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We present a new model for solids which is based on the stimulated vibration of inde-
pendent neutral Fermi-atoms, representing independent harmonic oscillators with natu-
ral frequencies, which are excited by actions of the longitudinal and transverse elastic
waves. Due to application of the principle of elastic wave-particle duality, we predict
that the lattice of a solid consists of two type Sound Boson-Particles with spin 1 with fi-
nite masses. Namely, these lattice Boson-Particles excite the longitudinal and transverse
phonons with spin 1. In this letter, we estimate the masses of Sound Boson-Particles
which are around 500 times smaller than the atom mass.

1 Introduction

The original theory proposed by Einstein in 1907 was of great
historical relevance [1]. In the Einstein model, each atom os-
cillates relatively to its neighbors in the lattice which execute
harmonic motions around fixed positions, the knots of the lat-
tice. He treated the thermal property of the vibration of a lat-
tice of N atoms as a 3N harmonic independent oscillator by
identical own frequency Ω0 which was quantized by appli-
cation of the prescription developed by Plank in connection
with the theory of Black Body radiation. The Einstein model
could obtain the Dulong and Petit prediction at high temper-
ature but could not reproduce an adequate representation of
the the lattice at low temperatures. In 1912, Debye proposed
to consider the model of the solid [2], by suggestion that the
frequencies of the 3N harmonic independent oscillators are
not equal as it was suggested by the Einstein model. In ad-
dition to his suggestion, the acoustic spectrum of solid may
be treated as if the solid represented a homogeneous medium,
except that the total number of independent elastic waves is
cut off at 3N, to agree with the number of degrees of freedom
of N atoms. In this respect, Debye stated that one longitudinal
and two transverse waves are excited in solid. These veloc-
ities of sound cannot be observed in a solid at frequencies
above the cut-off frequency. Also, he suggested that phonon
is a spinless. Thus, the Debye model correctly showed that
the heat capacity is proportional to the T 3 law at low temper-
atures. At high temperatures, he obtained the Dulong-Petit
prediction compatible to experimental results.

In this letter, we propose a new model for solids which
consists of neutral Fermi-atoms, fixed in the knots of lattice.
In turn, within the formalism of Debye, we may predict that
lattice represents as the Bose-gas of Sound-Particles with fi-
nite masses ml and mt, corresponding to a longitudinal and a
transverse elastic field. In this sense, the lattice is considered
as a new substance of matter consisting of Sound-Particles,
which excite the one longitudinal and one transverse elastic
waves (this approach is differ from Debye one). These waves
act on the Fermi-atoms which are vibrating with the natural

frequencies Ωl and Ωt. Thus, there are stimulated vibrations
of the Fermi-atoms by under action of longitudinal and trans-
verse phonons with spin 1. In this context, we introduce a
new principle of elastic wave-particle duality, which allows
us to build the lattice model. The given model leads to the
same results as presented by Debye’s theory.

2 Analysis

As we suggest, the transfer of heat from one part of the body
to another occurs through the lattice. This process is very
slow. Therefore, we can regard any part of the body as ther-
mally insulated, and there occur adiabatic deformations. In
this respect, the equation of motion for an elastic continuum
medium [3] represents as

%~̈u(~r, t) = c2
t ∇2~u(~r, t) + (c2

l − c2
t ) grad · div ~u(~r, t) (1)

where ~u = ~u(~r, t) is the vector displacement of any particle
in solid; cl and ct are the velocities of a longitudinal and a
transverse ultrasonic wave, respectively.

We shall begin by discussing a plane longitudinal elas-
tic wave with condition curl~u(~r, t) = 0 and a plane trans-
verse elastic wave with condition div~u(~r, t) = 0 in an infinite
isotropic medium. In this respect, in direction of vector ~r
can be propagated two transverse and one longitudinal elastic
waves. The vector displacement ~u(~r, t) is the sum of the vec-
tor displacements of a longitudinal ul(~r, t) and of a transverse
ultrasonic wave ut(~r, t):

~u(~r, t) = ~ul(~r, t) + ~ut(~r, t) (2)

where ~ul(~r, t) and ~ut(~r, t) are perpendicular with each other or
~ul(~r, t) · ~ut(~r, t) = 0.

In turn, the equations of motion for a longitudinal and a
transverse elastic wave take the form of the wave-equations:

∇2~ul(~r, t) −
1
c2

l

∂2~ul(~r, t)
∂t2 = 0 (3)

∇2~ut(~r, t) −
1
c2

t

∂2~ul(~r, t)
∂t2 = 0. (4)
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It is well known, in quantum mechanics, a matter wave is
determined by electromagnetic wave-particle duality or de
Broglie wave of matter [4]. We argue that in an analogous
manner, we may apply the elastic wave-particle duality. This
reasoning allows us to present a model of elastic field as the
Bose-gas consisting of the Sound Bose-particles with spin 1
and non-zero rest masses, which are interacting with each
other. In this respect, we may express the vector displace-
ment of a longitudinal ultrasonic wave ul(~r, t) via the second
quantization vector wave functions of one Sound Boson of
the longitudinal wave. In analogy manner, vector displace-
ment of a transverse ultrasonic waves ut(~r, t) is expressed via
the second quantization vector wave functions of one Sound
Boson of the transverse wave:

~ul(~r, t) = ul

(
φ(~r, t) + φ+(~r, t)

)
(5)

and

~ut(~r, t) = ut

(
ψ(~r, t) + ψ+(~r, t)

)
(6)

where ul and ut are, respectively, the norm coefficients for
longitudinal and transverse waves; ~φ(~r, t) and ~φ+(~r, t) are, re-
spectively, the second quantization wave vector functions for
“creation” and “annihilation” of one Sound-Particle of the
longitudinal wave, in point of coordinate ~r and time t whose
direction ~l is directed toward to wave vector ~k; ~ψ(~r, t) and
~ψ+(~r, t) are, respectively, the second quantization wave vec-
tor functions for “creation” and “annihilation” of one Sound-
Particle of the transverse wave, in point of coordinate ~r and
time t, whose direction ~t is perpendicular to the wave vector
~k:

~φ(~r, t) =
1
√

V

∑
~k,σ

~a~k,σei(~k~r−kclt) (7)

~φ+(~r, t) =
1
√

V

∑
~k,σ

~a+~k,σe−i(~k~r−kclt) (8)

and
~ψ(~r, t) =

1
√

V

∑
~k,σ

~b~k,σei(~k~r+−kct t) (9)

~ψ+(~r, t) =
1
√

V

∑
~k,σ

~b+~k,σe−i(~k~r−kct t) (10)

with condition∫
φ+(~r, σ)φ(~r, σ)dV +

∫
ψ+(~r, σ)ψ(~r, σ)dV =

= no +
∑
~k,0,σ

â+~k,σâ~k,σ +
∑
~k,0,σ

b̂+~k,σb̂~k,σ = n̂
(11)

where ~a+
~k,σ

and ~a~k,σ are, respectively, the Bose vector-oper-
ators of creation and annihilation for one free longitudinal

Sound Particle with spin 1, described by a vector ~k whose di-
rection coincides with the direction~l of the longitudinal wave;
~b+
~k,σ

and ~b~k,σ are, respectively, the Bose vector-operators of
creation and annihilation for one free transverse Sound Parti-
cles with spin 1, described by a vector ~k which is perpendic-
ular to the direction ~t of the transverse wave; n̂ is the operator
of total number of the Sound Particles; n̂0 = n0,l + n0,t is the
total number of Sound Particles in the condensate level with
wave vector ~k = 0 which consists of a number of Sound Par-
ticles n0,l of the longitudinal wave and a number of Sound
Particles n0,t of the transverse wave.

The energies of longitudinal ~
2k2

2ml
and transverse ~

2k2

2mt
free

Sound Particles have the masses of Sound Particles ml and
mt and the value of its spin z-component σ = 0;±1. In this
respect, the vector-operators ~a+

~k,σ
, ~a~k,σ and ~b+

~k,σ
, ~b~k,σ satisfy

the Bose commutation relations as:[
â~k,σ, â

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[â~k,σ, â~k′ ,σ′ ] = 0

[â+~k,σ, â
+
~k′ ,σ′

] = 0

and [
b̂~k,σ, b̂

+
~k′ ,σ′

]
= δ~k, ~k′ · δσ,σ′

[b̂~k,σ, b̂~k′ ,σ′ ] = 0

[b̂+~k,σ, b̂
+
~k′ ,σ′

] = 0

Thus, as we see, the vector displacements of a longitudi-
nal ~ul and of a transverse ~ut ultrasonic wave satisfy the wave-
equations of (3) and (4) and have the forms:

~ul(~r, t) = ~u0,l +
ul√
V

∑
~k,0,σ

(
~a~k,σei(~k~r−kclt) + ~a+~k,σe−i(~k~r−kclt)

)
(12)

and

~ut(~r, t) = ~u0,t +
ut√
V

∑
~k,0,σ

(
~b~k,σei(~k~r−kct t) +~b+~k,σe−i(~k~r−kct t)

)
. (13)

While investigating superfluid liquid, Bogoliubov [5] sepa-
rated the atoms of helium in the condensate from those atoms,
filling states above the condensate. In an analogous manner,
we may consider the vector operators â0 = ~l

√
n0,l, b̂0 = ~t

√
n0,t

and â+0 = ~l
√

n0,l, b̂+0 = ~t
√

n0,t as c-numbers (where ~l and ~t are
the unit vectors in the direction of the longitudinal and trans-
verse elastic fields, respectively, and also ~l · ~t = 0) within the
approximation of a macroscopic number of Sound Particles in
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the condensate n0,l � 1 and n0,t � 1. This assumptions lead
to a broken Bose-symmetry law for Sound Particles of longi-
tudinal and transverse waves in the condensate. In fact, we
may state that if a number of Sound Particles of longitudinal
and transverse waves fills a condensate level with the wave
vector ~k = 0, then they reproduce the constant displacements
~u0,l =

2ul~e
√

n0,l√
V

and ~u0,t =
2ut~e
√

n0,t√
V

.
In this context, we may emphasize that the Bose vec-

tor operators ~a+
~k,σ

, ~a~k,σ and ~b+
~k,σ

and ~b~k,σ communicate with
each other because the vector displacements of a longitudinal
~ul(~r, t) and a transverse ultrasonic wave ~ut(~r, t) are indepen-
dent, and in turn, satisfy to the Bose commutation relation
[~ul(~r, t), ~ut(~r, t)] = 0.

Now, we note that quantization of elastic field means that
this field operator does not commute with its momentum den-
sity. Taking the commutators gives[

~ul(~r, t), ~pl(~r
′
, t)

]
= i~δ3

~r−~r′ (14)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
= i~δ3

~r−~r′ (15)

where the momentums of the longitudinal and transverse
waves are defined as

~pl(~r, t) = ρl(~r)
∂~ul(~r, t)
∂t

(16)

and

~pt(~r, t) = ρt(~r)
∂~ut(~r, t)
∂t

(17)

where ρl(~r) and ρt(~r) are, respectively, the mass densities of
longitudinal and transverse Sound Particles in the coordinate
space, which are presented by the equations

ρl(~r) = ρ0,l +
∑
~k,0

ρl(~k)ei~k~r (18)

and
ρt(~r) = ρ0,t +

∑
~k,0

ρt(~k)ei~k~r. (19)

The total mass density ρ(~r) is

ρ(~r) = ρ0 +
∑
~k,0

ρl(~k)ei~k~r +
∑
~k,0

ρt(~k)ei~k~r (20)

where ρl(~k) and ρt(~k) are, respectively, the fluctuations of the
mass densities of the longitudinal and transverse Sound Par-
ticles which represent as the symmetrical function from wave
vector ~k or ρl(~k) = ρl(−~k); ρt(~k) = ρt(−~k); ρ0 = ρ0,l + ρ0,t is
the equilibrium density of Sound Particles.

Applying (12) and (13) to (16) and (17), and taking (18)
and (19), we get

~pl(~r, t) = − iclul√
V

∑
~k′

∑
~k,σ kρl(~k

′
)
(
~a~k,σe−ikclt−

− ~a+−~k,σeikclt
)
ei(~k+~k

′
)~r

(21)

~pt(~r, t) = − iclut√
V

∑
~k′

∑
~k,σ ρt(~k

′
)k

(
~b~k,σe−ikclt−

− ~b+−~k,σeikclt
)
ei(~k+~k

′
)~r

(22)

Application of (12), (21) and (13), (22) to (14) and (15), and
taking the Bose commutation relations presented above, we
obtain [

~ul(~r, t), ~pl(~r
′
, t)

]
=

2iu2
l cl

V

∑
~k

kρl(~k)ei~k(~r−~r′ ) (23)

and [
~ut(~r, t), ~pt(~r

′
, t)

]
=

2iu2
t ct

V

∑
~k

kρt(~k)ei~k(~r−~r′ ) (24)

The right sides of Eqs. (14) and (23) as well as Eqs. (15) and
(24) coincide when

ρl(~k) =
~

2ku2
l cl

(25)

and
ρt(~k) =

~

2ku2
t ct

(26)

by using
1
V

∑
~k

ei~k(~r−~r′ ) = δ3
~r−~r′

3 Sound-Particles and Phonons

The Hamiltonian operator Ĥ of the system, consisting of the
vibrated Fermi-atoms with mass M, is represented by the fol-
lowing form

Ĥ = Ĥl + Ĥt (27)

where

Ĥl =
MN
2V

∫ (
∂~ul

∂t

)2

dV +
NMΩ2

l

2V

∫
(~ul)2dV (28)

and

Ĥt =
MN
2V

∫ (
∂~ut

∂t

)2

dV +
NMΩ2

t

2V

∫
(~ut)2dV (29)

with Ωl and Ωt which are, respectively, the natural frequen-
cies of the atom by action of longitudinal and transverse elas-
tic waves.
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To find the Hamiltonian operator Ĥ of the system, we use
the framework of Dirac [6] for the quantization of electro-
magnetic field:

∂~ul(~r, t)
∂t

= − iclul√
V

∑
~k,σ

k
(
~a~k,σe−ikclt − ~a+−~k,σeikclt

)
ei~k~r (30)

and

∂~ut(~r, t)
∂t

= − ictut√
V

∑
~k,σ

k
(
~b~k,σe−ikct t − ~b+−~k,σeikct t

)
ei~k~r (31)

which by substituting into (28) and (29) using (12) and (13),
we obtain the reduced form for the Hamiltonian operators Ĥl

and Ĥt:

Ĥl =
∑
~k,σ

[(
MNu2

l c2
l k2

V +
MNu2

l Ω
2
l

V

)
~a+
~k,σ

a~k,σ−(
MNu2

l c2
l k2

V
−

MNu2
lΩ

2
l

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (32)

and

Ĥt =
∑
~k,σ

[(
MNu2

t c2
t k2

V +
MNu2

t Ω
2
t

V

)
~a+
~k,σ

a~k,σ−(
MNu2

t c2
t k2

V
−

MNu2
lΩ

2
t

V

)(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (33)

where ul and ut are defined by the first term in right side of
(32) and (33) which represent as the kinetic energies of lon-
gitudinal Sound Particle ~

2k2

2ml
and transverse Sound Particles

~2k2

2mt
. Therefore, ul and ul are found, if we suggest:

MNu2
l c2

l k2

V
=
~2k2

2ml
(34)

and
MNu2

t c2
t k2

V
=
~2k2

2mt
(35)

which in turn determine

ul =
~

cl
√

2mlρ

and
ut =

~

ct
√

2mtρ

where ρ = MN
V is the density of solid.

Ĥl =
∑
~k,σ

[(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)
~a+
~k,σ

a~k,σ+

U~k,l

2

(
~a−~k,σ~a~k,σ + ~a

+
~k,σ
~a+−~k,σ

)] (36)

and

Ĥt =
∑
~k

[(
~2k2

2m +
~2Ω2

t

2mtc2
t

)
~b+
~k,σ

b~k,σ+

U~k,t

2

(
~b−~k,σ~b~k,σ + ~b

+
~k,σ
~b+−~k,σ

)] (37)

U~k,l and U~k,t are the interaction potentials between identical
Sound Particles.

In analogous manner, as it was done in letter [7] regarding
the quantization of the electromagnetic field, the boundary
wave numbers kl =

Ωl
cl

for the longitudinal elastic field and
kt =

Ωt
ct

for the transverse one are determined by suggestion
that identical Sound Particles interact with each other by the
repulsive potentials U~k,l and U~k,t in wave vector space

U~k,l = −
~2k2

2ml
+
~2Ω2

l

2mlc2
l

> 0

and

U~k,t = −
~2k2

2mt
+
~2Ω2

t

2mtc2
t
> 0

As results, there are two conditions for wave numbers of lon-
gitudinal k < kl and transverse k < kt Sound Particles which
are provided by property of the model of hard spheres [8].
Indeed, there is a request of presence of repulsive potential
interaction between identical kind of particles (recall S-wave
repulsive pseudopotential interaction between atoms in the
superfluid liquid 4He in the model of hard spheres [8]).

On the other hand, it is well known that at absolute zero
T = 0, the Fermi atoms fill the Fermi sphere in momentum
space. As it is known, the total numbers of the Fermi atoms
with opposite spins are the same, therefore, the Fermi wave
number k f is determined by a condition:

V
2π2

∫ k f

0
k2dk =

N
2

(38)

where N is the total number of Fermi-atoms in the solid. This
reasoning together with the model of hard spheres claims the
important condition as introduction the boundary wave num-

ber k f =

(
3π2N

V

) 1
3

coinciding with kl and kt. Thus we claim

that all Fermi atoms had one natural wavelength

λ0 =
2π
k f
=

2π
kl
=

2π
kt

(39)

This approach is a similar to the Einstein model of solid
where he suggested that all atoms have the same natural fre-
quencies.

Now, to evaluate of the energy levels of the operator Ĥl

(36) and Ĥt (37) in diagonal form, we use a new transforma-
tion of the vector-Bose-operators presented in [6]:

~a~k,σ =
~c~k,σ + L~k~c

+

−~k,σ√
1 − L2

~k

(40)
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and

~b~k,σ =
~d~k,σ + M~k

~d+
−~k,σ√

1 − M2
~k

(41)

where L~k and M~k are, respectively, the real symmetrical func-
tions of a wave vector ~k. Consequently:

Ĥl =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ (42)

and
Ĥt =

∑
k<k f ,σ

ε~k,t
~d+~k,σ

~d~k,σ. (43)

Hence, we infer that the Bose-operators ~c+
~k,σ

, ~c~k,σ and ~d+
~k,σ

,
~d~k,σ are, respectively, the vector of ”creation” and the vec-
tor of ”annihilation” operators of longitudinal and transverse
phonons with spin 1 and having the energies:

ε~k,l =

√(
~2k2

2ml
+
~2Ω2

l

2mlc2
l

)2

−
(
~2k2

2ml
−
~2Ω2

l

2mlc2
l

)2

= ~kcl (44)

and

ε~k,t =

√(
~2k2

2mt
+
~2Ω2

t

2mtc2
t

)2

−
(
~2k2

2mt
−
~2Ω2

l

2mtc2
t

)2

= ~kct (45)

where the mass of longitudinal Sound Particle equals to

ml =
~Ωl

c2
l

(46)

but the mass of transverse Sound Particle is

mt =
~Ωt

c2
t
. (47)

Thus, we may state that there are two different Sound Parti-
cles with masses ml and mt which correspond to the longitu-
dinal and transverse waves.

4 Thermodynamic property of solid

Now, we demonstrate that the herein presented theory leads
to same results which were obtained by Debye in his the-
ory investigating the thermodynamic properties of solids. So
that, at the statistical equilibrium, the average energy of solid
equals to

H =
∑

k<k f ,σ

ε~k,l~c
+
~k,σ
~c~k,σ +

∑
k<k f ,σ

ε~k,t
~d+
~k,σ
~d~k,σ (48)

where ĉ+
~k,σ

ĉ~k,σ and d̂+
~k,σ

d̂~k,σ are, respectively, the average num-

ber of phonons with the wave vector ~k corresponding to the
longitudinal and transverse fields at temperature T :

ĉ+
~k,σ

ĉ~k,σ =
1

e
ε~k,l
kT − 1

and
d̂+
~k,σ

d̂~k,σ =
1

e
ε~k,t
kT − 1

.

Thus, at thermodynamic limit, the average energy of solid
may rewritten down as

H =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

2π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(49)

where Θl =
~k f cl

k and Θt =
~k f ct

k are, respectively, the charac-
teristic temperatures for solid corresponding to longitudinal
and transverse waves; k is the Boltzmann constant. In our
theory we denote

1
c3

l

+
1
c3

t
=

2
c3

where c is the average velocity of phonons with spin 1 in the
given theory; ΘB =

~k f c
k is the new characteristic temperature.

Hence, we may note that the coefficient with number 3
must be appear before both integrals on the right side of equa-
tion (49) because it reflects that phonons of longitudinal and
transverse waves have number 3 quantities of the value of
spin z-component σ = 0;±1. At T � Θl and T � Θt, the
equation (49) takes the form:

H =
3π4

5
NkT 4

2

(
1
Θ3

l

+
1
Θ3

t

)
(50)

where
∫ ∞

0
x3dk
ex−1 =

π4

15 .

Thus, Eq.(50) may be rewritten as

H ≈ 3π4

5
RT 4

Θ3
B

(51)

where R = Nk is the gas constant. Hence, we may note that
at T � Θl and T � Θt, the equation (49) takes the form:

H = 3RT. (52)

In this context, the heat capacity is determined as

CV =

(
dH
dT

)
V

(53)

which obviously, at T � Θl and T � Θt, the equation (53)
with (51) reflects the Debye law T 3 at low temperatures:

CV ≈
12π4

5
RT 3

Θ3
B

. (54)

But at high temperatures T � Θl and T � Θt, the equation
(53) with (52) recovers the Dulong-Petit law:

CV ≈ 3R. (55)
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Obviously, the average velocity of phonon c and new
characteristic temperature ΘB are differ from their definition
in Debye theory because the average energy of solid in Debye
theory is presented as

HD =
3Vk4T 4

2π2~3c3
l

∫ Θl
T

0

x3dx
ex − 1

+
3Vk4T 4

π2~3c3
t

∫ Θt
T

0

x3dx
ex − 1

(56)

where Θl =
~kDcl

k and Θt =
~kDct

k are, respectively, the
characteristic temperatures for solid corresponding to one
longitudinal and two transverse waves:

1
c3

l

+
2
c3

t
=

3
v3

0

(57)

where v0 is the average velocity of spinless phonons in

Debye theory; kD =

(
6π2N

V

) 1
3

is the Debye wave number;

ΘD =
~kDv0

k is the Debye characteristic temperature which is

1
Θ3

l

+
2
Θ3

t
=

3
Θ3

D

(58)

As we see the average energy of solid HD in (56) is differ
from one in (49) by coefficient 2 in ahead of second term
in right side of Eq.(56) (which is connected with assumption
of presence two transverse waves), as well as introduction
of Debye wave number kD. So that due to definition of the
average velocity v0 of spinless phonons by (57), Debye may
accept a phonon as spinless quasiiparticle.

5 Concussion

Thus, in this letter, we propose new model for solids which is
different from the well-known models of Einstein and Debye
because: 1), we suggest that the atoms are the Fermi parti-
cles which are absent in the Einstein and Debye models; 2),
we consider the stimulated oscillation of atoms by action of
longitudinal and transverse waves in the solid. The elastic
waves stimulate the vibration of the fermion-atoms with one
natural wavelength, we suggested that atoms have two inde-
pendent natural frequencies corresponding to a longitudinal
and a transverse wave, due to application of the principle of
the elastic wave-particle duality, the model of hard spheres
and considering the atoms as the Fermi particles. In accor-
dance to this reasoning, there is an appearance of a cut off in
the energy spectrum of phonons; 3), In our model, we argue
that the photons have spin 1 which is different from models
presented by Einstein and Debye. On the other hand, we sug-
gest that only one longitudinal and one transverse wave may
be excited in the lattice of the solid which is different from
Debye who suggested a presence of two sorts of transverse
waves.

The quantization of the elastic wave by our theory leads
to a view of the lattice as the diffraction picture. Within our

theory, the mass density ρ(~r) in coordinate space, due to sub-
stituting ρl(~r, t) and ρl(~r, t) from (25) and (26) into (20), rep-
resents as

ρ(~r) = ρ0 +
8π~k2

f

u2
l cl

(
sin k f r

k f r

)2

+
8π~k2

f

u2
t ct

(
sin k f r

k f r

)2

(59)

which implies that the lattice has the diffraction picture.
Now, we try to estimate the masses of the Sound Parti-

cles in substance as Aluminium Al. In this respect, we use
of (46) and (47) with introducing of the Fermi momentum
p f = ~k f =

~Ωl
cl
= ~Ωt

ct
, for instance, for such material as

Al with cl = 6.26 · 103 m
sec and ct = 3.08 · 103 m

sec at room
temperature [9], and p f = 1.27 · 10−24 kg·m

sec we may estimate
ml =

p f

cl
= 2 · 10−28kg and mt =

p f

ct
= 4 · 10−28kg.

It is well known that the mass of atom Al is M = 10−25kg
which is around 500 time more in regard to the masses of
Sound Particles.

In this context, we remark that the new characteristic tem-
perature ΘB almost coincide with the Debye temperature ΘD.
Indeed, by our theory for Al:

ΘB =
2

1
3 p f cl

k
(
1 + c3

l

c3
t

) 1
3

≈ 400K

but Debye temperature equals to ΘD = 418K.
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