains a coordinate singularity at
R = 2m, and so in terms of the coordinates used, the extended
manifold must be viewed as a disjoint union of the regions
corresponding to R < 2m and R > 2m. Both of the disjoint re-
gions satisfy the static, spherically symmetric field equations.
In fact it is well-known that there exist coordinates in which
the difficulty at R = 2m can be removed, resulting in a single
manifold that satisfies the field equations. As a point of his-
torical interest we note that the extended metric is also known
as the “Schwarzschild” metric in honour of Schwarzschild’s
contribution to the field, despite the fact that his original so-
lution is only a subset of the complete solution.

From the above considerations it clear that the manifold
corresponding to the line-element (13) is incomplete. Indeed,
in deriving this form of the line-element, Schwarzschild im-
posed a very specific boundary condition, namely that the
line-element is continuous everywhere except at r = 0, where
r ∈ (0,∞) is the standard spherical radial coordinate. Impo-
sition of this boundary condition has significant implications
for the solution obtained. In particular, as a consequence of
the boundary condtion the coordinate R is shifted away from
the origin. Indeed, if r ∈ (0,∞) then R ∈ (α,∞). Hence the
manifold represented by (13) is foliated by 2-spheres of ra-
dius greater than α = 2m — the spacetime has a hole in its
centre!

Claim 4. In [2] the author derives the general solution for the
static, spherically symmetric field due to a point mass as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dr2 −Cn dΩ2, (16)

where r is the standard radial spherical coordinate and

Cn(r) =
[
(r − r0)n + αn]2/n (17)

with r0 > 0 and n > 0 arbitrary constants. The author also
notes that (16) is only defined for r > r0.

Let us now see the effect of transforming coordinates.
Firstly, let ρ = r−r0 so that the coordinate ρ is simply a shifted
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version of the coordinate r. Taking differentials implies that
dρ = dr and so we may equivalently write the line-element
(16) as

ds2 =

( √
Cn − α√

Cn

)
dt2 −

( √
Cn√

Cn − α

)
C′n

2

4Cn
dρ2 −Cn dΩ2, (18)

where now
Cn(ρ) =

[
ρn + αn]2/n

and the line-element is defined for ρ > 0.
Secondly, define another change of coordinates by R =√

Cn(ρ). This is essentially a rescaling of the radial coordinate
ρ. Taking differentials we find that

dR =
C′n

2
√

Cn
dρ .

Thus in terms of the coordinate R the line-element may
be written as

ds2 =

(R − α
R

)
dt2 −

( R
R − α

)
dR2 − R2 dΩ2, (19)

where the coordinate R > α.
Hence we have shown that what appeared to be an infini-

tude of particular solutions are actually just different coordi-
nate expressions of the same solution, which without loss of
generality can be expressed in “Schwarzschild coordinates”
{t,R, θ, ϕ} by (19). This solution is incomplete, as we have
already seen, since the line-element and the corresponding
metric are only defined when the coordinate R > α. The so-
lution is known as the exterior Schwarzschild solution.

Another way of seeing that the metrics corresponding to
the line-elements defined by (16) are all the same, is by invok-
ing Birkoff’s Theorem [11]. This theorem establishes, with
mathematical certainty, that the Schwarzschild solution (ex-
terior, interior or both) is the only solution of the spherically
symmetric vacuum field equations∗.

Claim 5. In [2] the author notes that the scalar curvature of
the metric corresponding to (16) is given by

f =
12α2

C3
n

=
12α2

[(r − r0)n + αn]6/n

and that as r → r0 there is no curvature singularity. He then
concludes that a “black hole” singularity cannot exist.

In fact, as we have just seen, the line-element (16) only
corresponds to the exterior Schwarzschild solution, which is
a manifold foliated by 2-spheres with radial coordinate R > α.
The calculation in [2] therefore only proves that the exterior
solution has no curvature singularity. This is a well known
fact. Writing (16) in its equivalent form (19) and extending

∗The assumption of staticity is not actually required, hence all spheri-
cally symmetric spacetimes satisfying the vacuum field equations are static.

the coordinate R to obtain the interior Schwarzschild solution
(0 < R < α), the scalar curvature is given by

f =
12α2

R3 ,

from which it is clear that

lim
R→0

f = ∞ .

Hence there is a curvature singularity at R = 0. Since the
vector ∂R is timelike for 0 < R < α, the singularity corre-
sponds to a black hole.

4 Conclusions

We have presented a number of simple examples which hope-
fully elucidate the concepts of coordinate transformation and
metric extension in differential geometry. Implications of the
concepts were also discussed, with particular focus on a num-
ber of the relativistic claims of [1–8]. It was proven that each
of these claims was false. The claims appear to arise from a
lack of understanding of the notions of coordinate transfor-
mation and metric (coordinate) extension. Any conclusions
contained in [1–8] that are based on such claims should there-
fore be considered as unproven. In particular, the claim that
the black hole “is not consistent at all with general relativity”
is completely false.

General relativity is a difficult topic, which is grounded
in advanced mathematics (indeed, Einstein himself is quoted
as saying something along the lines of “Ever since the math-
ematicians took hold of relativity, I no longer understand it
myself!”). A sound understanding of differential geometry
is a prerequisite for understanding the theory in its modern
form. Thus to paraphrase Lao Tzu [12] — beware of the half-
enlightened master.

Postscript

The article by Stephen J. Crothers in the current issue [13]
provides a good illustration of the problems discussed above.
For example, in his first “counter-example” he considers a
metric which is easily seen to be the Schwarzschild metric
written in terms of an ‘inverted’ radial coordinate. Using x to
denote the inverted radial coordinate (denoted by r in [13]),
and R to denote the usual Schwarzschild radius, the transfor-
mation is R = 2m − x. In particular, R = 0 corresponds to
x = 2m, and R = 2m corresponds to x = 0. It is thus not
surprising that the coordinate singualrity is at x = 0 and the
point singularity is at x = 2m. The other counter-examples
in [13] can be dismissed through similar arguments.

The author is grateful to S. J. Crothers for a number of discus-
sion that resulted in the writing of this paper.
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