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This study deals with the exact solution of Einstein’s field equations for a sphere of
incompressible liquid without the additional limitation initially introduced in 1916 by
Schwarzschild, by which the space-time metric must have no singularities. The ob-
tained exact solution is then applied to the Universe, the Sun, and the planets, by the
assumption that these objects can be approximated as spheres of incompressible liq-
uid. It is shown that gravitational collapse of such a sphere is permitted for an object
whose characteristics (mass, density, and size) are close to the Universe. Meanwhile,
there is a spatial break associated with any of the mentioned stellar objects: the break
is determined as the approaching to infinity of one of the spatial components of the
metric tensor. In particular, the break of the Sun’s space meets the Asteroid strip, while
Jupiter’s space break meets the Asteroid strip from the outer side. Also, the space
breaks of Mercury, Venus, Earth, and Mars are located inside the Asteroid strip (inside
the Sun’s space break).

The main task of this paper is to study the possibilities of
applying condensed matter models in astrophysics and cos-
mology. A cosmic object consisting of condensed matter has
a constant volume and a constant density. A sphere of incom-
pressible liquid, being in the weightless state (as any cosmic
object), is a kind of condensed matter. Thus, assuming that
a star is a sphere of incompressible liquid, we can study the
gravitational field of the star inside and outside it.

The Sun orbiting the center of the Galaxy meets the
weightless condition (see [1] for detail)

GM
r

= v2,

where G = 6.67×10−8 cm3/g ×sec2 is the Newtonian gravita-
tional constant, M is the mass of the Galaxy, r is the distance
of the Sun from the center of the Galaxy, and v is the Sun’s
velocity in its orbit. The planets of the Solar System also
satisfy the weightless condition. Assuming that the planets
have a similar internal constitution as the Sun, we can con-
sider these objects as spheres of incompressible liquid being
in a weightless state.

I will consider the problems by means of the General The-
ory of Relativity. First, it is necessary to obtain the exact so-
lution of the Einstein field equations for the space-time metric
induced by the gravitational field of a sphere of incompress-
ible liquid.

The regular field equations of Einstein, with the λ-field
neglected, have the form

Rαβ − 1
2
gαβR = − κ Tαβ , (1)

where Rαβ is the Ricci tensor, R is the Riemann curvature
scalar, κ= 8πG

c2 = 18.6×10−28 cm/g is the Einstein gravitational
constant, Tαβ is the energy-momentum tensor, and α, β =

0, 1, 2, 3 are the space-time indices. The gravitational field of
spherical island of substance should possess spherical sym-
metry. Thus, it is described by the metric of spherical kind

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2θ dϕ2) , (2)

where eν and eλ are functions of r and t.
In the case under consideration the energy-momentum

tensor is that of an ideal liquid (incompressible, with zero
viscosity), by the condition that its density is constant, i.e.
ρ= ρ0 = const. As known, the energy-momentum tensor in
this case is

Tαβ =

(
ρ0 +

p
c2

)
bαbβ − p

c2 g
αβ, (3)

where p is the pressure of the liquid, while

bα =
dxα

ds
, bαbα = 1 (4)

is the four-dimensional velocity vector, which determines the
reference frame of the given observer. Also, the energy-
momentum tensor should satisfy the conservation law

∇σTασ = 0 , (5)

where ∇σ is the four-dimensional symbol of covariant dif-
ferentiation.

Formally, the problem we are considering is a generaliza-
tion of the Schwarzschild solution produced for an analogous
case (a sphere of incompressible liquid). Karl Schwarzschild
[2] solved the Einstein field equations for this case, by the
condition that the solution must be regular. He assumed that
the components of the fundamental metric tensor gαβ must
satisfy the signature conditions (the space-time metric must
have no singularities). Thus, the Schwarzschild solution, ac-
cording to his initial assumption, does not include space-time
singularities.

Larissa Borissova. The Solar System According to General Relativity: The Sun’s Space Breaking Meets the Asteroid Strip 43



Volume 2 PROGRESS IN PHYSICS April, 2010

This limitation of the space-time geometry, initially intro-
duced in 1916 by Schwarzschild, will not be used by me in
this study. Therefore, we will be able to study the singular
properties of the space-time metric associated with a sphere
of incompressible liquid. Then I will apply the obtained re-
sults to the cosmic objects such as the Sun and the planets.

The exact solution of the field equations (1) is obtained for
the spherically symmetric metric (2) inside a sphere of incom-
pressible liquid, which is described by the energy-momentum
tensor (3). I consider here the reference frame which accom-
panies to the observer, consequently the components of his
four-velocity vector are [3]

b0 =
1√
g00

, bi = 0 , i = 1, 2, 3, (6)

while the physically observed components of the energy-
momentum tensor Tαβ has the form

ρ =
T00

g00
= ρ0 , Ji =

c T i
0√
g00

= 0 , U ik = c2T ik = phik, (7)

where ρ is the density of the medium, Ji is the density of the
momentum in the medium, U ik is the stress-tensor, hik is the
observable three-dimensional fundamental metric tensor [3].

Because we do not limit the solution by that the metric
must be regular, the obtained metric has two singularities:
1) collapse by g00 = 0, and 2) break of the space by g11→∞.
It will be shown then that these singularities are irremovable,
because the strong signature condition is also violated in both
cases.

In order to obtain the exact internal solution of the Ein-
stein field equations with respect to a given distribution of
matter, it is necessary to solve two systems of equations: the
Einstein field equations (1), and the equations of the conser-
vation law (5).

After algebra we obtain the Einstein field equations in the
spherically symmetric space (2) inside a sphere of incom-
pressible liquid. The obtained equations, in component no-
tation, are

e−ν
(
λ̈ − λ̇ν̇

2
+
λ̇2

2

)
− c2e−λ

[
ν′′ − λ

′ν′

2
+

2ν′

r
+

(ν′)2

2

]
=

= − κ
(
ρ0c2 + 3 p

)
, (8)

λ̇

r
e−λ−

ν
2 = κJ1 = 0 , (9)

eλ−ν
(
λ̈ − λ̇ν̇

2
+
λ̇2

2

)
− c2

[
ν′′ − λ

′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
=

= κ
(
ρ0c2 − p

)
eλ, (10)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
. (11)

The second equation manifests that λ̇= 0 in this case.
Hence, the space inside the sphere of incompressible liquid

does not deform. Taking this circumstance into account, and
also that the stationarity of λ, we reduce the field equations
(8–11) to the final form

c2e−λ
[
ν′′ − λ

′ν′

2
+

2ν′

r
+

(ν′)2

2

]
= κ

(
ρ0c2 + 3 p

)
eλ, (12)

− c2
[
ν′′ − λ

′ν′

2
+

(ν′)2

2

]
+

2c2λ′

r
= κ

(
ρ0c2 − p

)
eλ, (13)

c2 (λ′ − ν′)
r

e−λ +
2c2

r2

(
1 − e−λ

)
= κ

(
ρ0c2 − p

)
eλ. (14)

To solve the equations (12–14), a formula for the pres-
sure p is necessary. To find the formula, we now deal with
the conservation equations (5). Because, as was found, Ji = 0
we obtain, this formula reduces to only a single nontrivial
equation

p′e−λ +
(
ρ0c2 + p

) ν′
2

e−λ = 0 , (15)

where p′ = dp
dr

, ν′= dν
dr

, eλ , 0. Dividing both parts of (15) by
e−λ, we arrive at

dp
ρ0c2 + p

= −dν
2
, (16)

which is a plain differential equation with separable variables.
It can be easily integrated as

ρ0c2 + p = Be−
ν
2 , B = const. (17)

Thus we have to express the pressure p as the function of
the variable ν,

p = Be−
ν
2 − ρ0c2. (18)

In look for an r-dependent function p(r), we integrate the
field equations (12–14), taking into account (18). We find
finally expressions for eλ and eν

g00 = eν =
1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

, (19)

eλ = − g11 =
1

1 − κρ0r2

3

, (20)

where e
νa
2 =

√
1 − 2GM

c2a =

√
1 − rg

r is obtained from the
boundary conditions, while rg is the Hilbert radius.

Thus the space-time metric of the gravitational field inside
a sphere of incompressible liquid is, since the formulae of ν
and λ have already been obtained, as follows

ds2 =
1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

c2dt2 −

− dr2

1 − κρ0r2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (21)
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Taking into account that M =
4πa3ρ0

3 and rg = 2GM
c2 , we

rewrite (21) in the form

ds2 =
1
4

3
√

1 − rg
a
−

√
1 − r2rg

a3



2

c2dt2 −

− dr2

1 − r2rg
a3

− r2
(
dθ2 + sin2θ dϕ2

)
. (22)

It is therefore obvious that this “internal” metric com-
pletely coincides with the Schwarzschild metric in emptiness
on the surface of the sphere of incompressible liquid (r = a).
This study is a generalization of the originally Schwarzschild
solution for such a sphere [2], and means that Schwarzschild’s
requirement to the metric to be free of singularities will not
be used here. Naturally, the metric (22) allows singularities.
This problem will be solved by analogy with the singular
properties of the Schwarzschild solution in emptiness [4] (a
mass-point’s field), which already gave black holes.

Consider the collapse condition for the space-time metric
of the gravitational field inside a sphere of incompressible
liquid (21). The collapse condition g00 = 0 in this case is

3e
νa
2 =

√
1 − κρ0r2

3
, (23)

or, in terms of the Hilbert radius, when the metric takes the
form (22), the collapse condition is

3

√
1 − rg

a
=

√
1 − rgr2

a3 . (24)

We obtain that the numerical value of the radial coordi-
nate rc, by which the sphere’s surface meets the surface of
collapse, is

rc = a

√
9 − 8a

rg
. (25)

Because we keep in mind really cosmic objects, the nu-
merical value of rc should be real. This requirement is obvi-
ously satisfied by

a < 1.125 rg . (26)

If this condition holds not (a> rg), the sphere, which is a
spherical liquid body, has not the state of collapse. It is ob-
vious that the condition a = rg satisfies to (26). It is obvious
that rc is imaginary for rg� a, so collapse of such a sphere of
incompressible liquid is impossible.

For example, consider the Universe as a sphere of incom-
pressible liquid (the liquid model of the Universe). Assum-
ing, according to the numerical value of the Hubble constant
(17), that the Universe’s radius is a = 1.3×1028 cm, we obtain
the collapse condition, from (26),

rg > 1.2×1028 cm, (27)

and immediately arrive at the following conclusion:

The observable Universe as a whole, being represented
in the framework of the liquid model, is completely lo-
cated inside its gravitational radius. In other words, the
observable Universe is a collapsar — a huge black hole.

In another representation, this result means that a sphere of
incompressible liquid can be in the state of collapse only if
its radius approaches the radius of the observable Universe.

Let’s obtain the condition of spatial singularity — space
breaking. As is seen, the metric (21) or its equivalent form
(22) has space breaking if its radial coordinate r equals to

rbr =

√
3
κρ0

= a
√

a
rg
. (28)

For example, considering the Sun as a sphere of incom-
pressible liquid, whose density is ρ0 = 1.4 g/cm3, we obtain

rbr = 3.4×1013 cm, (29)

while the radius of the Sun is a = 7×1010 cm and its Hilert
radius rg = 3×105 cm. Therefore, the surface of the Sun’s
space of breaking is located outside the surface of the Sun,
far distant from it in the near cosmos.

Another example. Assume our Universe to be a sphere
of incompressible liquid, whose density is ρ0 = 10−31 g/cm3.
The radius of its space breaking, according to (28), is

rbr = 1.3×1029 cm. (30)

Observational astronomy provides the following numeri-
cal value of the Hubble constant

H =
c
a

= (2.3 ± 0.3)×1018 sec−1, (31)

where a is the observed radius of the Universe. It is easily
obtain from here that

a = 1.3×1028 cm. (32)

This value is comparable with (30), so the Universe’s ra-
dius may meet the surface of its space breaking by some con-
ditions. We calculate the mass of the Universe by M =

4πa3ρ0
3 ,

where a is (32). We have M = 5×1054 g. Thus, for the liq-
uid model of the Universe, we obtain rg = 7.4×1026 cm: the
Hilbert radius (the radius of the surface of gravitational col-
lapse) is located inside the liquid spherical body of the Uni-
verse.

A few words more on the singularities of the liquid
sphere’s internal metric (21). In this case, the determinant
of the fundamental metric tensor equals

g = − 1
4

3e
νa
2 −

√
1 − κρ0r2

3


2

r4 sin2 θ√
1 − κρ0r2

3

, (33)

so the strong signature condition g< 0 is always true for a
sphere of incompressible liquid, except in two following
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cases: 1) in the state of collapse (g00 = 0), 2) by the breaking
of space (g11→∞). These particular cases violate the weak
signature conditions g00 > 0 and g11 < 0 correspondingly. If
both weak signature conditions are violated, g has a singu-
larity of the kind 0

0 . If collapse occurs in the absence of the
space breaking, we have g= 0. If no collapse, while the space
breaking is present, we have g→∞. In all the cases, the sin-
gularity is non-removable, because the strong singular condi-
tion g< 0 is violated.

So, as was shown above, a spherical object consisting of
incompressible liquid can be in the state of gravitational col-
lapse only if it is as large and massive as the Universe. Mean-
while, the space breaking realizes itself in the fields of all
cosmic objects, which can be approximated by spheres of in-
compressible liquid. Besides, since rbr ∼ 1√

ρ0
, the rbr is then

greater while smaller is the ρ0. Assuming all these, we arrive
at the following conclusion:

A regular sphere of incompressible liquid, which can
be observed in the cosmos or an Earth-bound labora-
tory, cannot collapse but has the space breaking —
a singular surface, distantly located around the liquid
sphere.

First, we are going to consider the Sun as a sphere of
incompressible liquid. Schwarzschild [2] was the first per-
son who considered the gravitational field of a sphere of in-
compressible liquid. He however limited this consideration
by an additional condition that the space-time metric should
not have singularities. In this study the metric (21) will be
used. It allows singularities, in contrast to the limited case
of Schwarzschild: 1) collapse of the space, and 2) the space
breaking.

Calculating the radius of the space breaking by formula
(28), where we substitute the Sun’s density ρ0 = 1.41 g/cm3,
we obtain

rbr = 3.4×1013 cm = 2.3 AU, (34)

where 1 AU = 1.49×1013 cm (Astronomical Unit) is the av-
erage distance between the Sun and the Earth. So, we have
obtained that the spherical surface of the Sun’s space break-
ing is located inside the Asteroid strip, very close to the orbit
of the maximal concentration of substance in it (as is known,
the Asteroid strip is hold from 2.1 to 4.3 AU from the Sun).
Thus we conclude that:

The space of the Sun (its gravitational field), as that
of a sphere of incompressible liquid, has a breaking.
The space breaking is distantly located from the Sun’s
body, in the space of the Solar System, and meets the
Asteroid strip near the maximal concentration of the
asteroids.

In addition to it, we conclude:

The Sun, approximated by a mass-point according to
the Schwarzschild solution for a mass-point’s field
in emptiness, has a space breaking located inside

the Sun’s body. This space breaking coincides with the
Schwarzschild sphere — the sphere of collapse.

What is the Schwarzschild sphere? It is an imaginary
spherical surface of the Hilbert radius rg = 2GM

c2 , which is not
a radius of a physical body in a general case (despite it can
be such one in the case of a black hole — a physical body
whose radius meets the Hilbert radius calculated for its mass).
The numerical value of rg is determined only by the mass of
the body, and does not depend on its other properties. The
physical meaning of the Hilbert radius in a general case is as
follows: this is the boundary of the region in the gravitational
field of a mass-point M, where real particles exist; particles in
the boundary (the Hilbert radius) bear the singular properties.
In the region wherein r6 rg, real particles cannot exist.

Let us turn back to the Sun approximated by a sphere of
incompressible liquid. The space-time metric is (21) in this
case. Substituting into (25) the Sun’s mass M = 2×1033 g, ra-
dius a = 7×107 cm, and the Hilbert radius rg = 3×105 cm cal-
culated for its mass, we obtain that the numerical value of the
radial coordinate rc by which the Sun’s surface meets the sur-
face of collapse of its mass is imaginary. Thus, we arrive at
the conclusion that a sphere of incompressible liquid, whose
parameters are the same as those of the Sun, cannot collapse.

Thus, we conclude:

A Schwarzschild sphere (collapsing space breaking)
exists inside any physical body. The numerical value
of its radius rg is determined only by the body’s mass
M. We refer to the space-time inside the Schwarzschild
sphere (r < rg) as a “black hole”. This space-time
does not satisfy the singular conditions of the space-
time where real observers exist. Schwarzschild sphere
(internal black hole) is an internal characteristic of
any gravitating body, independent on its internal con-
stitution.

One can ask: then what does the Hilbert radius rg mean
for the Sun, in this context? Here is the answer: rg is the pho-
tometric distance in the radial direction, separating the “ex-
ternal” region inhabited with real particles and the “internal”
region under the radius wherein all particles bear imaginary
masses. Particles which inhabit the boundary surface (its ra-
dius is rg) bear singular physical properties. Note that no one
real (external) observer can register events inside the singu-
larity.

What is a sphere of incompressible liquid of the radius
r = rc? This is a “collapsar” — the object in the state of
gravitational collapse. As it was shown above, not any sphere
of incompressible liquid can be collapsar: the possibility of
its collapse is determined by the relation between its radius
a and its Hilbert radius rg, according to formula (25). It was
shown above that the Universe considered as a sphere of in-
compressible liquid is a collapsar.

Now we apply this research method to the planets of the
Solar System. Thus, we approximate the planets by spheres
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of incompressible liquid. The numerical values of rc, cal-
culated for the planets according to the same formula (25) as
that for the liquid model of the Sun, are imaginary. Therefore,
the planets being approximated by spheres of incompressible
liquid cannot collapse as well as the Sun.

The Hilbert radius rg calculated for the planets is much
smaller than the sizes of their physical bodies, and is in the
order of 1 cm. This means that, given any of the planets of the
Solar System, the singulary surface separating our world and
the imaginary mass particles world in its gravitational field
draws the sphere of the radius about one centimetre around
its centre of gravity.

The numerical values of the radius of the space break-
ing are calculated for each of the planets through the average
density of substance inside the planet according to the for-
mula (28).

The results of the summarizing and substraction associ-
ated with the planets lead to the next conclusions:

1. The spheres of the singularity breaking of the spaces
of Mercury, Venus, and the Earth are completely lo-
cated inside the sphere of the singularity breaking of
the Sun’s space;

2. The spheres of the singularity breaking of the internal
spaces of all planets intersect among themselves, when
being in the state of a “parade of planets”;

3. The spheres of the singularity breaking of the Earth’s
space and Mars’ space reach the Asteroid strip;

4. The sphere of the singularity breaking of Mars’ space
intersects with the Asteroid strip near the orbit of
Phaeton (the hypothetical planet which was orbiting the
Sun, according to the Titius–Bode law, at r = 2.8 AU,
and whose distraction in the ancient time gave birth to
the Asteroid strip).

5. Jupiter’s singularity breaking surface intersects the As-
teroid strip near Phaeton’s orbit, r = 2.8 AU, and meets
Saturn’s singularity breaking from the outer side;

6. The singularity breaking surface of Saturn’s space is
located between those of Jupiter and Uranus;

7. The singularity breaking surface of Uranus’s space is
located between those of Saturn and Neptune;

8. The singularity breaking surface of Neptune’s space
meets, from the outer side, the lower boundary of the
Kuiper belt (the strip of the aphelia of the Solar Sys-
tem’s comets);

9. The singularity breaking surface of Pluto is completely
located inside the lower strip of the Kuiper belt.

Just two small notes in addition to these. The intersections of
the space breakings of the planets, discussed here, take place
for only that case where the planets thenselves are in the state
of a “parade of planets”. However the conclusions concerning
the location of the space breaking spheres, for instance — that

the space breaking spheres of the internal planets are located
inside the sphere of the Sun’s space breaking, while the space
breaking spheres of the external planets are located outside it,
— are true for any position of the planets.

The fact that the space breaking of the Sun meets the As-
teroid strip, near Phaeton’s orbit, allows us to say: yes, the
space breaking considered in this study has a really physi-
cal meaning. As probable the Sun’s space breaking did not
permit the Asteroids to be joined into a common physical
body, Phaeton. Alternatively, if Phaeton was an already exist-
ing planet of the Solar System, the common action of the
space breaking of the Sun and that of another massive cos-
mic body, appeared near the Solar System in the ancient ages
(for example, another star passing near it), has led to the dis-
traction of Phaeton’s body.

Thus the internal constitution of the Solar System was
formed by the structure of the Sun’s space (space-time) filled
with its gravitational field, and according to the laws of the
General Theory of Relativity.

These and related results will be published in necessary
detail later [5]∗.
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