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An event with positive energy transfers this energy photons which carries it on recorders
observers. Observers know that this event occurs, not before it happens. But events with
negative energy should absorb this energy from observers. Consequently, observers
know that this event happens before it happens. Since time is irreversible then only the
events with positive energy can occur. In single-particle states, events with a fermion
have positive energy and occurrences with an antifermion have negative energy. In
double-particle states, events with pair of antifermions have negative energy and events
with pair of fermions and with fermion-antifermion pair have positive energy.

1 Introduction

Let t, x1, x2,x3 be real numbers, and let x := 〈x1, x2, x3〉.
LetA be some pointlike event.
Let ϕ(t, x) be a 4 × 1-complex matrix such that

ϕ†(t, x)ϕ(t, x) = ρ(t, x) (1)

where ρ(t, x) is the probability density ofA.
Let∗ ρ(t, x) = 0 if t > πc

h and/or |x| > πc
h .

In that case ϕ(t, x) obeys some generalization of the Dirac
equation [1]. The Dirac equation for free fermion does have
the following form:


1
c
∂

∂t
−

3∑

s=1

β[s] ∂

∂xs
− i

h
c

nγ[0]

ϕ(t, x) = 0.

Here n is a natural number and

β[1] : =



0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


, β[2] :=



0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


,

β[3] : =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


, γ[0] :=



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


.

In this case operator Ĥ0 is the free Dirac Hamiltonian if

Ĥ0 := c


3∑

s=1

β[s]i
∂

∂xs
+

h
c

nγ[0]

 .

Let k be a vector 〈k1, k2, k3〉 where ks are integer numbers
and let

ω (k) :=
√

k2
1 + k2

2 + k2
3 + n2

where n is a natural number.

∗c := 299792458, h := 6.6260755−34

Let

e1 (k) :=
1

2
√
ω (k) (ω (k) + n)



ω (k) + n + k3
k1 + ik2

ω (k) + n − k3
−k1 − ik2


,

e2 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
ω (k) + n − k3
−k1 − ik2

ω (k) + n + k3


,

e3 (k) :=
1

2
√
ω (k) (ω (k) + n)



−ω (k) − n + k3
k1 + ik2

ω (k) + n + k3
k1 + ik2


,

e4 (k) :=
1

2
√
ω (k) (ω (k) + n)



k1 − ik2
−ω (k) − n − k3

k1 − ik2
ω (k) + n − k3


.

In that case, functions
e1(k)(2c/h)3/2 exp(−i(h/c)kx) and
e2(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (+hω(k)),
and functions
e3(k)(2c/h)3/2 exp(−i(h/c)kx) and
e4(k)(2c/h)3/2 exp(−i(h/c)kx)
are eigenvectors of Ĥ0 with eigenvalues (−hω(k)).

2 Single-Particle States

Let H be some unitary space. Let 0̃ be the zero element of H.
That is any element F̃ of H obeys to the following conditions:

0F̃ = 0̃, 0̃ + F̃ = F̃, 0̃†F̃ = F̃, 0̃† = 0̃.

Let 0̂ be the zero operator on H. That is any element F̃ of
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H obeys to the following condition:

0̂F̃ = 0F̃, and if b̂ is any operator on H then

0̂ + b̂ = b̂ + 0̂ = b̂, 0̂̂b = b̂̂0 = 0̂.

Let 1̂ be the identy operator on H. That is any element F̃
of H obeys to the following condition:

1̂F̃ = 1F̃ = F̃ , and if b̂ is any operator on H then
1̂̂b = b̂̂1 = b̂.

Let linear operators bs,k (s ∈ {1, 2, 3, 4}) act on all ele-
ments of this space. And let these operators fulfill the follow-
ing conditions:

{
b†s,k, bs′,k′

}
:= b†s,kbs′,k′ + bs′,k′b

†
s,k =

(
h

2πc

)3

δk,k′δs,s′ 1̂,

{
bs,k, bs′,k′

}
= bs,kbs′,k′ + bs′,k′bs,k =

{
b†s,k, b

†
s′,k′

}
= 0̂.

Hence,
bs,kbs,k = b†s,kb†s,k = 0̂.

There exists element F̃0 of H such that F̃†0 F̃0 = 1 and for
any bs,k: bs,kF̃0 = 0̃. Hence, F̃†0b†s,k = 0̃.

Let

ψs (x) :=
∑

k

4∑

r=1

br,ker,s (k) exp
(
−i

h
c

kx
)

.

Because
4∑

r=1

er,s (k) er,s′ (k) = δs,s′

and ∑

k

exp
(
−i

h
c

k
(
x − x′

))
=

(
2πc
h

)3

δ
(
x − x′

)

then
{
ψ†s (x) , ψs′

(
x′

)}
:= ψ†s (x)ψs′

(
x′

)
+ ψs′

(
x′

)
ψ†s (x)

= δ
(
x − x′

)
δs,s′ 1̂.

And these operators obey the following conditions:

ψs (x) F̃0 = 0̃, {ψs (x) , ψs′ (x′)} =
{
ψ†s (x) , ψ†s′ (x′)

}
= 0̂.

Hence,

ψs (x)ψs′ (x′) = ψ†s (x)ψ†s′ (x′) = 0̂.

Let

Ψ (t, x) :=
4∑

s=1

ϕs (t, x)ψ†s (x) F̃0.

These functions obey the following condition:

Ψ†
(
t, x′

)
Ψ (t, x) = ϕ†

(
t, x′

)
ϕ (t, x) δ

(
x − x′

)
.

Hence,
∫

dx′ · Ψ† (t, x′) Ψ (t, x) = ρ (t, x) .

Let a Fourier series of ϕs (t, x) has the following form:

ϕs (t, x) =
∑

p

4∑

r=1

cr (t,p) er,s (p) exp
(
−i

h
c

px
)

.

In that case:

Ψ (t,p) :=
(

2πc
h

)3 4∑

r=1

cr (t,p) b†r,pF̃0.

If
H0 (x) := ψ† (x) Ĥ0ψ (x) (2)

thenH0 (x) is called a Hamiltonian Ĥ0 density.
Because

Ĥ0ϕ (t, x) = i
∂

∂t
ϕ (t, x)

then ∫
dx′ · H0

(
x′

)
Ψ (t, x) = i

∂

∂t
Ψ (t, x) . (3)

Therefore, if

Ĥ :=
∫

dx′ · H0
(
x′

)

then Ĥ acts similar to the Hamiltonian on space H.
And if

EΨ

(
F̃0

)
:=

∑

p
Ψ† (t,p) ĤΨ (t,p)

then EΨ

(
F̃0

)
is an energy of Ψ on vacuum F̃0.

Operator Ĥ obeys the following condition:

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)


2∑

r=1

b†r,kbr,k −
4∑

r=3

b†r,kbr,k

 .

This operator is not positive defined and in this case

EΨ

(
F̃0

)
=

(
2πc
h

)3 ∑

p
hω (p)


2∑

r=1

|cr (t,p)|2 −
4∑

r=3

|cr (t,p)|2
 .

This problem is usually solved in the following way [2, p.
54]:

Let:

v1 (k) : = γ[0]e3 (k) ,
v2 (k) : = γ[0]e4 (k) ,

d1,k : = −b†3,−k,

d2,k : = −b†4,−k.
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In that case:

e3 (k) = −v1 (−k) ,
e4 (k) = −v2 (−k) ,

b3,k = −d†1,−k,

b4,k = −d†2,−k.

Therefore,

ψs (x) : =
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+

+d†r,kvr,s (k) exp
(
i
h
c

kx
))

Ĥ =

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k + d†r,kdr,k

)

−2
∑

k

hω (k) 1̂.

The first term on the right side of this equality is posi-
tive defined. This term is taken as the desired Hamiltonian.
The second term of this equality is infinity constant. And this
infinity is deleted (?!) [2, p. 58]

But in this case dr,kF̃0 , 0̃. In order to satisfy such condi-
tion, the vacuum element F̃0 must be replaced by the follow-
ing:

F̃0 → Φ̃0 :=
∏

k

4∏

r=3

(
2πc
h

)3

b†r,kF̃0.

But in this case:

ψs (x) Φ̃0 , 0̃.

And condition (3) isn’t carried out.
In order to satisfy such condition, operators ψs (x) must

be replaced by the following:

ψs (x)→ φs (x) :=

:=
∑

k

2∑

r=1

(
br,ker,s (k) exp

(
−i

h
c

kx
)

+ dr,kvr (k) exp
(
i
h
c

kx
))

.

Hence,

Ĥ =

∫
dx · H (x) =

∫
dx · φ† (x) Ĥ0φ (x) =

=

(
2πc
h

)3 ∑

k

hω (k)
2∑

r=1

(
b†r,kbr,k − d†r,kdr,k

)
.

And again we get negative energy.
Let’s consider the meaning of such energy: An event with

positive energy transfers this energy photons which carries it

on recorders observers. Observers know that this event oc-
curs, not before it happens. But event with negative energy
should absorb this energy from observers. Consequently, ob-
servers know that this event happens before it happens. This
contradicts Theorem 3.4.2 [3]. Therefore, events with nega-
tive energy do not occur.

Hence, over vacuum Φ̃0 single fermions can exist, but
there are no single antifermions.

3 Two-Particle States

A two-particle state is defined the following field operator [4]:

ψs1,s2 (x, y) :=

∣∣∣∣∣∣
φs1 (x) φs2 (x)
φs1 (y) φs2 (y)

∣∣∣∣∣∣ .

In that case:

Ĥ = 2h
(

2πc
h

)6 (
Ĥa + Ĥb

)

where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−k) v j (−p) e†r (p) er (k) ×

×
(
+b†r,pd†j,−kd j,−pbr,k

)
+

+
(
+d†r,−pb†j,kb j,kdr,−p

)
+

+v†j (−p) v j (−k) e†r (k) er (p) ×
×

(
−b†r,kd†j,−pd j,−kbr,p

)
+

+
(
−b†r,pd†j,−kd j,−kbr,p

)}

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p))

2∑

r=1

2∑

j=1

×

×
{
v†j (−p) v j (−k) v†r (−k) vr (−p) ×

×
(
−d†r,−kd†j,−pd j,−kdr,−p

)
+

+
(
−d†r,−pd†j,−kd j,−kdr,−p

)

+e†r (k) er (p) e†j (p) e j (k) ×
×

(
+b†r,kb†j,pb j,kbr,p

)
+

+
(
+b†r,pb†j,kb j,kbr,p

)}
.

If velocities are small then the following formula is fair.

Ĥ = 4h
(

2πc
h

)6 (
Ĥa + Ĥb

)
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where

Ĥa : =
∑

k

∑

p
(ω (k) − ω (p)) ×

×
2∑

r=1

2∑

j=1

(
d†j,−pb†r,kbr,kd j,−p − b†j,pd†r,−kdr,−kb j,p

)

and

Ĥb : =
∑

k

∑

p
(ω (k) + ω (p)) ×

×
2∑

j=1

2∑

r=1

(
b†j,pb†r,kbr,kb j,p − d†j,−pd†r,−kdr,−kd j,−p

)
.

Therefore, in any case events with pairs of fermions and
events with fermion-antifermion pairs can occur, but events
with pairs of antifermions can not happen.

4 Conclusion

Therefore, an antifermion can exist only with a fermion.
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