
October, 2010 PROGRESS IN PHYSICS Volume 4

Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture

Vahan Minasyan and Valentin Samoilov
Scientific Center of Applied Research, JINR, Dubna, 141980, Russia

E-mails: mvahan@scar.jinr.ru; scar@off-serv.jinr.ru

We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron
gas mixture. We show that the term, of the interaction between the excitations of the
Bose gas and the density modes of the neutron, meditate an attractive interaction via
the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due
to presented theoretical approach, we prove that the electron pairs in superconductivity
could be discovered by Frölich earlier then it was made by the Cooper.

1 Introduction

In 1938, the connection between the ideal Bose gas and su-
perfluidity in helium was first made by London [1]. The
ideal Bose gas undergoes a phase transition at sufficiently
low temperatures to a condition in which the zero-momentum
quantum state is occupied by a finite fraction of the atoms.
This momentum-condensed phase was postulated by London
to represent the superfluid component of liquid 4He. With
this hypothesis, the beginnings of a two- fluid hydrodynamic
model of superfluids was developed by Landau [2] where he
predicted the notation of a collective excitations so- called
phonons and rotons.

The microscopic theory most widely- adopted was first
described by Bogoliubov [3], who considered a model of a
non-ideal Bose-gas at the absolute zero of temperature. In
1974, Bishop [4] examined the one-particle excitation spec-
trum at the condensation temperature Tc.

The dispersion curve of superfluid helium excitations has
been measured accurately as a function of momentum [5]. At
the lambda transition, these experiments show a sharp peak
inelastic whose neutron scattering intensity is defined by the
energy of the single particle excitations, and there is appear-
ing a broad component in the inelastic neutron scattering in-
tensity, at higher momenta. To explain the appearance of
a broad component in the inelastic neutron scattering inten-
sity, the authors of papers [6–7] proposed the presence of col-
lective modes in superfluid liquid 4He, represented a density
excitations. Thus the collective modes are represent as den-
sity quasiparticles [8]. Such density excitations and density
quasiparticles appear because of the remaining density oper-
ator term that describes atoms above the condensate, a term
which was neglected by Bogoliubov [3].

Previously, the authors of ref [9] discovered that, at the
lambda transition, there was scattering between atoms of the
superfluid liquid helium, which is confirmed by the calcula-
tion of the dependence of the critical temperature on the inter-
action parameter, here the scattering length. On other hand, as
we have noted, there are two types of excitation in superfluid
helium at lambda transition point [5]. This means it is neces-
sary to revise the conditions that determine the Bose-Einstein
condensation in the superfluid liquid helium. Obviously, the

peak inelastic neutron scattering intensity is connected with
the registration of neutron modes in a neutron-spectrometer
which, in turn, defines the nature of the excitations. So we
may conclude that the registration of single neutron modes or
neutron pair modes occurs at the lambda transition, from the
neutron-spectrometer.

In this letter, we proposed new model for Bose-gas by ex-
tending the concept of a broken Bose-symmetry law for bo-
sons in the condensate within applying the Penrose-Onsager
definition of the Bose condensation [10]. After, we show
that the interaction term between Boson modes and Fermion
density modes is meditated by an effective attractive interac-
tion between the Fermion modes, which in turn determines
a bound state of singlet Fermion pair in a superfluid Bose
liquid- Fermion gas mixture.

We investigate the problem of superconductivity present-
ed by Frölich [11]. Hence, we also remark the theory of su-
perconductivity, presented by Bardeen, Cooper and Schrieffer
[12], and by Bogoliubov [13] (BCSB). They asserted that the
Frölich effective attractive potential between electrons leads
to shaping of two electrons with opposite spins around Fermi
level into the Cooper pairs [14]. However, we demonstrate the
term of the interaction between electrons and ions of lattice
meditates the existence of the Frölich singlet electron pairs.

2 New model of a superfluid liquid helium

First, we present new model of a dilute Bose gas with strongly
interactions between the atoms, to describe the superfluid liq-
uid helium. This model considers a system of N identical in-
teracting atoms via S-wave scattering. These atoms, as spin-
less Bose-particles, have a mass m and are confined to a box
of volume V . The main part of the Hamiltonian of such sys-
tem is expressed in the second quantization form as:

Ĥa =
∑

~p,0

p2

2m
â+
~p â~p +

1
2V

∑

~p,0

U~p%̂~p%̂
+
~p . (1)

Here â+
~p and â~p are, respectively, the “creation” and “an-

nihilation” operators of a free atoms with momentum ~p; U~p
is the Fourier transform of a S-wave pseudopotential in the
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momentum space:

U~p =
4πd~2

m
, (2)

where d is the scattering amplitude; and the Fourier compo-
nent of the density operator presents as

%̂~p =
∑

~p1

â+
~p1−~p â~p1 . (3)

According to the Bogoliubov theory [3], it is necessary to
separate the atoms in the condensate from those atoms filling
states above the condensate. In this respect, the operators â0
and â+

0 are replaced by c-numbers â0 = â+
0 =
√

N0 within the
approximation of the presence of a macroscopic number of
condensate atoms N0 � 1. This assumption leads to a broken
Bose-symmetry law for atoms in the condensate state. To ex-
tend the concept of a broken Bose-symmetry law for bosons
in the condensate, we apply the Penrose-Onsager definition
of Bose condensation [10]:

lim
N0,N→∞

N0

N
= const. (4)

This reasoning is a very important factor in the micro-
scopic investigation of the model non-ideal Bose gas because
the presence of a macroscopic number of atoms in the con-
densate means new excitations in the model Bose-gas for su-
perfluid liquid helium:

N~p,0

N0
= α � 1 ,

where N~p,0 is the occupation number of atoms in the quan-
tum levels above the condensate; α is the small number. Ob-
viously, conservation of the total number of atoms suggests
that the number of the Bose-condensed atoms N0 essentially
deviates from the total number N:

N0 +
∑

~p,0

N~p,0 = N ,

which is satisfied for the present model. In this context,

α =
N − N0

N0
∑
~p,0 1

→ 0 ,

where
∑
~p,0 1→ ∞.

For futher calculations, we replace the initial assumptions
of our model by the approximation

lim
N0→∞

N~p

N0
≈ δ~p,0 (5)

The next step is to find the property of operators
â+
~p1−~p√

N0
,

â~p1−~p√
N0

by applying (5). Obviously,

lim
N0→∞

â+
~p1−~p√
N0

= δ~p1,~p (6)

and

lim
N0→∞

â~p1−~p√
N0

= δ~p1,~p . (7)

Excluding the term ~p1 = 0, the density operators of bo-
sons %̂~p and %̂+

~p take the following forms:

%̂~p =
√

N0

(
â+
−~p +

√
2 ĉ~p

)
(8)

and
%̂+
~p =

√
N0

(
â−~p +

√
2 ĉ+

~p

)
(9)

where ĉ~p and ĉ+
~p are, respectively, the Bose-operators of

density-quasiparticles presented in reference [8], which in
turn are the Bose-operators of bosons used in expressions (6)
and (7):

ĉ~p =
1√
2N0

∑

~p1,0

â+
~p1−~p â~p1 =

1√
2

∑

~p1,0

δ~p1,~p â~p1 =
â~p√

2
(10)

and

ĉ+
~p =

1√
2N0

∑

~p1,0

â+
~p1

â~p1−~p =
1√
2

∑

~p1,0

δ~p1,~p â+
~p1

=
â+
~p√
2
. (11)

Thus, we reach to the density operators of atoms %̂~p and
%̂+
~p , presented by Bogoliubov [3], at approximation N0

N =const,
which describes the gas of atoms 4He with strongly interac-
tion via S-wave scattering:

%̂~p =
√

N0

(
â+
−~p + â~p

)
(12)

and
%̂+
~p =

√
N0

(
â−~p + â+

~p

)
(13)

which shows that the density quasiparticles are absent.
The identical picture is observed in the case of the density

excitations, as predicted by Glyde, Griffin and Stirling [5–7]
proposing %̂~p in the following form:

%̂~p =
√

N0

(
â+
−~p + â~p + %̃~p

)
(14)

where terms involving ~p1 , 0 and , ~p1 , ~p are written sepa-
rately; and the operator %̃~p describes the density-excitations:

%̃~p =
1√
N0

∑

~p1,0,~p1,~p

â+
~p1−~p â~p1 . (15)

After inserting (6) and (7) into (15), the term, representing
the density-excitations vanishes because %̃~p = 0.

Consequently, the Hamiltonian of system, presented in (1)
with also (12) and (13), represents an extension of the Bogoli-
ubov Hamiltonian, with the approximation N0

N = const, which
in turn does not depend on the actual amplitude of interac-
tion. In the case of strongly interacting atoms, the Hamilto-
nian takes the following form:

Ĥa =
∑

~p,0

(
p2

2m
+mv2

)
â+
~p â~p +

mv2

2

∑

~p,0

(
â+
−~p â+

~p + â~p â−~p
)
, (16)
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where v =

√
U~pN0

mV =

√
4πd~2N0

m2V is the velocity of sound in
the Bose gas, and which depends on the density atoms in the
condensate N0

V .
For the evolution of the energy level, it is a necessary to

diagonalize the Hamiltonian Ĥa which is accomplished by in-
troduction of the Bose-operators b̂+

~p and b̂~p by using of the
Bogoliubov linear transformation [3]:

â~p =
b̂~p + L~p b̂+

−~p√
1 − L2

~p

, (17)

where L~p is the unknown real symmetrical function of a mo-
mentum ~p.

Substitution of (17) into (16) leads to

Ĥa =
∑

~p

ε~p b̂+
~p b̂~p (18)

hence we infer that b̂+
~p and b̂~p are the “creation” and “annihi-

lation” operators of a Bogoliubov quasiparticles with energy:

ε~p =

[(
p2

2m

)2

+ p2v2
]1/2

. (19)

In this context, the real symmetrical function L~p of a mo-
mentum ~p is found

L2
~p =

p2

2m + mv2 − ε~p
p2

2m + mv2 + ε~p
. (20)

As is well known, the strong interaction between the he-
lium atoms is very important and reduces the condensate frac-
tion to 10 percent or N0

N = 0.1 [5], at absolute zero. However,
as we suggest, our model of dilute Bose gas may be valuable
in describing thermodynamic properties of superfluid liquid
helium, because the S-wave scattering between two atoms,
with coordinates ~r1 and ~r2 in coordinate space, is represented
by the repulsive potential delta-function U~r =

4πd~2δ~r
m from

~r = ~r1−~r2. The model presented works on the condensed frac-
tion N0

N � 1 and differs from the Bogoliubov model where
N0
N ≈ 1.

3 Formation singlet spinless neutron pairs

We now attempt to describe the thermodynamic property of
a helium liquid-neutron gas mixture. In this context, we con-
sider a neutron gas as an ideal Fermi gas consisting of n
free neutrons with mass mn which interact with N interact-
ing atoms of a superfluid liquid helium. The helium-neutron
mixture is confined in a box of volume V . The Hamiltonian of
a considering system Ĥa,n consists of the term of the Hamil-
tonian of Bogoliubov excitations Ĥa in (18) and the term of
the Hamiltonian of an ideal Fermi neutron gas as well as the

term of interaction between the density of the Bogoliubov ex-
citations and the density of the neutron modes:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ+

+
∑

~p

ε~p b̂+
~p b̂~p +

1
2V

∑

~p,0

U0 %̂~p %̂−~p,n ,
(21)

where â+
~p,σ and â~p,σ are, respectively, the operators of cre-

ation and annihilation for free neutron with momentum ~p, by
the value of its spin z-component σ =+

−
1
2 ; U0 is the Fourier

transform of the repulsive interaction between the density of
the Bogoliubov excitations and the density modes of the neu-
trons:

U0 =
4πd0~

2

µ
, (22)

where d0 is the scattering amplitude between a helium atoms
and neutrons; µ = m·mn

m+mn
is the relative mass.

Hence, we note that the Fermi operators â+
~p,σ and â~p,σ sat-

isfy to the Fermi commutation relations [· · ·]+ as:
[
â~p, σ, â+

~p′ , σ′

]

+

= δ
~p, ~p′

δσ,σ′ , (23)

[â~p,σ, â ~p′ ,σ′
]+ = 0 , (24)

[â+
~p,σ, â

+
~p′ ,σ′

]+ = 0 . (25)

The density operator of neutrons with spin σ in momen-
tum ~p is defined as

%̂~p,n =
∑

~p1,σ

â+
~p1−~p,σ â~p1,σ , (26)

where %̂+
~p,n = %̂−~p,n.

The operator of total number of neutrons is
∑

~p,σ

â+
~p,σ â~p,σ = n̂; (27)

on other hand, the density operator, in the term of the Bo-
goliubov quasiparticles %̂~p included in (21), is expressed by
following form, to application (17) into (12):

%̂~p =
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
. (28)

Hence, we note that the Bose- operator b̂~p commutates
with the Fermi operator â~p,σ because the Bogoliubov excita-
tions and neutrons are an independent.

Now, inserting of a value of operator %̂~p from (28) into
(21), which in turn leads to reducing the Hamiltonian of sys-
tem Ĥa,n:

Ĥa,n =
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

∑
~p ε~p b̂+

~p b̂~p +

+
U0
√

N0

2V

∑

~p

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n .

(29)

Vahan Minasyan and Valentin Samoilov. Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture 5



Volume 4 PROGRESS IN PHYSICS October, 2010

Hence, we note that the Hamiltonian of system Ĥa,n in
(29) is a similar to the Hamiltonian of system an electron gas-
phonon gas mixture which was proposed by Frölich at solving
of the problem superconductivity (please, see the Equation
(16) in Frölich, Proc. Roy. Soc. A, 1952, v.215, 291–291 in
the reference [11]), contains a subtle error in the term of the
interaction between the density of phonon modes and the den-
sity of electron modes which represents a third term in right
side of Equation (16) in [11] because the later is described
by two sums, one from which goes by the wave vector ~w but
other sum goes by the wave vector ~k. This fact contradicts to
the definition of the density operator of the electron modes %̂~w
(please, see the Equation (12) in [11]) which in turn already
contains the sum by the wave vector ~k, and therefore, it is
not a necessary to take into account so-called twice summa-
tions from~k and ~w for describing of the term of the interaction
between the density of phonon modes and the density of elec-
tron modes Thus, in the case of the Frölich, the sum must be
taken only by wave vector w, due to definition of the density
operator of electron modes with the momentum of phonon ~w.

To allocate anomalous term in the Hamiltonian of system
Ĥa,n, which denotes by third term in right side in (29), we
apply the Frölich approach [11] which allows to do a canoni-
cal transformation for the operator Ĥa,n within introducing an
operator H̃:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)
, (30)

which is decayed by following terms:

H̃ = exp
(
Ŝ +

)
Ĥa,n exp

(
Ŝ
)

=

= Ĥa,n −
[
Ŝ , Ĥa,n

]
+

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
− · · · ,

(31)

where the operators represent as:

Ŝ + =
∑

~p

Ŝ +
~p (32)

and
Ŝ =

∑

~p

Ŝ ~p (33)

and satisfy to a condition Ŝ + = −Ŝ .
In this respect, we assume that

Ŝ ~p = A~p

(
%̂~p,nb̂~p − %̂+

~p,nb̂+
~p

)
, (34)

where A~p is the unknown real symmetrical function from a
momentum ~p. In this context, at application Ŝ ~p from (34) to
(33) with taking into account %̂+

−~p,n = %̂~p,n, then we obtain

Ŝ =
∑

~p

Ŝ ~p =
∑

~p

A~p %̂~p,n
(
b̂=~p − b̂+

~p

)
. (35)

In analogy manner, at %̂+
−~p,n = %̂~p,n, we have

Ŝ + =
∑
~p Ŝ +

~p =
∑
~p A~p %̂

+
~p,n

(
b̂+
~p − b̂−~p

)
=

= −
∑

~p

A~p %̂~p,n
(
b̂−~p − b̂+

~p

)
.

(36)

To find A~p, we substitute (29), (35) and (36) into (31).
Then,

[
Ŝ , ˆHa,n

]
= 1

V
∑
~p A~p U0

√
N0

√
1+L~p
1−L~p

%̂~p,n %̂−~p,n +

+
∑

~p

A~p ε~p
(
b̂+
~p + b̂−~p

)
%̂−~p,n ,

(37)

1
2

[
Ŝ ,

[
Ŝ , Ĥa,n

]]
=

∑

~p

A2
~p ε~p %~p,n %̂−~p,n (38)

and [Ŝ , [Ŝ , [Ŝ , Ĥa,n]]] = 0 within application a Bose commu-
tation relations as [%~p1,n, %̂~p2,n] = 0 and [â+

~p1,σ
â~p1,σ, %̂~p2,n] = 0.

Thus, the form of new operator H̃ in (31) takes a follow-
ing form:

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σ â~p,σ +

+
1

2V

∑

~p

U0
√

N0

√
1 + L~p
1 − L~p

(
b̂+
−~p + b̂~p

)
%̂−~p,n −

−
∑

~p

A~p ε~p
(
b̂+
−~p + b̂~p

)
%̂−~p,n +

∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n −

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n .

(39)

The transformation of the term of the interaction between
the density of the Bogoliubov modes and the density neu-
tron modes is made by removing of a second and fifth terms
in right side of (39) which leads to obtaining of a quantity
for A~p:

A~p =
U0
√

N0

2ε~pV

√
1 + L~p
1 − L~p

. (40)

In this respect, we reach to reducing of the new Hamilto-
nian of system (39):

H̃ =
∑
~p ε~p b̂+

~p b̂~p +
∑
~p,σ

p2

2mn
â+
~p,σâ~p,σ−

− 1
V

∑

~p

A~pU0
√

N0

√
1 + L~p
1 − L~p

%̂~p,n %̂−~p,n+

+
∑

~p

A2
~p ε~p %̂~p,n %̂−~p,n .

(41)

As result, the new form of Hamiltonian system takes a
following form:

H̃ =
∑

~p

ε~p b̂+
~p b̂~p + Ĥn , (42)
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where Ĥn is the effective Hamiltonian of a neutron gas which
contains an effective interaction between neutron modes:

Ĥn =
∑

~p,σ

p2

2mn
â+
~p,σ â~p,σ +

1
2V

∑

~p

V~p %̂~p,n %̂−~p,n , (43)

where V~p is the effective potential of the interaction between
neutron modes which takes a following form at substituting a
value of A~p from (40) into (41):

V~p = −2A~pU0
√

N0

√
1+L~p
1−L~p

+ 2A2
~p ε~pV =

= −
U2

0 N0

(
1 + L~p

)

Vε~p
(
1 − L~p

) .

(44)

In this letter, we consider following cases:
1. At low momenta atoms of a helium p � 2mv, the

Bogoliunov’s quasiparticles in (19) represent as the phonons
with energy ε~p ≈ pv which in turn defines a value L2

~p ≈
1− p

mv
1+

p
mv
≈

(
1 − p

mv

)2
in (20) or L~p ≈ 1 − p

mv . In this context, the
effective potential between neutron modes takes a following
form:

V~p ≈ −
2mU2

0 N0

V p2 = −4π~2e2
1

p2 . (45)

The value e1 is the effective charge, at a small momenta
of atoms:

e1 =
U0

~

√
mN0

2Vπ
.

2. At high momenta atoms of a helium p � 2mv, we
obtain ε~p ≈ p2

2m + mv2 in (19) which in turn defines L~p ≈ 0
in (20). Then, the effective potential between neutron modes
presents as:

V~p ≈ −
mU2

0 N0

V p2 = −4π~2e2
2

p2 , (46)

where e2 is the effective charge, at high momenta of atoms:

e2 =
U0

2~

√
mN0

Vπ
.

Consequently, in both cases, the effective scattering be-
tween two neutrons is presented in the coordinate space by a
following form:

V(~r) =
1
V

∑

~p

V~p ei ~p~r~ = −e2
∗
r
, (47)

where e∗ = e1, at small momenta of atoms; and e∗ = e2, at
high momenta.

The term of the interaction between two neutrons V(~r) in
the coordinate space mediates the attractive Coulomb inter-
action between two charged particles with mass of neutron

mn, having the opposite effective charges e∗ and −e∗, which
together create a neutral system. Indeed, the effective Hamil-
tonian of a neutron gas in (43) is rewrite down in the space of
coordinate by following form:

Ĥn =

n
2∑

i=1

Ĥi = − ~2

2mn

n∑

i=1

∆i −
∑

i< j

e2
∗

| ~ri − ~r j | , (48)

where Ĥi is the Hamiltonian of system consisting two neutron
with opposite spin which have a coordinates ~ri and ~r j:

Ĥi = − ~2

2mn
∆i − ~2

2mn
∆ j −

e2
∗

| ~ri − ~r j | . (49)

The transformation of considering coordinate system to
the relative coordinate ~r = ~ri −~r j and the coordinate of center
mass ~R =

~ri+~r j

2 , we have

Ĥi = − ~2

4mn
∆R − ~2

mn
∆r − e2

∗
r
. (50)

In analogy of the problem Hydrogen atom, two neutrons
with opposite spins is bound as a spinless neutron pair with
binding energy:

En = − mne4
∗

4~2n2 = −const
n2

(N0

V

)2

, (51)

where n is the main quantum number which determines a
bound state on a neutron pair, at const > 0.

Thus, a spinless neutron pair with mass m0 = 2mn is cre-
ated in a helium liquid-dilute neutron gas mixture.

4 Formation of the Frölich electron pairs in supercon-
ductivity

We now attempt to describe the thermodynamic property of
the model a phonon-electron gas mixture confined in a box
of volume V . In this context, we consider an electron gas
consisting of n free electrons with mass me which interact
with phonon modes of lattice by constancy interaction [11].
The Frölich Hamiltonian has a following form:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 (52)

with
Ĥ0 =

∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ , (53)

Ĥ1 =
∑

~w

~ws b̂+
~w b̂~w , (54)

Ĥ2 = i
∑

~w

Dw

(
b̂~w %̂+

~w − b̂+
~w %̂~w

)
, (55)

where d̂+
~k,σ

and d̂~k,σ are, respectively, the Fermi operators of
creation and annihilation for free electron with wave-vector
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~k and energy ε~k = ~2k2

2me
, by the value of its spin z-component

σ =+
−

1
2 ; s is the velocity of phonon; b̂+

~w,σ
and b̂~w,σ are, respec-

tively, the Bose operators of creation and annihilation for free
phonon with wave-vector ~w and energy~ws; Dw is the con-
stant of the interaction between the density of the phonon ex-
citations and the density modes of the electrons which equals

to Dw =

√
α~ws

V (where α = C”2

2Ms2 n
V

is the constant characteriz-

ing of the metal; C” is the constant of the interaction; M is the
mass of ion); %̂~w is the density operator of the electron modes
with wave vector ~w which is defined as:

%̂~w =
∑

~k,σ

d̂+
~k−~w,σd̂~k,σ (56)

and
%̂+
~w =

∑

~k,σ

d̂+
~k,σ

d̂~k−~w,σ , (57)

where %̂+
~w

= %̂−~w.
Hence, we note that the Fermi operators d̂+

~k,σ
and d̂~k,σ sat-

isfy to the Fermi commutation relations [· · ·]+ presented in
above for neutrons (23–25).

Obviously, the Bose- operator b̂~w commutates with the
Fermi operator d̂~k,σ because phonon excitations and electron
modes are an independent.

Now, we introduce new transformation of the Bose-
operators of phonon modes b̂+

~w
and b̂~w by the new Bose -

operators of phonon excitations ĉ+
~w

and ĉ~w which help us to
remove an anomalous term:

b̂~w = −iĉ~w (58)

and
b̂+
~w = iĉ+

~w . (59)

Then, Ĥ1 in (56) and Ĥ2 in (57) take following forms:

Ĥ1 =
∑

~w

~ws ĉ+
~wĉ~w , (60)

Ĥ2 =
∑

~w

Dw

(
ĉ~w %̂+

~w + ĉ+
~w %̂~w

)
=

∑

~w

Dw %̂~w
(
ĉ~w + ĉ+

~w

)
. (61)

To allocate anomalous term in the Hamiltonian of system
Ĥ in (54), presented by the term in (63), we use of the canon-
ical transformation for the operator Ĥ presented by formulae
(30). Due to this approach, we obtain new form for operator
Hamiltonian H̃:

H̃ =
∑

~w

~ws b̂+
~w b̂~w + Ĥe , (62)

where

Ĥe =
∑

~k,σ

ε~k d̂+
~k,σ

d̂~k,σ +
1

2V

∑

~w

V~w %̂~w %̂−~w , (63)

hence V~w is the effective potential of the interaction between

electron modes, which at taking into account Dw =

√
α~ws

V ,
has the form:

V~w = −2D2
wV

~ws
= −2α . (64)

Consequently, the effective scattering between two elec-
trons in the coordinate space takes a following form:

V(~r) =
1
V

∑

~w

V~w ei~w~r = −2αδ(~r) (65)

at using of 1
V

∑
~w ei~w~r = δ(~r).

Using of the relative coordinate ~r = ~ri − ~r j and the coor-
dinate of center mass ~R =

~ri+~r j

2 , we reach to the Hamiltonian
of system consisting two electron with opposite spins:

Ĥi = − ~2

4me
∆R − ~2

me
∆r + V(~r) . (66)

To find the binding energy E < 0 of electron pair, we
search the solution of the Schrödinger equation with intro-
duction of wave function ψ(~r):

Ĥi ψs(~r) = Eψs(~r) .

In this respect, we have a following equation

− ~
2

me
∆rψs(~r) + V(~r)ψs(~r) = Eψ(~r) (67)

which may determine the binding energy E < 0 of electron
pair, if we claim that the condition p f d

~
� 1 always is fulfilled.

This reasoning implies that the effective scattering between
two electrons is presented by the coordinate space:

V(~r) =
1
V

∑

~w

V~w ei~w~r = 4π
∫ w f

0
V~w w

2 sin(wr)
wr

dw , (68)

where we introduce a following approximation as sin(wr)
wr ≈

1 − w2r2

6 at conditions w ≤ w f and w f d � 1 (w f =
(

3π2n
V

) 1
3 is

the Fermi wave number). The later condition defines a state
for distance r between two neighboring electrons which is a

very small r � 1
w f

=
(

V
3π2n

) 1
3 where

4πw3
f

3 = n
2V . Then,

V(~r) ≈ −αn
V

+ α
( n
V

) 5
3

r2. (69)

Thus, the effective interaction between electron modes
V(~r) = −2αδ(~r), presented in (65) is replaced by a screen-
ing effective scattering presented by (69). This approximation
means that there is an appearance of a screening character in
the effective scattering because one depends on the density
electron modes. Now, denoting E = Es, and then, we arrive
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to an important equation for finding a binding energy Es of
singlet electron pair:

[
− ~

2

me
∆r − nα

V
+ α

( n
V

) 5
3

r2
]
ψs(r) = Es ψs(r) , (70)

which we may rewrite down as:

d2ψs(r)
dr2 +

(
λ − θ2r2

)
ψs(r) = 0 , (71)

where we take θ = −
√

meα
~2

(
n
V

) 5
3 , and λ =

meEs
~2 − αmen

~2V .

Now, introducing the wave function ψs(r) via the Chebi-
shev-Hermit function Hs(it) from an imaginary number as ar-
gument it [15] (where i is the imaginary one; t is the real
number; s = 0; 1; 2; . . .), the equation (71) has a following
solution:

ψs(~r) = e−θ·r
2
Hs

(√
θ r

)
,

where

Hs(it) = ise−t2 dset2

dts

at θ < 0, where

λ = θ

(
s +

1
2

)
.

Consequently, the quantity of the binding energy Es of
electron pair with mass m0 = 2me takes a following form:

Es = −
√
α~2

me

( n
V

) 5
3
(
s +

1
2

)
+
αn
V

< 0 (72)

at s = 0; 1; 2; . . ..
The normal state of electron pair corresponds to quantity

s = 0 which defines maximal binding energy of electron pair:

E0 = −
√
α~2

me

( n
V

) 5
3

+
αn
V

< 0 . (73)

This fact implies that the formation of the superconduct-
ing phase in superconductor is appeared by condition for den-
sity of metal n

V :

n
V
>

(
C2me

2Ms2~2

) 3
2

.

At choosing C ≈ 10 eV [11]; M ≈ 5×10−26 kg; s ≈ 3×103

m, we may estimate density of electron n
V > 1027 m−3 which

may represent as superconductor.

Acknowledgements

We thank Professor Marshall Stoneham for help with the En-
glish.

Submitted on April 12, 2010 / Accepted on April 19, 2010

References
1. London F. Nature, 1938, v. 141, 643.

2. Landau L. Journal of Physics (USSR), 1941, v. 5, 77.

3. Bogoliubov N.N. On the theory of superfludity. Journal of Physics
(USSR), 1947, v. 11, 23.

4. Bishop R.F. J. Low Temp. Physics, 1974, v. 15, 601.

5. Blagoveshchenskii N.N. et al. Physical Review B, 1994, v. 50, 16550.

6. Glyde H.R., Griffin A. Physical Review Letters, 1990, v. 65, 1454.

7. Stirling W.G.,Griffin A., Glyde H.R. Physical Review B, 1990, v. 41,
4224.

8. Minasyan V.N. et al. Physical Review Letters, 2003, v. 90, 235301.

9. Morawetz K. et al. Physical Review B, 2007, v. 76, 075116.

10. Penrose O., Onsager L. Physical Review, 1956, v. 104, 576.
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