
October, 2011 PROGRESS IN PHYSICS Volume 4

Phenomenological Derivation of the Schrödinger Equation

Fernando Ogiba

91220-480, Porto Alegre, RS, Brazil
E-mail: ogiba@cpovo.net

The Schrödinger equation is derived classically assuming that particles present local
random spatial fluctuations compatible with the presence of the zero-point field. With-
out specifying the forces arising from this permanent matter-field interaction but ex-
ploring its fundamental properties (homogeneity, isotropy and random aspect) to justify
the emergence of the continuity equation in one-particle context, these fluctuations are
described in terms of the probability density. Specifically, the starting point is the as-
sumption that the local activities, which turn the path followed by the particle totally
unpredictable, must be associated with an energy proportional to ∂P/∂t. The polar form
of the wave function, which connects the obtained classical equations with the corre-
sponding quantum equation, emerges as a by-product of the approach.

1 Introduction

The evolution of the wave function in single-particle quantum
systems is described by the Schrödinger equation

− ~
2

2m
∇2ψ + Vψ = i~

∂ψ

∂t
, (1)

where m is the mass and V is a potential. The complex wave
function is generally presented in its polar form

ψ =
√

P exp(iS/~), (2)

where P= |ψ|2 is the probability density, and S/~ is a phase.
Substituting (2) into (1) results in two equations
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is known as quantum potential. At the classical limit (~→ 0)
Q vanishes and (4) reduces to the Hamilton-Jacobi equation.
For this reason, Bohm [1] suggested that S is the classical ac-
tion function, which relates to the actual velocity, v =∇S/m,
of the particle. In this way (3) simply expresses the conserva-
tion of probability.

This alternative way of writing the Schrödinger equation
presents advantages as regards its interpretation in terms of
classical variables. However, the problem of ignoring the path
followed by the particle persists. And more, we have an ob-
vious increase in complexity: The Schrödinger equation is a

single function and quite simple, on the other hand, the equa-
tion (4) is somewhat complicated - and still requires the con-
tinuity equation to account local activities. And above all,
thinking that the quantum revolution, highly non-classical,
has its origin in a classical equation with an additional po-
tential is not very easy. In reality, Q is not a traditional po-
tential, but part of the description of the motion, that is, P is
playing the role of a dynamical variable at the same footing
as S . Thus S and P can be said to codetermine each other.
However, in approximate schemes to get information about
quantum systems it can be used as a potential [2].

Equation (4) is referred as stochastic Hamilton-Jacobi-
Bohm equation. Despite the fact that P is unique for a given
quantum system, it is interpreted as a differential equation de-
scribing an ensemble of trajectories. This is grounded in the
fact that the action S was originally defined as a field variable
related with a set of potential trajectories [3].

It is paid much attention to equation (4) and less concern
about (3). From a dynamical point of view, the emergence
of the continuity equation is the most remarkable result: It
highlights the local loss of determinism (∂P/∂t , 0), is valid
for one-particle systems (it was obtained in this way), and
contains inherently the multiple path aspect of quantum sys-
tems [4], exactly how is assigned to equation (4).

Fundamentally, to have ∂P/∂t , 0 (change of probability
at a given position), and thus to justify the emergence of the
equation (3), it is necessary that the particle runs local random
spatial fluctuations. Otherwise, there are local preferences,
and these combined with the dynamics that emanates from
the potential V (deterministic) results in a classical trajectory.
Therefore these fluctuations require the presence of external
forces with special features. Indeed, these forces exist and
are related with the zero-point field (ZPF). They are formally
treated in the context of the stochastic electrodynamics [5,6],
and under certain conditions they may be measured [7, 8].
However, their definition is outside the scope of this work;
just let’s enumerate its indispensable characteristics to justify
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the continuity equation in the context of one-particle dynam-
ics.

The above rewriting of the Schrödinger equation starts
from propositions valid within the quantum formalism and
arrives at seemingly classical equations. What will be done
in the present paper is to follow an inverse path. The starting
point is the fact that the local changes of the probability den-
sity — associated with isotropic random spatial fluctuations
impressed by the ZPF — must be related with an energy.

2 The multi path aspect of the motion

Suppose a particle of mass m performing a motion with ve-
locity v. If the associated probability density P is a continu-
ous function of the coordinates and time, then its dynamical
evolution along the trajectory is given by

dP
dt

=
∂P
∂t

+ v · ∇P, (6)

where ∂P/∂t refers to the change of probability at a given po-
sition, and the second term accounts for the spatial changes.
As P is a probability, then we cannot precise the angle be-
tween ∇P and v. Moreover, in principle, ∇P can show an
isotropic distribution around each position. Indeed, as P is a
conserved quantity, then the change of the probability density
inside a given volume Ω (arbitrary), containing the instanta-
neous position of the particle, must be equal to the probability
flux through a surface A surrounding this volume. Formally,
we have

∂

∂t

∫

Ω

PdΩ = −
∫

A
Pṙ · dA, (7)

where ṙ is a velocity, and the vector field Pṙ represents all
possible probability currents that cross the surface A. Obvi-
ously, if the particle is inside this volume, it emerges follow-
ing one of these possibilities. In accordance with the proper-
ties of the ZPF, the field Pṙ must present an isotropic distri-
bution, however, as the velocity of the particle is dictated by
the dynamics of the system as a whole, then there are some
privileged probability currents (the resulting motion is not a
random walk). According to Green’s theorem and equation
(7), each one of the possible currents obeys

∂P
∂t

+ ∇ · (Pṙ) = 0. (8)

As this process is repeated at all positions where the parti-
cle can be found, linking the successive probability currents,
according to which the particle emerges from each volume Ω,
is defined a path described by the velocity

v =
∇S
m
, (9)

where S is the Hamilton-Jacobi function of one possible path
[3, see p. 36]. Therefore equation (8) must be written as (3).

If the local activities are ignored (classical limit), then the
function S is defined on a single trajectory. This also can be
easily inferred making ∂P/∂t = 0 in equation (7). In this case
the probability flux that enters the volume Ω equals the one
that emerges from it. This means that the particle has only
one possibility (probability current) to leave each successive
volume Ω.

If the external field acts on the particle everywhere (ho-
mogeneously), without preferred directions (isotropic) and in
a totally unpredictable (random) way, that is, like the ZPF,
then we will have a local motion compatible with the con-
tinuity equation. Therefore, as the particle has several pos-
sibilities to leave each position (following one possible cur-
rent Pṙ), this assigns a multi path aspect to the motion. This
means that the particle can travel on each one of them indis-
criminately; there is no preferred path. Note, not having a
preferred path means that all are equally probable. We realize
that this fact is consistent with the formulation of quantum
mechanics in terms of path integrals, where Feynman and Hi-
bbs [4, see p. 28] begin with the following statement: “Now
we can give the quantum-mechanical rule. We must say how
much each trajectory contributes to the total amplitude to go
from a to b. It is not that just the particular path of extreme
action contributes; rather, it is that all the paths contribute.
They contribute in equal amounts to the total amplitude, but
contribute as different phases. The phase of the contribution
from a given path is the action S for that path in units of the
quantum of action ~”. Coincidently, this is a description of the
evolution operator exp (iS/~) (unitary), present in (2), which
is the core of the path integrals.

3 The main proposition

In a classical system, the particles are actuated by forces in
such a way that they move along single predictable trajecto-
ries, and this leads to ∂P/∂t = 0 everywhere (the local activ-
ities are ignored). By other side, if particles are being actu-
ated by a field, with the characteristics pointed above, local
exchange of energy between them occurs in such a way that
∂P/∂t , 0. Admitting that this is a fact, let’s write an effective
stationary action function S e f f that, in addition to describing
a path through the function S , also takes into account the local
activities described in terms of probability density, that is,

S e f f = S + S l, (10)

where S l is a local action that depends only on P. Follow-
ing the same formalism obeyed by the stationary Hamilton’s
function, the energy and momentum of the particle over a pos-
sible path are, respectively, written as

H = −∂S e f f

∂t
= −∂S

∂t
− F

∂P
∂t
, (11)

and
p = ∇S e f f = ∇S + F∇P, (12)
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where F = ∂S l/∂P should be a function of P which must
comply the dynamics of the system. Specifically, this func-
tion must obey the conservation of probability and the lo-
cal conservation of energy (the particle cannot extract energy
from the field indefinitely).

The motion equations of the system can be obtained in the
following way: As S and P are taking values on a volume,
then the average energy of the multi path system need to be
written in the form

H̄ =

∫
d3rPH =

∫
d3rH , (13)

where the integral is taken over whole space. Here,H has the
role of Hamiltonian density. With H given by (11) we have

H̄ =

∫
d3rP

(
−∂S
∂t
− F

∂P
∂t

)
. (14)

As H̄, written in this way, is a functional of the func-
tions S and P, taking the functional derivatives with respect
to these functions, according to the well known rules

δH̄
δξ

=
∂H
∂ξ
− ∂

∂xα

(
∂H

∂(∂ξ/∂xα)

)
, (15)

where xα = x, y, z, t and ξ = S or P, we obtain respectively

δH̄
δS

=
∂P
∂t

(16)

and
δH̄
δP

= −∂S
∂t
. (17)

This shows that the proposition (10) preserves the shapes
of the canonical equations, where S and P behave as dynami-
cal conjugate variables of the canonically transformed Hamil-
tonian H̄ [1].

Taking into account the momentum (12), the energy (11)
can be expressed by

H =
|∇S + F∇P|2

2m
+ V, (18)

then (13) can also be written as

H̄ =

∫
d3rP

( |∇S + F∇P|2
2m

+ V
)
, (19)

and, consequently, the canonical equation (16) takes the form
[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ (F + PF

′
)
(∇P)2

m
+ PF

∇2P
m

= 0, (20)

where F
′
= ∂F / ∂P. The first term, being the continuity equa-

tion, is zero, and the trivial solution of the resulting equation
gives simultaneously F = cte/P and F = 0. However, if this

trivial solution is valid, F is not defined in the field of real
numbers.

Generalizing the constant to complex numbers, the non
zero solution is written as F = (S 1 + iS 0)/P, where S 1 and
S 0 are real constants (they have dimension of action). Thus,
returning this complex shape of F into (19), from (16), results

[
∂P
∂t

+ ∇ ·
(
P
∇S
m

)]
+ S 1

∇2P
m

= 0, (21)

which shows that probability conservation is obeyed if F is a
pure imaginary (S 1 = 0). As this occurs independently of the
P−1 functionality, then it only justifies the complex aspect of
the trivial solution of (20).

Another evidence that F is pure imaginary comes from
the fact that the momentum (12) is apparently incompatible
with the actual velocity (9); it seems that we should have

v =
∇S
m

+ F
∇P
m
. (22)

In reality, this behavior is not entirely unexpected, since,
as we saw earlier, the actual velocity is the end result of the
system dynamics as a whole, that is, S is also dictated by
the local activities. Therefore, to reconcile these equations, F
shall be such that (9) refers to the real part of (22).

The resulting apparent complex character of the energy
(11) and the momentum (12) is only a stage of the calcula-
tions. In effect, the canonical equations (16) and (17) can
also be obtained even making

∫
d3rP

(
−F

∂P
∂t

)
= 0 (23)

in Eq. (14), which makes the average energy (14) real. How-
ever, this implies that, on average, the exchange of energy
between the particle and the field is zero, meaning that the
energy provided by field is promptly returned to it in equal
amount. This, besides constituting the desired local energy
balance — it can be related with atomic stability [9] — also
puts some insight in the complex shape of the mentioned real
quantities.

In fact, the local energy balance (23) is satisfied by the
trivial solution of (20), expressed by

F =
∂S l

∂P
= ı

S o

P
, (24)

as can be easily verified from the normalization of P. So this
proven the P−1 functionality, which is not achieved only from
probability conservation, as pointed above.

Substituting (24) into (19), results in

H̄ =

∫
d3rP

(
(∇S )2

2m
+

S 2
o

2m
(∇P)2

P2 + V
)
, (25)

which, with the canonical equations (16) and (17), reproduces
the equations (3) and (4), respectively, if S 0 is identified with
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~/2. Therefore, to complete the classical derivation of the
Schrödinger equation, the anzatz (2) must also be obtained in
a classical context. This is the subject of the next section.

4 Parameterization of the equations

Knowing any one of the solutions (one of the paths) of the
motion equations resulting from (25), the energy and momen-
tum at each position, according to the equations (13), (12) and
(24), are, respectively, given by

H = −∂S
∂t
− ıS o

P
∂P
∂t

(26)

and

p = ∇S +
ıS o

P
∇P. (27)

Integrating these partial differential equations (minus a
possible constant), we obtain the following dimensionless
equation

1
2ıS o


∑

i

∫ xi

0
pidxi −

∫ t

0
Hdt

 =
S

2ıS o
+ ln

√
P, (28)

as can be easily verified by following the inverse procedure.
The upper limits of the integrals are the coordinates and time
of the positions occupied by the particle along a possible path,
therefore the left hand side of (28) is a complex function of
these parameters, which will be defined in the following way:

lnψ =
1

2ıS o


∑

i

∫ qi

0
pidqi −

∫ t

0
Edt

 . (29)

As both sides of (28) are independent of the path followed
by the particle, we can write the following relation between
S and P, valid for all paths:

lnψ =
S

2ıS o
+ ln

√
P, (30)

or

ψ =
√

P exp
(

S
2ıS o

)
. (31)

This equation with S 0 = ~/2 is in full agreement with (2).
And more, for constant energy and momentum the function
defined in (29) is a solution of the Schrödinger equation for a
free particle.

Finally, let’s re-write the equations obtained in this work
in terms of ψ. From (30) and its complex conjugate we obtain
the following parametric shapes for S and P:

S =
ı~

2
(
lgψ − lnψ∗

)
(32)

and
P = ψ∗ψ. (33)

Consequently, the equations (25), (26) and (27) can be
re-written, respectively, in the forms:

H̄ =

∫
d3r

(
~2

2m
∇ψ∗ · ∇ψ + ψ∗Vψ

)
, (34)

ı~
∂ψ

∂t
= Hψ, (35)

and
−ı~∇ψ = pψ. (36)

Applying the divergence operator on both sides of equa-
tion (36), allied to fact that p is coordinate independent (it is
independent of the followed path), gives

−ı~∇ · ∇ψ = p · ∇ψ, (37)

and expressing p in terms of the complex conjugate of (36),
we obtain the equality

−ψ∗∇2ψ = ∇ψ∗ · ∇ψ. (38)

Therefore the equation (34) can be written in the well
known quantum form

H̄ =

∫
d3rψ∗

(
− ~

2

2m
∇2 + V

)
ψ. (39)

5 Conclusion

The approach shows that the Schrödinger equation and its ac-
cessory are necessary and natural equations, parameterized
shapes of the complicated — not to say unsolvable — equa-
tions resulting from a classical treatment including a special
field with homogeneous, isotropic and random characteris-
tics.
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