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An Elegant Argument that P , NP
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In this note, we present an elegant argument that P , NP by demonstrating that the
Meet-in-the-Middle algorithm must have the fastest running-time of all deterministic
and exact algorithms which solve the SUBSET-SUM problem on a classical computer.

Consider the following problem: Let A = {a1, . . . , an} be
a set of n integers and b be another integer. We want to find
a subset of A for which the sum of its elements (we shall call
this quantity a subset-sum) is equal to b (we shall call this
quantity the target integer). We shall consider the sum of the
elements of the empty set to be zero. This problem is called
the SUBSET-SUM problem [1,2]. Now consider the following
algorithm for solving the SUBSET-SUM problem:

Meet-in-the-Middle Algorithm - First, partition the set A
into two subsets, A+={a1, . . . , ad n

2 e} and A−={ad n
2 e+1, . . . , an}.

Let us define S + and S − as the sets of subset-sums of A+

and A−, respectively. Sort sets S + and b − S − in ascending
order. Compare the first elements in both of the lists. If they
match, then output the corresponding solution and stop. If
not, then compare the greater element with the next element
in the other list. Continue this process until there is a match,
in which case there is a solution, or until one of the lists runs
out of elements, in which case there is no solution.

This algorithm takes Θ(
√

2n) time, since it takes Θ(
√

2n)
steps to sort sets S + and b− S − and O(

√
2n) steps to compare

elements from the sorted lists S + and b− S −. It turns out that
no deterministic and exact algorithm with a better worst-case
running-time has ever been found since Horowitz and Sahni
discovered this algorithm in 1974 [3, 4]. In this paper, we
shall prove that it is impossible for such an algorithm to exist.

First of all, we shall assume, without loss of general-
ity, that the code of any algorithm considered in our proof
does not contain full or partial solutions to any instances of
SUBSET-SUM. This is because only finitely many such so-
lutions could be written in the code, so such a strategy would
not be helpful in speeding up the running-time of an algo-
rithm solving SUBSET-SUM when n is large. We now give a
definition:

Definition 1: We define a γ-comparison (a generalized com-
parison) between two integers, x and y, as any finite pro-
cedure that directly or indirectly determines whether or not
x = y.

For example, a finite procedure that directly compares
f (x) and f (y), where x and y are integers and f is a one-to-one
function, γ-compares the two integers x and y, since x = y if
and only if f (x) = f (y). Using this expanded definition of

compare, it is not difficult to see that the Meet-in-the-Middle
algorithm γ-compares subset-sums with the target integer un-
til it finds a subset-sum that matches the target integer. We
shall now prove two lemmas:

Lemma 2: Let x and y be integers. If x = y, then the only type
of finite procedure that is guaranteed to determine that x = y
is a γ-comparison between x and y. And if x , y, then the
only type of finite procedure that is guaranteed to determine
that x , y is a γ-comparison between x and y.

Proof: Suppose there is a finite procedure that is guaranteed
to determine that x = y, if x = y. Then if the procedure does
not determine that x = y, this implies that x , y. Hence, the
procedure always directly or indirectly determines whether
or not x = y, so the procedure is a γ-comparison between x
and y.

And suppose there is a finite procedure that is guaranteed
to determine that x , y, if x , y. Then if the procedure does
not determine that x , y, this implies that x = y. Hence, the
procedure always directly or indirectly determines whether
or not x = y, so the procedure is a γ-comparison between x
and y. �

Lemma 3: Any deterministic and exact algorithm that finds
a solution to SUBSET-SUM whenever a solution exists must
(whenever a solution exists) γ-compare the subset-sum of the
solution that it outputs with the target integer.

Proof: Let Q be a deterministic and exact algorithm that finds
a solution, {ak1 , . . . , akm }, to SUBSET-SUM whenever a solu-
tion exists. Before Q outputs this solution, it must verify that
ak1 + . . . + akm = b, since we are assuming that the code of Q
does not contain full or partial solutions to any instances of
SUBSET-SUM. (See above for an explanation.) In order for
Q to verify that ak1 + . . . + akm = b, Q must γ-compare the
subset-sum, ak1 + . . . + akm , with the target integer, b, since
a γ-comparison between ak1 + . . . + akm and b is the only
type of finite procedure that is guaranteed to determine that
ak1 + . . . + akm = b, by Lemma 2. �

As we see above, the Meet-in-the-Middle algorithm makes
use of sorted lists of subset-sums in order to obtain a faster
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worst-case running-time, Θ(
√

2n), than that of a naı̈ve brute-
force search of the set of all subset-sums, Θ(2n). The follow-
ing lemma shows that sorted lists of subset-sums are neces-
sary to achieve such an improved worst-case running-time.

Lemma 4: If a deterministic and exact algorithm that finds a
solution to SUBSET-SUM whenever a solution exists does not
make use of sorted lists of subset-sums, it must run in Ω(2n)
time in the worst-case scenario.

Proof: Let Q be a deterministic and exact algorithm that finds
a solution to SUBSET-SUM whenever a solution exists with-
out making use of sorted lists of subset-sums. By Lemma 3,
Q must (whenever a solution exists) γ-compare the subset-
sum of the solution that it outputs with the target integer. In
order for Q to avoid wasting time γ-comparing the target in-
teger with subset-sums that do not match the target integer,
Q must be able to rule out possible matches between subset-
sums and the target integer without γ-comparing these subset-
sums with the target integer.

But by Lemma 2, the only type of finite procedure that is
guaranteed to rule out a possible match between a subset-sum
and the target integer, if they do not match, is a γ-comparison.
So in the worst-case scenario, there is no way for Q to avoid
wasting time γ-comparing the target integer with subset-sums
that do not match the target integer. And since Q does not
make use of sorted lists of subset-sums like the Meet-in-the-
Middle algorithm does, its γ-comparisons between these sub-
set-sums and the target integer will not rule out possible
matches between any other subset-sums and the target integer.
Hence, in the worst-case scenario Q must γ-compare each of
the 2n subset-sums with the target integer, which takes Ω(2n)
time. �

It is now possible, using Lemma 4, to solve the problem of
finding a nontrivial lower-bound for the worst-case running-
time of a deterministic and exact algorithm that solves the
SUBSET-SUM problem:

Theorem 5: It is impossible for a deterministic and exact
algorithm that solves the SUBSET-SUM problem to have a
worst-case running-time of o(

√
2n).

Proof: Let T be the worst-case running-time of an algorithm
Q that solves SUBSET-SUM, and let M be the size of the
largest list of subset-sums that Q sorts. Since it is necessary
for Q to make use of sorted lists of subset-sums in order to
have a faster worst-case running-time than Θ(2n) by Lemma
4 and since it is possible for Q to make use of sorted lists of
size M of subset-sums to rule out at most M possible matches
of subset-sums with the target integer at a time (just as the
Meet-in-the-Middle algorithm does, with M = Θ(

√
2n)), we

have MT ≥ Θ(2n). And since creating a sorted list of size M
must take at least M units of time, we have T ≥ M ≥ 1.

Then in order to find a nontrivial lower-bound for the
worst-case running-time of an algorithm solving SUBSET-
SUM, let us minimize T subject to MT ≥ Θ(2n) and T ≥
M ≥ 1. Because the running-time of T = Θ(

√
2n) is the so-

lution to this optimization problem and because the Meet-in-
the-Middle algorithm achieves this running-time, we can con-
clude that Θ(

√
2n) is a tight lower-bound for the worst-case

running-time of any deterministic and exact algorithm which
solves SUBSET-SUM. And this conclusion implies that P ,
NP [1, 5]. �

Acknowledgments

I thank God, my parents, my wife, and my children for their
support.

Submitted on January 11, 2011 / Accepted on January 15, 2011

References
1. Cormen T. H., Leiserson C. E., Rivest R. L. Introduction to Algorithms,

McGraw-Hill, 1990.

2. Menezes A., van Oorschot P., Vanstone S. Handbook of Applied Cryp-
tography, CRC Press, 1996.

3. Horowitz E., Sahni S. Computing Partitions with Applications to the
Knapsack Problem. Journal of the ACM, v. 2l, no. 2, April 1974, pp.
277–292.

4. Woeginger G. J. Exact Algorithms for NP-Hard Problems, Lecture
Notes in Computer Science, 2003, v. 2570, pp. 185–207.

5. Bovet P. B., Crescenzi P. Introduction to the Theory of Complexity,
Prentice Hall, 1994.

Craig Alan Feinstein. An Elegant Argument that P , NP 31


