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The paper introduces a simple quantum model to calculate in a general way allowed
frequencies and energy levels of the anharmonic oscillator. The theoretical basis of
the approach has been introduced in two early papers aimed to infer the properties of
quantum systems exploiting the uncertainty principle only. Although for clarity the
anharmonic oscillator is described having in mind the lattice oscillations of atoms/ions,
the quantum formalism of the model and approach have general character and can be
extended to any oscillating system. The results show that the harmonic energy levels
split into a complex system of anharmonic energy levels dependent upon the number of
terms of the Hamiltonian that describes the anharmonicity.

1 Introduction

The anharmonic phenomena, well known in physics [1], re-
gard a wide range of properties of practical and theoretical
interest; e.g. in acoustics they account for large variations of
sound velocity in solids [2], in optics for non-linear interac-
tion of powerful light with lattice vibrations [3]. Moreover are
known physical effects that lead to a behavior impossible in
harmonic oscillators, like the “foldover effect” [4] and “super-
harmonic resonance” [5]; both are due to the dependency of
the eigenfrequency of nonlinear oscillators on the amplitude
and to the non-harmoniticity of the oscillations. In solid state
physics, non-linear effects occur when atoms consisting of a
positively charged nucleus surrounded by a cloud of electrons
are subjected to an electric field; the displacement of nucleus
and electrons causes an electric dipole moment, whose inter-
action with the applied field is linear for small field intensities
only [6].

The present paper aims to propose a quantum mechani-
cal approach to tackle the problem of non-harmonic oscilla-
tions in a general way, i.e. regardless of the particular issue of
specific interest, and in line with the concepts introduced in
two papers [7,8] concerning simple quantum systems, many-
electron atoms/ions and diatomic molecules. The basic idea
of these papers starts from a critical review of the concepts
of positions and momenta of interacting particles in a quan-
tum system, where the dynamical variables are perturbed in
a complex way by mutual interactions and change within ap-
propriate ranges of values in agreement with boundary con-
ditions like the minimum total energy.

Consider for instance the hydrogenlike atoms. It is rea-
sonable to regard radial momentum pρ and distance ρ be-
tween electron and nucleus as variables included within
proper ranges of values; so it is certainly possible to write
0 < ρ ≤ ∆ρ and 0 < pρ ≤ ∆pρ if ∆ρ and ∆pρ have arbi-
trary sizes, including even the chance of infinite sizes. The
only basic hypothesis of the quoted papers was that in gen-
eral any ranges of conjugate dynamical variables ∆x and ∆px

have physical meaning of quantum uncertainty ranges, thus to

be regarded according to the basic ideas of quantum statistics;
hence

∆x∆px = n~, (1.1)

with n arbitrary integer.
No hypothesis is necessary about ∆x and ∆px, which are

by definition arbitrary, unknown and unpredictable. Eq. (1.1)
was the unique assumption in [7, 8] and does so also in the
model proposed here. Despite the apparently agnostic char-
acter of eq. (1.1), the results inferred in the quoted papers
were in all cases completely analogous to that of the usual
wave mechanics formalism; in particular it was found that
the quantum numbers actually coincide with the numbers of
allowed states in the phase space for the concerned systems.
Eq. (1.1) only is enough to give the classical Hamiltonian,
Hcl, the physical meaning of quantum Hamiltonian, Hq; it
simply requires considering the ranges of dynamical variables
rather than the dynamical variables themselves, which are
therefore disregarded since the beginning. For instance, in
a one-dimensional problem like that of a mass constrained to
oscillate along a fixed direction, it means that hold the posi-
tions

Hcl(x, px)⇒ Hq(∆x,∆px)⇒ Hq(∆px, n). (1.2)

The uncertainty is regarded in this way as fundamental
principle of nature rather than as mere consequence of com-
mutation rules of quantum operators. The case of the har-
monic oscillator, already introduced in [7], has central impor-
tance here; its quantum formulation according to eq. (1.1)
and positions (1.2) is so short and simple that it is sketched
in the next section 2 to make the present paper clearer and
self-consistent.

The next section aims also to emphasize how the concepts
so far introduced enable the quantum approach. For clarity
the anharmonic oscillator is regarded in section 3 having in
mind the lattice oscillations of atoms/ions, yet through a very
general approach that can be extended to any quantum sys-
tem. The discussion on the results of the model and the con-
clusion are reported in sections 4 and 5.
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2 The harmonic oscillator

With the positions 1,2, the classical energy equation E =
p2/2m + khar(x − xo)2/2 of the oscillating mass around the
equilibrium position xo reads ∆E = ∆p2/2m+khar∆x2/2, hav-
ing omitted for simplicity the subscript x; owing to eq. (1.1),
E = E(∆p, n) is now because of n a random quantity within
an energy range ∆E that corresponds to local uncertainty of
dynamical variables within ∆x and ∆p. Both these latter and
∆E are assumed positive by definition. Then, one finds

∆E =
∆p2

2m
+

m(n~ωhar)2/2
∆p2 , ω2

har =
khar

m
. (2.1)

Eq. (2.1) has a minimum as a function of ∆p, i.e.

∆pmin =
√

mn~ωhar, ∆Emin = n~ωhar, (2.2)

being now n the number of vibrational states. Although for
n = 0 there are no vibrational states, the necessity that ∆p , 0
compels ∆E , 0 and thus ∆E0 = ∆p2

0/2m , 0 with ∆p0 =

∆pmin(n = 0). In this particular case, the problem reduces to
that of a free particle in the box, i.e. ∆p0 is related to the zero
point energy. This requires ∆p0 = ∆pmin(n = 1), because the
minimum quantum uncertainty of ∆p can be nothing else but
that of ∆pmin for n = 1. The numerical correspondence be-
tween non-vibrational momentum range, ∆p0, and first vibra-
tional momentum range, ∆pmin(n = 1), means that at the zero
point energy state the mass m is delocalized in a space range,
∆x0 = ∆x(n = 0), equal to that, ∆x(n = 1), pertinent to the
lowest vibrational state. In other words, the oscillation am-
plitude at the ground energy level is the same as the delocal-
ization range size of the particle with zero point energy only.
Hence ∆p0 =

√
m~ωhar defines E0 = ∆p2

0/2m = ~ω/2. The
minimum of ∆E must be ∆Emin = Emin − ~ωhar/2; then, re-
garding Emin = Ehar as the harmonic energy level, the known
result

Ehar = n~ωhar +
~ωhar

2
(2.3)

is obtained considering uncertainty ranges of eq. (1.1) only,
and without any further hypothesis. Note that with ∆p =
∆phar

∆p2

2m
=
ω2

harmn2~2

2∆p2 =
n~ωhar

2
,

in agreement with the virial theorem as Emin is given by the
sum of kinetic and potential terms, whereas the zero point
term has kinetic character only. Also note in this respect that
∆pmin and ∆p0 are merely particular range sizes, among all
the ones allowed in principle, fulfilling the condition of min-
imum Emin and E0.

These results do not contradict the complete arbitrariness
of ∆p and ∆x, since in principle there is no compelling rea-
son to regard the particular ranges of eqs. (2.2) in a different
way with respect to all the other ones allowed by eq. (1.1);
rather the results merely show the preferential propensity of

nature for the states of minimum energy. In effect it is not
surprising that the energy calculated with extremal values of
dynamical variables in the ranges of eq. (2.1) does not coin-
cide, in general, with the most probable energy. In conclu-
sion, this example highlights that the physical properties of
a quantum system can be inferred without solving any wave
equation simply replacing the local dynamical variables with
the respective quantum uncertainty ranges: the key problem
becomes then that of counting correctly case by case the ap-
propriate number of allowed states, as shown in [7,8] for more
complex quantum systems.

It appears that, once accepting the eq. (1.1) and the conse-
quent positions 1,2, have actual physical meaning the uncer-
tainty ranges rather than the dynamical variables themselves;
these latter are considered here random, unknown and unpre-
dictable within the respective ranges and thus are disregarded
since the beginning when formulating the physical problem.
Just this is the essence of eq. (2.1). Eventually note that the
vibrational quantum number n appears to be here the num-
ber of quantum states allowed to the oscillator. Since the
present approach gives sensible results for harmonic oscil-
lations, there is no reason to exclude that the same holds for
anharmonic oscillations as well. The next paragraph aims to
generalize the kind of approach just introduced to the case of
anharmonic oscillations.

3 The anharmonic oscillator

The classical Hamiltonian reads now

E = p2/2m +
N∑

i=2

a′i(n~)
−i(x − xo)i, (3.1)

being N the arbitrary number of terms of the series including
quadratic and anharmonic terms and a′i proper coefficients as-
sumed known; indeed the values of these coefficients charac-
terize distinctively the specific kind of oscillating system. The
signs of a′3 and a′4 are taken here negative [9]; the former ex-
presses the asymmetry of the mutual repulsion between atoms
or ions, e.g. in a metallic lattice, the latter describes the soft-
ening of the vibration at large amplitudes. The higher order
terms allow to describe these effects in a more general way, so
their sign and values must agree with the idea that the global
consequence of anharmonicity is to lower the potential en-
ergy of oscillation; indeed the potential energy reads a′2(x −
xo)2 f (x), i.e. it consists of a quadratic term with x-dependent
correction factor f (x) = 1 +

∑N
i=3(a′i/a

′
2)(x − xo)i−2 < 1.

By analogy with the harmonic case, the coefficient of the
quadratic term, anyway related to the force constant kan, is
reasonably expected to have still the form m(n~ωan)2/2 with
oscillation frequency defined now by ω2

an = kan/m. Moreover
the dependence of this term on ωan suggests that in general
a′i = a′i(ωan) are to be expected as well.

The following discussion aims to guess this dependence
and the relationship between ωan and ωhar through the same
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approach shown previously; so, as done in section 2, we aim
to calculate ∆Emin and infer next the anharmonic vibrational
levels Ean and zero point energy E0, being clearly ∆Emin =

Emin − E0 and Ean = Emin.
According to the position (1.2) and eq. (1.1), the quantum

energy equation corresponding to eq. (3.1) reads

∆E =
∆p2

2m
+

N∑
i=2

a′i
∆pi . (3.2)

This equation, minimized with respect to the range ∆p,
yields

∆pmin = m
N∑

i=2

ia′i∆p−(i+1)
min , (3.3)

being

∆Emin = ∆E(∆pmin), ∆pmin = ∆pmin(ωan).

For assigned coefficients a′i , the first equation admits in
general N + 2 solutions ∆pmin, some of which can be how-
ever imaginary. Being the momentum uncertainty range ∆p
real positive by definition, let I′ ≤ N + 2 be the number of
positive real roots; so I′ possible values of ∆pmin describe
the allowed momentum ranges of the oscillating particle that
fulfil the minimum condition. A further limitation to these
values is that the series must converge. Disregard also the
values of ∆pmin that with the given a′i possibly do not ful-
fil the inequality

∣∣∣(i + 1)a′i+1∆p−(i+2)
min

∣∣∣ << ∣∣∣ia′i∆p−(i+1)
min

∣∣∣ inferred
from eq. (3.2), i.e. ∣∣∣a′i+1

∣∣∣ << ∣∣∣a′i∆pmin
∣∣∣ . (3.4)

Then I ≤ I′ is the number of real roots of physical interest
to be considered in the following. Trivial manipulations of eq.
(3.2) to eliminate m with the help of eq. (3.3) yield

∆E =
1
2

(
∆p
∆pmin

)2 N∑
i=2

ia′i
∆pi

min

+

N∑
i=2

a′i
∆pi . (3.5)

To extract the allowed physical information from this
equation one should minimize with respect to ∆p and then
proceed as shown in the harmonic case. Actually this mini-
mum condition has been already exploited to infer eq. (3.3)
itself, which suggests that eq. (3.5) should not need being
minimized once more. To understand this point replace ∆p
with ∆pmin in eq. (3.5) and consider first the resulting equa-
tion ∆E(∆pmin) =

∑N
i=2(1+ i/2)a′i∆p−i

min in the harmonic case;
then N = 2, i.e. a′i>2 = 0, yields 3a′2∆p−2

min/2. By comparison
with eq. (2.1) this result takes a more familiar form replacing
a′2 with a2∆p4

min/m where a2 is a dimensionless proportional-
ity coefficient linking a′2 and ∆pmin; in this way one obtains

∆E(∆pmin) =
3a2∆p2

min

2m
,

which has the same form of eqs. (2.2) a proportionality fac-
tor apart. As expected, an immediate connection with the
harmonic case is possible uniquely on the basis of the con-
dition 3,3 without introducing explicitly neither ωhar nor the
equations of ∆phar and ∆Ehar. Express thus in general the
coefficients a′i as a function of ∆pmin as follows

a′i =
∆pi+2

min

m
ai,

N∑
i=2

iai = 1, 1 ≤ j ≤ I (3.6)

where ai are new constants that fulfil the boundary condi-
tion expressed by the second equation, straightforward conse-
quence of eq. (3.3). Note that a′i are uniquely defined for the
specific oscillating system, whereas the appropriate notation
of the various ai should be a( j)

i to emphasize that a set of these
coefficients is defined by each solution ∆p( j)

min of physical in-
terest calculated through eq. (3.3). This would also compel
indicating in eq. (3.5) ∆E( j) and then ∆E( j)

min. To simplify the
notations the superscript ( j) will be omitted, stressing how-
ever once for all that if N > 2 then eq. (3.5) actually rep-
resents anyone among I admissible equations. Replacing a′i
into the energy equation (3.5), one finds

∆E =

( ∆p
∆pm

)2 1
2
+

N∑
i=2

ai

(
∆pm

∆p

)i ∆p2
min

m
.

This suggests putting

q
∆E
∆Emin

=
1
2

(
∆p
∆pmin

)2

+

N∑
i=2

ai

(
∆pmin

∆p

)i

, (3.7)

∆Emin = q
∆p2

min

m
, a2 =

1
2

1 − N∑
i=3

iai

 .
The proportionality factor q aims to fulfil the reasonable

condition ∆E = ∆Emin for ∆p = ∆pmin and express in a gen-
eral way the expected link between ∆Emin and ∆p2

min/m. Triv-
ial calculations yield

q = 1 +
N∑

i=3

(1 − i/2)ai. (3.8)

Of course q must be intended here as q( j) likewise as a( j)
i .

Whatever ai might be, eq. (3.7) does not need being min-
imized; it simply expresses as a function of ∆p/∆pmin the
energy deviation from the harmonic condition for assigned
values of the coefficients a′i≥2 , 0. Eq. (3.7) and a2 are
uniquely defined in the particular case ai>2 = 0 only, which
corresponds to q = 1 as well. Moreover the form of the sec-
ond equation, analogous to that of eqs. (2.2), suggests that
∆pmin and ∆Emin must be also equal or proportional to the
respective harmonic quantities ∆phar and ∆Ehar. So putting
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in general ∆Emin = w
2∆Ehar and ∆pmin = w∆phar, with w

proportionality factor, one finds

q
w2

∆E
∆Ehar

=
1

2w2

(
∆p
∆phar

)2

+

N∑
i=2

aiw
i
(
∆phar

∆p

)i

, (3.9)

ωan = w
2ωhar.

Likewise q, also w must be intended in general as w( j). So
eqs. (3.9) define I anharmonic frequencies ω( j)

an , ωhar, here
designated shortlyωan, corresponding to the unique harmonic
frequency ωhar; i.e. the various ∆Emin describe the splitting
of each n-th vibrational energy level n~ωhar. The anharmonic
potential of eq. (3.9) is expected to depend upon ωan through
the dimensionless coefficients ai, by analogy with the depen-
dence of the harmonic term upon ω2

har. Thus, to complete the
task of the present section it is necessary: (i) to define the fac-
tor w of eq. (3.9); (ii) to highlight the analytical form of the
functions ai = ai(ωan); (iii) to express the potential energy of
equation (3.9) as a function of ωan through these coefficients.

Rewrite to this purpose the coefficients of eq. (3.2) as
shown in following series

q∆E =
1
2
∆p2

m
+

N∑
i=2

a′′i
mi/2(n~ωan)i/2+1

∆pi , (3.10)

where the powers of n~ωan and m have been determined by
dimensional consistency of the various terms with both ∆E
and ∆pi. Minimizing with respect to ∆p and equating to zero,
one finds

RE =
1
2

R2
p +

N∑
i=2

a′′i R−i
p , (3.11)

where

RE = q
∆E
∆Ehar

, Rp =
∆p
∆phar

, a′′i = aiw
i+2.

With the coefficients a′′i and ai linked by the last posi-
tion, eq. 3,(11) is identical to eq. (3.9); this consistency sup-
ports therefore the positions of both eqs. (3.6) and (3.10). To
specify w put first N = 2 in eq. (3.9); minimizing R2

p/2w
2 +

a2w
2/R2

p with respect to Rp yields R4
p = 2a2w

4. Since the
minimum of Rp can be nothing else but 1 by definition, w =
(2a2)−1/4 yields w = 1, whereas in this particular case a2 =

1/2. As expected, eq. (3.9) is thus uniquely defined for
ai>2 = 0 only. Note that the coefficient of the quadratic term
of eq. (3.10) reads a′′2 m(n~ωan)2; if the result w = (2a2)−1/4

previously obtained for N = 2 still holds for any N with
a2 given now by the last eq. (3.7), then a′′2 = a2w

4 yields
a′′2 = 1/2 and thus the expected form m(n~ωan)2/2 formerly
quoted whatever ai>2 might be.

This consideration encourages one to conclude with the
help of eq. (3.7)

w2 = (2a2)−1/2 =

1 − N∑
i=3

iai

−1/2

,

a′′i = ai

1 − N∑
i=3

iai

−i/4−1/2

.

Replacing a′′i in eq. (3.10) one finds

∆E =
1
2q
∆p2

m
+

+

N∑
i=2

q−1ai
mi/2(n~ωhar)i/2+1

∆pi

1 − N∑
i=3

iai

−
3
4 (i+2)

.

(3.12)

This is the sought generalization of eq. (2.1) when a′i>2 ,
0; the positions so far introduced link eq. (3.2) with the har-
monic case. Moreover eq. (3.9) yields

ωan =

1 − N∑
i=3

iai

−1/2

ωhar. (3.13)

With the given choice of w2, therefore, ai≥3 = 0 yield not
only ωan = ωhar but also ∆pmin = ∆phar and ∆Emin = ∆Ehar.
Hence

∆Emin = n~ωan =

1 − N∑
i=3

iai

−1/2

n~ωhar, (3.14)

∆pmin =
√

mn~ωan =

1 − N∑
i=3

iai

−1/4 √
mn~ωhar.

As concerns the zero point energy E0 hold the consid-
erations of the previous section, i.e. ∆Emin = Emin − E0;
moreover also now for n = 0 the minimum of eq. (3.12)
reduces to ∆p2

0/2qm, with ∆p2
0 = ∆p2

min(n = 0). As ex-
plained before, even in lack of vibrational states ∆pmin , 0
compels putting ∆p0 = ∆p(0)

min(n = 1) by virtue of eq. (3.14)

so that E0 =

(
1 −

N∑
i=3

ia(0)
i

)−1/2

~ωhar/2q; since in general are

allowed several values of ∆pmin, the notation emphasizes that
one must consider here the set of values of a( j)

i corresponding
to the smallest among the various ∆p( j)

min.
In conclusion, since the anharmonic energy and momen-

tum must correspond to the respective ∆Emin and ∆pmin, it is
possible to summarize the previous results, with full notation
for clarity, as follows with the help of eq. (3.8)

E( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

n( j)~ωhar+

+
1
2

1 + N∑
i=3

(1 − i/2)a(0)
i

−11 − N∑
i=3

ia(0)
i

−1/2

~ωhar,

(3.15)

with
1 ≤ j ≤ I,
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∆p( j)
an =

1 − N∑
i=3

ia( j)
i

−1/4 √
mn( j)~ωhar,

ω
( j)
an =

1 − N∑
i=3

ia( j)
i

−1/2

ωhar,

a( j)
i =

ma′i(
∆p( j)

min

)i+2 .

4 Discussion

The strategy of the papers [7, 8] to exploit via eq. (1.1) the
classical Hamiltonians of the system of interest was outlined
in section 2 and then extended in section 3 to the anharmonic
case. The first task of the discussion aims to clarify the clas-
sical and quantum ways to regard the harmonic and anhar-
monic oscillation. The classical potential energy of eq. (3.1),
Ucl = Ucl(x− xo), concerns a withholding force progressively
increasing as a function of x − xo while the oscillation turns
gradually from harmonic into anharmonic behaviour. More-
over if momentum and position of m are both exactly known,
Ucl can be defined with arbitrary accuracy simply increasing
the number of terms of the series.

This description is clearly inadequate for the potential en-
ergy, Uq = Uq(∆p, n), of the quantum eq. (3.2); in principle
the exact elongation of m with respect to the rest position and
the corresponding momentum are not jointly specifiable, i.e.
the limit ∆x → 0 could not be described by finite values of
∆pmin. Indeed ∆pmin → ∞ compels ∆p → ∞ that yields
∆E = ∆p2/2m regardless of a′i ; this limit corresponds to the
classical case of a free particle in a one-dimensional box, of
no interest here, rather than to the harmonic limit expected
for ∆x→ 0. Eventually the quantum uncertainty compels re-
garding in a different way also the number of terms of Ucl and
of Uq: in the former case N is in principle arbitrary, being sig-
nificant its actual ability to provide a description as detailed
as possible of the local state of motion of m, in the latter case
does not, being instead significant its actual ability to intro-
duce the allowed physical information into the system.

If for instance the model aims to describe softening and
asymmetry effects only, then are justified terms like ∆xi with
powers and signs [9] pertinent to these effects only. Solving
eq. (3.1) requires exploiting the functional relationship Ucl

upon ∆x through numerical methods, solving eq. (3.2) re-
quires instead a different reasoning because the anharmonic
effects inherent the various ∆xi are related to the respective
∆p−i through eq. (1.1) only: the previous results show that
a general physical principle, the minimum energy, is enough
to this purpose. According to the classical eq. (3.1) the har-
monicity requires a′i≥3∆xi << a′2∆x2 in agreement with the
convergence condition (3.4); the quantum eq. (3.2) requires
a′i≥3∆p−i << a′2∆p−2, which is still a statement of “small” os-
cillation amplitudes since a′i∆p−i ∝ a′i∆xi. Both definitions

are thus equivalent, yet the latter is more interesting because
it involves eq. (1.1) and allows further considerations on the
classical and quantum concepts of harmonicity. Eq. (3.4) and
the first eq. (3.3) yield for i ≥ 3

a′i≥3∆p−i << a′2∆p−2 ⇒ ai

(
∆pmin

∆p

)i

<< a2

(
∆pmin

∆p

)2

.

Noting that ∆p is arbitrary by assumption and that ∆pmin
≤ ∆p by definition, it turns out that the second inequality can
be merely fulfilled by ∆p/∆pmin >> 1 regardless of the val-
ues of the ratios a2/ai and a′2/a

′
i . Since in principle a′i only are

required to fulfil the convergence condition (3.4), whereas the
values of ai are ineffective in this respect because their values
are consequently defined in the successive eq. (3.6) only, the
conclusion is that small oscillation amplitudes do not require
necessarily vanishing ai>2. According to eq. (3.13), how-
ever, just these latter define w that in turn control ωan and
thus the splitting of energy levels. The fact that in general
w ≡ w( j) , 1 even for small oscillations supports the idea
that the quantum harmonicity is a particular case, but not a
limit case, of the quantum anharmonicity; in other words, an
oscillating quantum system does not change gradually from
harmonic to anharmonic behaviour.

This conclusion is confirmed also considering the depen-
dence of the constants w on ai. In eq. (3.6) large values of
∆pmin entail small ai and thus w such that the correspond-
ing allowed frequencies ωan are expected to have values sim-
ilar to ωhar; the contrary holds for small values of ∆pmin, to
which correspond larger values of w and therefore larger gaps
ωan − ωhar.

Hence, when considering the totality of allowed frequen-
cies consistent with the different sizes of all ranges ∆pmin,
even small values of a′i classically compatible with the har-
monic condition entail anyway relevant splitting and gap of
energy levels with respect to ωhar typical of the anharmonic-
ity; otherwise stated, the quantum harmonicity requires a′i≥3 =

0 exactly. The harmonic ground level is a reference energy
rather than an attainable limit energy because fails the classi-
cal expectation of anharmonic frequencies progressively de-
viating from ωhar along with a′i ; the last eq. (3.7) shows in-
deed that even the first quadratic coefficient a2 of potential
energy differs from the corresponding harmonic coefficient
unless ai≥3 = 0. It is also significant the fact that the unique
ωhar, classically defined in eq. (2.1) through the force con-
stant khar of Hooke law only, never corresponds to a unique
ωan whatever a′i≥3 , 0 might be; this latter, although formally
introduced in the early eq. (3.3) as ω2

an = kan/m, has quan-
tum character after being subsequently redefined by eq. (3.9)
through the multiplicity of values of w.

It is however worth noting in this respect a further chance
to define the oscillation frequency in a mere quantum way
through an uncertainty equation having a form seemingly dif-
ferent but conceptually equivalent to eq. (1.1). Introduce the
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time range ∆t necessary to displace m by ∆x with finite aver-
age velocity vx; defining then ∆t = ∆x/vx and ∆E = ∆pvx, eq.
(1.1) takes a form that introduces new dynamical variables
t and E having random, unpredictable and unknown values
within the respective uncertainty ranges defined by the same
n~. Of course ∆t and ∆E are completely arbitrary, as they
must be, likewise ∆x and vx. Thus, with the constrain of equal
n, eq. (1.1) reads equivalently as

∆E∆t = n~, ∆t = t − to, (4.1)

being the constant to the arbitrary origin of time coordinates.
Eq. (4.1) is not a trivial copy of eq. (1.1): it introduces new
information through vx and shows that during successive time
steps ∆t the energy ranges ∆E change randomly and unpre-
dictably depending on n. Of course the eq. (1.1) could have
been inferred itself in the same way from eq. (4.1), i.e. re-
garding this latter as the fundamental statement. Relating eqs.
(1.1) and (4.1) via the same arbitrary integer n, whatever it
might be, means describing the oscillation of m through en-
ergy and time uncertainty ranges. This is equivalent to say
that the time coordinate is regarded in an analogous way as
the space coordinate hitherto concerned.

To show the consequences of this assertion, consider that
1/∆t has in general physical dimensions of frequency; then
eq. (4.1) can be rewritten as ∆En = n~ω§, being ω§ a function
somehow related to any frequency ω. If in particular ω§ is
specified to be just the previous frequency ωhar, whatever the
value of this latter might be, eq. (4.1) reads

∆En = n~ωhar. (4.2)

The notation emphasizes that the particular case ω§ ≡
ωhar enables a direct conceptual link with eq. (2.3), i.e. it
concerns the harmonicity; having found that n is according to
eq. (1.1) the number of vibrational states of the oscillator and
n~ωhar their energy levels, then without need of minimizing
anything one infers that ∆En is again the energy gap between
the n-th excited state of the harmonic oscillator and its ground
state of zero point energy; the condition of minimum energy
and ∆pmin are now replaced by the specific meaning of ∆t.

This conclusion shows that a particular property of the
oscillating system is correlated to a particular property of the
uncertainty ranges, thus confirming the actual physical mean-
ing of these latter. So En falling within ∆En are still now
random, unpredictable and unknown because of n. While
ωhar was formerly defined by the formal position 2,1, now
eq. (4.1) reveals its actual quantum meaning due to its direct
link with the time uncertainty ∆t.

This last result is significant for the present discussion: it
justifies the different outcomes of the quantum approach with
respect to the classical expectation in terms of uncertainty
about the dynamical variables of m only; thus, as shown in [7,
8], this result disregards any phenomenological/classical hint
to describe the system. In other words, instead of thinking to

a withholding spring bound to a mass moving back and forth,
the oscillation can be imagined in a more abstract way. It is
enough to introduce an arbitrary energy range ∆En to which
corresponds a respective quantum frequency 1/∆tn; then the
form of eq. (1.1) is suitable to introduce an appropriate po-
tential energy with elongation extent described by a unique
quadratic term or by a series of terms, whose coefficients are
respectively expressed as a function of ωhar or ωan like in eqs.
(2.1) or (3.10).

The worth of this conclusion is due to the generality of
the resulting concept of oscillation, which skips any informa-
tion on actual kind of motion of m, particular property of the
oscillating mass, specific nature of the withholding force and
hypothesis on the allowed range of frequencies. Both time
and space uncertainties allow thus to describe an oscillating
system in a fully quantum way, without writing and solving
its wave equation. The previous results highlight the link of
the allowed frequencies to the terms of Uq, see in particu-
lar the remarks about eqs. (3.5) and 3,13. A consequence
of this point of view is that replacing Ucl with Uq compels
the existence of several momentum uncertainty ranges ∆pmin
and thus of as many ωan even when one would expect a mere
perturbation of the unique ωhar: the physical information pro-
vided by the quadratic term only is uniquely defined, instead
the various values of ∆pmin and ωan for N > 2 in eq. (3.2)
reveal according to the last eq. (3.7) multiple anharmonic
effects that influence also the quadratic term. The quantum
uncertainty is therefore crucial in describing the oscillation.

For instance let us show that, at least for certain frequen-
cies, the anharmonic oscillator appears to be a system intrin-
sically unstable. Let i be the index of any high order term of
the series such that a′i/∆pi << a′2/∆p2 is true by definition
because of the convergence condition; so a′i/∆pi represents
a small contribution to the total energy of oscillation. Let
δa′i/∆pi be its value altered by the change of the coefficient
ai because of an external perturbation acting on the oscilla-
tor; if for instance an impurity diffuses through the lattice in
proximity of the given oscillating atom/ion, the stress field
around this impurity or its possible charge field reasonably
modify the local repulsion between atoms/ions or the soften-
ing effects at large oscillation amplitudes, as a consequence of
which the anharmonic coefficients a′3 and/or a′4 are expected
to change.

Let us exemplify any perturbation like this through a suit-
able change of some a′i of the i-th energy terms in eq. (3.2);
here however we consider for simplicity one term only to de-
scribe the local effect. The proof that some ∆pmin and result-
ing ∆Emin are strongly affected even by a very small change
of any a′i>2 is easy in the particular case where the series de-
scribing the potential energy converges very quickly. Differ-
entiating eq. (3.6) one finds

δa′i = a′i

(
(i + 2)

δ∆pmin

∆pmin
+
δai

ai

)
.
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Fix the value of δa′i ; if the local perturbation of the lattice
affects a′i in such a way that δa′i >> a′i , i.e. it alters signifi-
cantly ai, then the quantity in parenthesis is very large. If this
happens while holds for δa′i also the condition δa′i/∆pi <<
a′2/∆p2, still possible because no hypothesis has been made
on the strength of the perturbation, then considering that the
quadratic term provides the most essential contribution to the
total potential energy the result is: even a small perturbation
δa′i/∆pi of the whole oscillation energy is able to change sig-
nificantly both ∆pmin and ai that define ωan, see eqs. (3.13) to
(3.15). The altered size of the range ∆pmin, actually verified
by preliminary numerical simulations carried out with coeffi-
cients a′i arbitrarily chosen to match the aforesaid condition,
means in particular that the whole energy of the system ad-
mits not only a different ωan allowed to the oscillator but also
a larger range of corresponding momenta pmin allowed to m;
this does not exclude even the chance of chaotic motion re-
lated to a random sequence of values ωan during a weak per-
turbation transient due to the diffusing impurity.

The reason of such instability rests once again on the dif-
ferent way of regarding the oscillation amplitudes in classical
and quantum physics. The former admits the limit ∆x → 0
regardless of ∆p, the latter does not; so the quantum oscilla-
tion range of physical interest cannot be arbitrarily small or
change arbitrarily without violating the crucial condition of
minimum energy. Indeed the oscillation range sizes corre-
sponding to the vibrational levels are quantized themselves

∆xmin =

√
n~
ωanm

, ∆x0 =

√
~

ω(0)
an m
.

At this point it is worth remembering what has been previ-
ously emphasized, i.e. that the sizes of the ranges ∆x and ∆p
are unspecified and indefinable; ∆xmin and ∆pmin are merely
particular values showing the propensity of nature to fulfil
the condition of minimum energy, however without contra-
dicting the assumption that the uncertainty ranges are in prin-
ciple completely arbitrary. So oscillation ranges that do not
fulfil the former condition are certainly possible but unstable
because of mere quantum reasons, i.e. they do not correspond
to momentum range sizes that minimize the oscillation energy
levels.

This conclusion is important because its validity follows
uniquely from the assumption of convergence of the potential
series only, i.e. it concerns a realistic condition effectively
possible for the oscillator rather than an unusual and improb-
able limit case. Also, this result holds whatever the origin
of the anharmonicity might be and confirms the physical di-
versity of harmonic and anharmonic quantum systems. Note
however that the former is actually an ideal abstraction only;
what can be expected in practice is a strong or weak anhar-
monicity, unless some specific physical reason requires just a
potential energy with quadratic term only. So the results of
the present approach should be regarded as the realistic be-

haviour of any oscillating system, rather than a sophisticated
improvement of the naive harmonic behaviour; now this latter
appears thus in general reductive and incomplete, rather than
merely approximate. Yet eq. (3.15) shows that the zero point
energy is formally analogous in both cases, a numerical dif-
ference apart: the only difference between the harmonic and
anharmonic cases is that instead of considering the unique
~ωhar/2 one must select the smallest ω( j)

an to calculate ~ω(0)
an /2.

Note eventually that easy considerations allow to general-
ize the concept of perturbed oscillator in the conceptual frame
of the present model. So far the present approach aimed to in-
troduce the terms a3 and a4 to account for the anharmonicity,
so that eqs. (3.2) to (3.15) tacitly assume an isolated oscillat-
ing system. Simple considerations however allow to further
generalize the physical meaning of eq. (3.2) taking advan-
tage of the fact that the present model works with a number
of high order terms in principle arbitrary. In particular coef-
ficients and number of terms could be exploited to describe
even an oscillating system perturbed by an external force, for
instance due to the interaction with other oscillators; indeed
this force can be certainly described as a series development
having the form

∑
a′′i ∆xi if it is related, in the most general

case non-linearly, to the displacement extent of the oscillating
mass. Of course i can be even negative if the force vanishes at
infinite distance. So, whatever the nature of the perturbation
might be, this means that the potential energy of the system
changes by an additional amount −∑

a′′i (1 + i)−1∆xi+1 to be
summed up with the corresponding terms of eq. (3.1). In
any case, however, adding an arbitrary number of such en-
ergy terms to those intrinsically characterizing the oscillator
does not change in principle the approach so far exposed, ex-
cept of course the numerical value of the various ai of eq.
(3.9), which are now replaced by the sum a′′i +a′i for each i-th
power of oscillation elongation. So nothing hinders to regard
the energy range ∆Ean of this equation as ∆Ean+pert still nor-
malized to that of an isolated harmonic oscillator; it is enough
that the coefficients a′i up to the N-th order are still known,
i.e. defined by the particular kind of oscillating system and
external perturbation, yet without necessarily assuming any
constrain on their signs, now determined by the sum of both
effects. Even in the case where the force is described by terms
like α′/∆xi one would find an equation like (3.2) containing
however terms like a′k∆pk with k > 2. Also in this case, mini-
mizing with respect to ∆p would yield an appropriate number
of roots ∆pmin and thus prospective conclusions in principle
completely analogous to that previously carried out. In the
present case holds therefore the following position

ωan+pertTw2ωhar.

As expected, the previous scheme of vibrational levels is
modified the external perturbation that affects w. This last re-
sult confirms the very general character of the way to describe
any oscillating system simply with the help of the fundamen-
tal eq. (1.1).
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5 Conclusion

The computational scheme introduced in the present paper is
very simple: the most important achievements hitherto ex-
posed do not require numerical calculations, but are conse-
quence of general considerations on basic concepts of quan-
tum mechanics. The general character of the approach, e.g.
due to the arbitrary number N of anharmonic terms, and the
possibility of extension to the case of a perturbed oscillator,
propose the model as a useful tool in a broad variety of phys-
ical problems.
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