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Observations of weak gravitational lensing combined with statistical tomographic
techniques have revealed that galaxies have formed along filaments, essentially one-
dimensional lines or strings, which form sheets and voids. These have, in the main,
been interpreted as “dark matter” effects. To the contrary here we report the discovery
that the dynamical 3-space theory possesses such filamentary solutions. These solutions
are purely space self-interaction effects, and are attractive to matter, and as well gener-
ate electromagnetic lensing. This theory of space has explained bore hole anomalies,
supermassive black hole masses in spherical galaxies and globular clusters, flat rota-
tion curves of spiral galaxies, and other gravitational anomalies. The theory has two
constants, G and α, where the bore hole experiments show that α ≈ 1/137 is the fine
structure constant.

1 Introduction

Observations of weak gravitational lensing and statistical to-
mographic techniques have revealed that galaxies have
formed along filaments, essentially one-dimensional lines or
strings [1], see Fig.1. These have, in the main, been inter-
preted as “dark matter” effects. Here we report the discovery
that the dynamical 3-space theory possesses such filamentary
solutions, and so does away with the “dark matter” interpreta-
tion. The dynamical 3-space theory is a uniquely determined
generalisation of Newtonian gravity, when that is expressed
in terms of a velocity field, instead of the original gravita-
tional acceleration field [2, 3]. This velocity field has been
repeatedly detected via numerous light speed anisotropy ex-
periments, beginning with the 1887 Michelson-Morley gas-
mode interferometer experiment [4, 5]. This is a theory of
space, and has explained bore hole anomalies, supermassive
black hole masses in spherical galaxies and globular clusters,
flat rotation curves of spiral galaxies, and other gravitational
anomalies. The theory has two constants, G and α, where the
bore hole experiments show that α ≈ 1/137 is the fine struc-
ture constant. The filamentary solutions are purely a conse-
quence of the space self-interaction dynamics, and are attrac-
tive to matter, and as well generate electromagnetic lensing.
The same self-interaction dynamics has been shown to gener-
ate inflow singularities, viz black holes [6], with both the fila-
ments and black holes generating long-range non-Newtonian
gravitational forces. The dynamical 3-space also has Hub-
ble expanding universe solutions that give a parameter-free
account of the supernova redshift-magnitude data, without
the need for “dark matter” or “dark energy” [7]. The black
hole and filament solutions are primordial remnants of the big
bang in the epoch when space was self-organising, and then
provided a framework for the precocious clumping of mat-
ter, as these inflow singularities are long-range gravitational
attractors. That α determines the strength of these phenom-
ena implies that we are seeing evidence of a unification of

space, gravity and quantum theory, as conjectured in Process
Physics [2].

2 Dynamical 3-Space

The dynamics of space is easily determined by returning to
Galileo’s discoveries of the free-fall acceleration of test
masses, and using a velocity field to construct a minimal and
unique formulation that determines the acceleration of space
itself [2, 8]. In the case of zero vorticity we find
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G is Newton’s constant, which has been revealed as deter-
mining the dissipative flow of space into matter, and α is a
dimensionless constant, that experiment reveals to be the fine
structure constant. The space acceleration is determined by
the Euler constituent acceleration

a =
∂v
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+ (v · ∇)v (3)

The matter acceleration is found by determining the trajectory
of a quantum matter wavepacket to be [9]
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where v(r, t) is the velocity of a structured element of space
wrt to an observer’s arbitrary Euclidean coordinate system,
but which has no ontological meaning. The relativistic term
in (5) follows from extremising the elapsed proper time wrt
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a quantum matter wave-packet trajectory ro(t), see [2]. This
ensures that quantum waves propagating along neighbouring
paths are in phase.

τ =

∫
dt

√
1 − v2

R(r0(t), t)
c2 (6)

where vR(ro(t), t) = vo(t) − v(ro(t), t), is the velocity of the
wave packet, at position r0(t), wrt the local 3-space, and g =

drO/dt. This shows that (i) the matter “gravitational” geo-
desic is a quantum wave refraction effect, with the trajectory
determined by a Fermat maximum proper-time principle, and
(ii) that quantum systems undergo a local time dilation effect
caused by their absolute motion wrt space. The last term in
(5) causes the precession of planetary orbits.

It is essential that we briefly review some of the many
tests that have been applied to this dynamical 3-space.

2.1 Direct Observation of 3-Space

Numerous direct observations of 3-space involve the detec-
tion of light speed anisotropy. These began with the 1887
Michelson-Morley gas-mode interferometer experiment, that
gives a solar system galactic speed in excess of 300 km/s,
[4, 5]∗. These experiments have revealed components of the
flow, a dissipative inflow, caused by the sun and the earth, as
well as the orbital motion of the earth. The largest effect is
the galactic velocity of the solar system of 486 km/s in the di-
rection RA = 4.3◦, Dec = −75◦, determined from spacecraft
earth-flyby Doppler shift data [10], a direction first detected
by Miller in his 1925/26 gas-mode Michelson interferometer
experiment [11].

2.2 Newtonian Gravity Limit

In the limit of zero vorticity and neglecting relativistic effects
(2) and (5) give

∇ · g = −4πGρ − 4πGρDM , ∇ × g = 0 (7)

where
ρDM =

α

32πG

(
(trD)2 − tr(D2)

)
. (8)

This is Newtonian gravity, but with the extra dynamical term
which has been used to define an effective “dark matter” den-
sity. This is not necessarily non-negative, so in some circum-
stances ant-gravity effects are possible, though not discussed
herein.This ρDM is not a real matter density, of any form, but
is the matter density needed within Newtonian gravity to ex-
plain dynamical effects caused by the α-term in (2). This term
explains the flat rotation curves of spiral galaxies, large light
bending and lensing effects from galaxies, and other effects.
However, it is purely a space self-interaction effect.

∗Amazingly it continues to be claimed that this experiment was null.

Fig. 1: Top: Cosmic filaments as revealed by gravitational lens-
ing statistical tomography. From J.A. Tyson and G. Bernstein,
Bell Laboratories, Physical Sciences Research, http://www.bell-
labs.com/org/physicalsciences/projects/darkmatter/darkmatter.html.
Bottom: Cosmic network of primordial filaments and primordial
black holes, as solution from (2).

2.3 Curved Spacetime Formalism

Eqn.(6) for the elapsed proper time may be written

dτ2 = dt2− 1
c2 (dr(t) − v(r(t), t)dt)2 = gµν(x)dxµdxν, (9)

which introduces a curved spacetime metric gµν. However
this spacetime has no ontological significance — it is merely
a mathematical artifact, and as such hides the underlying dy-
namical 3-space. Its only role is to describe the geodesic of
the matter quantum wave-packet in gerneral coordinates. The
metric is determined by solutions of (2). This induced met-
ric is not determined by the Einstein-Hilbert equations, which
originated as a generalisation of Newtonian gravity, but with-
out the knowledge that a dynamical 3-space had indeed been
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Fig. 2: (a) A typical Miller averaged-data from September 16, 1925,
4h40′ Local Sidereal Time (LST) — an average of data from 20
turns of the gas-mode Michelson interferometer. Plot and data af-
ter fitting and then subtracting both the temperature drift and Hicks
effects from both, leaving the expected sinusoidal form. The error
bars are determined as the rms error in this fitting procedure, and
show how exceptionally small were the errors, and which agree with
Miller’s claim for the errors. (b) Best result from the Michelson-
Morley 1887 data — an average of 6 turns, at 7h LST on July 11,
1887. Again the rms error is remarkably small. In both cases the
indicated speed is vP — the 3-space speed projected onto the plane
of the interferometer. The angle is the azimuth of the 3-space speed
projection at the particular LST. The speed fluctuations from day
to day significantly exceed these errors, and reveal the existence of
3-space flow turbulence — i.e. gravitational waves.

detected by Michelson and Morley in 1887 by detecting light
speed anisotropy.

2.4 Gravitational Waves

Eqn.(2) predicts time dependent flows, and these have been
repeatedly detected, beginning with the Michelson and Mor-
ley experiment in 1887. Apart from the sidereal earth-rotation
induced time-dependence, the light-speed anisotropy data has
always shown time-dependent fluctuations/turbulence, and at
a scale of some 10% of the background galactic flow speed.
This time dependent velocity field induces “ripples” in the
spacetime metric in (9), which are known as “gravitational
waves”. They cannot be detected by a vacuum-mode Michel-
son interferometer.

2.5 Matter Induced Minimal Black Holes

For the special case of a spherically symmetric flow we set
v(r, t) = −r̂v(r, t). Then (2) becomes, with v′ = ∂v/∂r,
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∂t
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2
r
vv′ + (v′)2 +

α

2r

(
v2

2r
+ vv′

)
= −4πGρ (10)

For a matter density ρ(r), with maximum radius R, (10) has
an exact inhomogeneous static solution [12]
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Here M is the total matter mass. As well the middle term in
(11) also has a 1/rα/2 inflow-singularity, but whose strength is
mandated by the matter density, and is absent when ρ(r) = 0
everywhere. This is a minimal attractor or “black hole”∗, and
is present in all matter systems. For the region outside the sun,
r > R, Keplerian orbits are known to well describe the mo-
tion of the planets within the solar system, apart from some
small corrections, such as the Precession of the Perihelion of
Mercury, which follow from relativistic term in (2). The sun,
as well as the earth, has only an induced “minimal attractor”,
which affects the interior density, temperature and pressure
profiles [12]. These minimal black holes contribute to the
external g = GM?/r2 gravitational acceleration, through an
effective mass M? = M/(1 − α/2). The 3-space dynamics
contributes an effective mass [2]

MBH =
M

1 − α
2
− M =

α

2
M

1 − α
2
≈ α

2
M. (13)

These induced black hole “effective” masses have been de-
tected in numerous globular clusters and spherical galaxies
and their predicted effective masses have been confirmed in
some 19 such cases, as shown in Fig. 3, [6]. The non-
Newtonian effects in (11) are also detectable in bore hole ex-
periments.

2.6 Earth Bore Holes Determine α

The value of the parameter α in (2) was first determined from
earth bore hole g-anomaly data, which shows that gravity de-
creases more slowly down a bore hole than predicted by New-
tonian gravity, see Figs.4 and 5. From (5) and (11) we find

∗The term “black hole” refers to the existence of an event horizon, where
the in-flow speed reaches c, but otherwise has no connection to the putative
“black holes” of GR.
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Fig. 3: The data shows Log10[MBH] for the minimal induced black
hole masses MBH for a variety of spherical matter systems, from
Milky Way globular clusters to spherical galaxies, with masses M,
plotted against Log10[M], in solar masses M0. The straight line is
the prediction from (13) with α = 1/137. See [6] for references to
the data.

the gravitational acceleration at radius r = R + d to be

g(d)=



− GM
(1 − α/2)(R + d)2 +

2πGρ(R)d
(1 − α/2)

+ ...

− 4πR2Gρ(R)G
(1 − α/2)(R + d)2 , d < 0

− GM
(1 − α/2)(R + d)2 , d > 0

(14)

In practice the acceleration above the earth’s surface must be
measured in order to calibrate the anomaly, which defines the
coefficient GM = GM/(1−α/2) in (14). Then the anomaly is

∆g = gNG(d)−g(d) = 2παGρ(R)d + O(α2), d < 0 (15)

to leading order in α, and where gNG(d) is the Newtonian
gravity acceleration, given the value of GM from the above-
surface calibration, for a near-surface density ρ(R). The ex-
perimental data then reveals α to be the fine structure con-
stant, to within experimental errors [6]. The experiments have
densities that differ by more than a factor of 2, so the result is
robust.

2.7 G Measurement Anomalies

There has been a long history of anomalies in the measure-
ment of Newton’s gravitational constant G, see Fig. 7. The
explanation is that the gravitational acceleration external to
a piece of matter is only given by application of Newton’s
inverse square law for the case of a spherically symmetric
mass. For other shapes the α-dependent interaction in (2)
results in forces that differ from Newtonian gravity at O(α).
The anomalies shown in Fig. 7 result from analysing the one-
parameter, G, Newtonian theory, when gravity requires a two
parameter, G and α, analysis of the data. The scatter in the

Fig. 4: The data shows the gravity residuals for the Greenland
Ice Shelf [13] Airy measurements of the g(r) profile, defined as
∆g(r) = gNewton − gobserved, and measured in mGal (1mGal = 10−3

cm/s2) and plotted against depth in km. The borehole effect is that
Newtonian gravity and the new theory differ only beneath the sur-
face, provided that the measured above-surface gravity gradient is
used in both theories. This then gives the horizontal line above the
surface. Using (15) we obtain α−1 = 137.9± 5 from fitting the slope
of the data, as shown. The non-linearity in the data arises from mod-
elling corrections for the gravity effects of the irregular sub ice-shelf
rock topography. The ice density is 920 kg/m3. The near surface
data shows that the density of the Greenland ice, compressed snow,
does not reach its full density until some 250m beneath the surface
— a known effect.

measured G values appear to be of O(α/4). This implies that
laboratory measurements to determine G will also measure
α [2].

2.8 Expanding Universe

The dynamical 3-space theory (2) has a time dependent ex-
panding universe solution, in the absence of matter, of the
Hubble form v(r, t) = H(t)r with H(t) = 1/(1 + α/2)t, giv-
ing a scale factor a(t) = (t/t0)4/(4+α), predicting essentially a
uniform expansion rate. This results in a parameter-free fit
to the supernova redshift-magnitude data, as shown in fig.8,
once the age t0 = 1/H0 of the universe at the time of observa-
tion is determined from nearby supernova. In sharp contrast
the Friedmann model for the universe has a static solution —
no expansion, unless there is matter/energy present. How-
ever to best fit the supernova data fictitious “dark matter” and
“dark energy” must be introduced, resulting in the ΛCDM
model. The amounts ΩΛ = 0.73 and ΩDM = 0.23 are eas-
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Fig. 5: Gravity residuals ∆g(r) from two of the Nevada bore hole
experiments [14] that give a best fit of α−1 = 136.8 ± 3 on using
(15). Some layering of the rock is evident. The rock density is 2000
kg/m3 in the linear regions.

ily determined by best fitting the ΛCDM model to the above
uniformly expanding result, without reference to the obser-
vational supernova data. But then the ΛCDM has a spurious
exponential expansion which becomes more pronounced in
the future. This is merely a consequence of extending a poor
curve fitting procedure beyond the data. The 3-space dynam-
ics (2) results in a hotter universe in the radiation dominated
epoch, with effects on Big Bang Nucleosynthesis [15], and
also a later decoupling time of some 1.4 × 106 years.

Fig. 6: Plots of the rotation speed data for the spiral galaxy
NGC3198. Lower curve shows Newtonian gravity prediction, while
upper curve shows asymptotic flat rotation speeds from (19).

3 Primordial Black Holes

In the absence of matter the dynamical 3-space equation (2)
has black hole solutions of the form

v(r) = − β

rα/4
(16)

for arbitrary β, but only when α , 0. This will produce a
long range gravitational acceleration, essentially decreasing
like 1/r,

g(r) = − αβ2

4r1+α/2 (17)

as observed in spiral galaxies. The inflow in (16) describes
an inflow singularity or “black hole” with arbitrary strength.
This is unrelated to the putative black holes of General Rela-
tivity. This corresponds to a primordial black hole. The dark
matter density for these black holes is

ρDM(r) =
αβ2(2 − α)

256πGr2+α/2 (18)

This decreases like 1/r2 as indeed determined by the “dark
matter” interpretation of the flat rotation curves of spiral
galaxies. Here, however, it is a purely 3-space self-interaction
effect.

In general a spherically symmetric matter distribution
may have a static solution which is a linear combination of
the inhomogeneous matter induced solution in (11) and the
square of the homogeneous primordial black hole solution
in (16), as (10) is linear in v(r)2 and its spatial derivatives.
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Fig. 7: Results of precision measurements of G published in the last
sixty years in which the Newtonian theory was used to analyse the
data. These results show the presence of a systematic effect, not in
the Newtonian theory, of fractional size ∆G/G ≈ α/4. The upper
horizontal dashed line shows the value of G from ocean Airy mea-
surements [17], while the solid line shows the current CODATA G
value of 6.67428(±0.00067) × 10−11m3/kgs2, with much lager ex-
perimental data range, exceeding ±αG/8, shown by dashed lines as
a guide. The lower horizontal line shows the actual value of G af-
ter removing the space self-interaction effects via G → (1 − α/2)G
from the ocean value of G. The CODATA G value, and its claimed
uncertainty, is seen to be spurious.

However this is unlikely to be realised, as a primordial black
hole would cause a precocious in-fall of matter, which is un-
likely to remain spherically symmetric, forming instead spiral
galaxies.

3.1 Spiral Galaxy Rotation Curves

Spiral galaxies are formed by matter in-falling on primordial
black hole, leading to rotation of that matter, as the in-fall will
never be perfectly symmetric. The black hole acceleration in
(17) would support a circular matter orbit with orbital speed

vo(r) =
(αβ2)1/2

2rα/4
(19)

which is the observed asymptotic “flat” orbital speed in spi-
ral galaxies, as illustrated in Fig. 6 for the spiral galaxy
NGC3198. So the flat rotation curves are simply explained
by (2).

4 Primordial Filaments

Eqn.(2) also has cosmic filament solutions. Writing (2) in
cylindrical coordinates (r, z, φ), and assuming cylindrical

Fig. 8: Hubble diagram showing the supernovae data using sev-
eral data sets, and the Gamma-Ray-Bursts data (with error bars).
Upper curve (green) is ΛCDM “dark energy” only ΩΛ = 1, lower
curve (black) is ΛCDM matter only ΩM = 1. Two middle curves
show best-fit of ΛCDM “dark energy”-“dark-matter” (blue) and dy-
namical 3-space prediction (red), and are essentially indistinguish-
able. We see that the best-fit ΛCDM “dark energy”-“dark-matter”
curve essentially converges on the uniformly-expanding parameter-
free dynamical 3-space prediction. The supernova data shows that
the universe is undergoing a uniform expansion, wherein a fit to the
FRW-GR expansion was forced, requiring “dark energy”, “dark mat-
ter” and a future “exponentially accelerating expansion”.

symmetry with translation invariance along the z axis, we
have for a radial flow v(r, t)

1
r
∂v

∂t
+
∂v′

∂t
+
vv′

r
+ v′2 + vv′′ + α

vv′

4r
= 0 (20)

where here the radial distance r is the distance perpendicular
to the z axis. This has static solutions with the form

v(r) = − µ

rα/8
(21)

for arbitrary µ. The gravitational acceleration is long-range
and attractive to matter, i.e. g is directed inwards towards the
filament,

g(r) = − αµ2

8r1+α/4 (22)

This is for a single infinite-length filament. The dark matter
density (8) is

ρDM(r) = − αµ2

1024πGr2+α/4 (23)
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Fig. 9: Sector integration volume, with radii R1 and R2, about a
filament. For the filament to exist the quantum foam substructure to
3-space must be invoked at short distances.

and negative. But then (7), with ρ = 0, would imply a re-
pulsive matter acceleration by the filament, and not attractive
as in (22). To resolve this we consider the sector integration
volume in Fig.9. We obtain from (22) and using the diver-
gence theorem (in which dA is directed outwards from the
integration volume)

∫

V
∇·gdv=

∫

A
g·dA =

αµ2θd
8


1

Rα/4
1

− 1

Rα/4
2

 (24)

which is positive because R1 < R2. This is consistent with
(7) for the negative ρDM , but only if R1 is finite. However if
R1 = 0, as for the case of the integration sector including the
filament axis, there is no R1 term in (24), and the integral is
now negative. This implies that (21) cannot be the solution
for some small r. The filament solution is then only possi-
ble if the dynamical 3-space equation (1) is applicable only
to macroscopic distances, and at short distances higher order
derivative terms become relevant, such as ∇2(∇ · v). Such
terms indicate the dynamics of the underlying quantum foam,
with (1) being a derivative expansion, with higher order der-
vatives becoming more significant at shorter distances.

5 Filament Gravitational Lensing

We must generalise the Maxwell equations so that the electric
and magnetic fields are excitations within the dynamical 3-
space, and not of the embedding space. The minimal form in
the absence of charges and currents is

∇ × E = −µ0

(
∂H
∂t

+ v.∇H
)
, ∇.E = 0,

∇ ×H = ε0

(
∂E
∂t

+ v.∇E
)
, ∇.H = 0 (25)

which was first suggested by Hertz in 1890 [16], but with v
then being only a constant vector field. As easily determined
the speed of EM radiation is now c = 1/

√
µ0ε0 with respect

to the 3-space. The time-dependent and inhomogeneous ve-
locity field causes the refraction of EM radiation. This can

be computed by using the Fermat least-time approximation.
This ensures that EM waves along neighbouring paths are in
phase. Then the EM ray paths r(t) are determined by min-
imising the elapsed travel time:

T =

∫ s f

si

ds|dr
ds
|

|cv̂R(s) + v(r(s), t(s)| , (26)

vR =
dr
dt
− v(r(t), t) (27)

by varying both r(s) and t(s), finally giving r(t). Here s is a
path parameter, and cv̂R is the velocity of the EM radiation
wrt the local 3-space, namely c. The denominator in (26) is
the speed of the EM radiation wrt the observer’s Euclidean
spatial coordinates. Eqn.(26) may be used to calculate the
gravitational lensing by black holes, filaments and by ordi-
nary matter, using the appropriate 3-space velocity field. Be-
cause of the long-range nature of the inflow for black holes
and filaments, as in (16) and (21), they produce strong lens-
ing, compared to that for ordinary matter∗, and also compared
with the putative black holes of GR, for which the in-flow
speed decreases like 1/

√
r, corresponding to the accelera-

tion field decreasing like 1/r2. The EM lensing caused by
filaments and black holes is the basis of the stochastic to-
mographic technique for detecting these primordial 3-space
structures.

6 Filament and Black Hole Networks

The dynamical 3-space equation produces analytic solutions
for the cases of a single primordial black hole, and a single,
infinite length, primordial filament. This is because of the
high symmetry of theses cases. However analytic solutions
corresponding to a network of finite length filaments joining
at black holes, as shown in Fig.1, are not known. For this case
numerical solutions will be needed. It is conjectured that the
network is a signature of primordial imperfections or defects
from the epoch when the 3-space was forming, in the earliest
moments of the big bang. It is conjectured that the network
of filaments and black holes form a cosmic network of sheets
and voids. This would amount to a dynamical breakdown of
the translation invariance of space. Other topological defects
are what we know as quantum matter [2].

7 Conclusions

The recent discovery that a dynamical 3-space exists has re-
sulted in a comprehensive investigation of the new physics,
and which has been checked against numerous experimen-
tal and observational data. This data ranges from laboratory
Cavendish-type G experiments to the expansion of the uni-
verse which, the data clearly shows, is occurring at a uni-
form rate, except for the earliest epochs. Most significantly

∗Eqn:(26) produces the known sun light bending [3].
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the dynamics of space involves two parameters: G, Newton’s
gravitational constant, which determines the rate of dissipa-
tive flow of space into matter, and α, which determines the
space self-interaction dynamics. That this is the same con-
stant that determines the strength of electromagnetic interac-
tions shows that a deep unification of physics is emerging. It
is the α term in the space dynamics that determines almost
all of the new phenomena. Most importantly the epicycles of
spacetime physics, viz dark matter and dark energy, are dis-
pensed with.
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