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The Schwarzschild metric apportions the energy equivalence of a mass into a time com-
ponent, a space component and a gravitational component. This apportionment indi-
cates there is a source of gravitational energy as well as a limit to the magnitude of
gravitational energy.

1 Introduction

Albert Einstein asserted that his field equations are in essence
a restatement of the conservation of energy and momentum
[1, pp. 145–149]. Every solution of the field equations, there-
fore, must account for all energy in the system described by
the solution. How do solutions to the field equations account
for gravitational energy?

This paper explains how within Schwarzschild’s solution
[2] to Einstein’s field equations the effects of gravity can be
represented as a velocity and as an apportionment of mass-
energy equivalence. This allows an accounting for gravita-
tional energy as part of mass-energy equivalence.

The paper first considers a spacetime without gravity, as
described by the Minkowski metric. The Minkowski metric
can be rewritten as a summation of velocities and as an ap-
portionment of energy equivalence.

The paper then shows the Schwarzschild metric, which
adds a spherical non-rotating mass to the spacetime defined
by the Minkowski metric, can also be rewritten as a summa-
tion of velocities and as an apportionment of energy equiva-
lence. The apportionment of energy equivalence includes a
gravitational component. This indicates gravitational energy
has a source and a limit to its magnitude.

2 The Minkowski Metric

The Minkowski metric was originally derived based on Her-
mann Minkowski’s fundamental axiom for space-time set out
in an address [3] given in September 1908:

The substance at any world-point may always, with the
appropriate determination of space and time, be looked
upon as at rest.

Minkowski’s fundamental axiom for the space-time con-
tinuum indicates that for the substance at a world point (e.g.,
a particle) there exists a local reference frame, with its own
local space and time coordinates, in which the substance is at
rest with respect to the local space coordinates (but not with
respect to the local time coordinate).

For example, assume the local reference frame for a parti-
cle has the local space coordinates (ξ, η, ς) and the local time
coordinate τ. For the particle, with respect to the local refer-
ence frame,

dξ
dτ

=
dη
dτ

=
dς
dτ

= 0. (1)

The Minkowski metric is often expressed using Cartesian
reference coordinates (x, y, z, t) and the local time coordinate
τ, i.e.,

c2dτ2 = c2dt2 − dx2 − dy2 − dz2. (2)

The Minkowski metric can also be expressed using spherical
coordinates, i.e.,

c2dτ2 = c2dt2 − dr2 − r2dθ2 − (rsinθ)2dφ2. (3)

3 Selection of a reference frame from which to measure
velocity

In order to measure velocity in the Minkowski metric (and
the Schwarzschild metric) it is important to select and consis-
tently use a reference frame. In the Minkowski metric there
are two reference frames to choose from. The first is the lo-
cal reference frame defined by local coordinates (ξ, η, ς, τ).
The other is the reference frame (referred to herein as the
coordinate reference frame) defined by reference coordinates
(x, y, z, t).

There is a distinct disadvantage to use of the local refer-
ence frame to make measurements: in its own local reference
frame an object is always at rest, that is, as indicated by (1)
there is no spatial velocity, i.e., no change in the values of
the local space coordinates (ξ, η, ς) with respect to passage of
time as measured by the time coordinate τ.

In the coordinate reference frame, however, there can be
a detectable motion through the space coordinates. This is
referred to herein as spatial velocity (~vs), which is a vector
sum of the motion in three dimensions of space, i.e.,

~vs = ~vx +~vy +~vz, (4)

and which has a magnitude vs where

vs =
∣∣∣~vs

∣∣∣ =

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (5)

as measured by the coordinate reference frame.
Because of this distinct advantage of making measure-

ments from the coordinate reference frame, this is the ref-
erence frame that will be consistently used herein to make
measurements.
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4 Expressing the Minkowski Metric as a sum of veloci-
ties

The Minkowski metric, shown in (2), can be rearranged into
the form of a sum of velocities. Since the observer is mak-
ing measurements from the coordinate reference frame, mo-
mentum and energy will need to be measured with respect to
changes in the reference time coordinate t. The Minkowski
metric is therefore rearranged to show this. Specifically, (2)
can be rearranged as

c2dt2 = c2dτ2 + dx2 + dy2 + dz2, (6)

and therefore,

c2 = c2
(

dτ
dt

)2

+

(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

, (7)

which can be reduced to

c2 = c2
(

dτ
dt

)2

+ v2
s . (8)

Let a time velocity vτ be defined as

vτ = c
dτ
dt
, (9)

so that vτ is a measure of the rate of passage of time as mea-
sured by the local time coordinate τ with respect to the rate
of the passage of time as measured by the reference time co-
ordinate t. This allows (7) to be rewritten as

c2 = v2
τ + v2

s . (10)

Since the time dimension is regarded as being orthogonal
to the space dimensions, (10) can be written in the form of a
vector sum, i.e.,

c =
∣∣∣~vτ +~vs

∣∣∣ . (11)

Equation (11) is the Minkowski metric written as a sum
of velocities. That is, the vector sum of the velocity in the
dimensions of time and space is always equal to the speed of
light c.

5 Energy equivalence in the Minkowski metric

The Minkowski metric, like all solutions to Einstein’s field
equations, describes a matterless field [1, p. 143]. In order
to see how the Minkowski metric apportions energy equiv-
alence, it is only necessary to place a particle with mass m
anywhere in the field. From (11), a momentum of mass m
across four dimensions of time and space can be expressed as

mc =
∣∣∣m~vτ + m~vs

∣∣∣ . (12)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

s . (13)

Equation (13) indicates how the Minkowski metric appor-
tions the energy equivalence [4],

E = mc2, (14)

of mass m into an energy component Eτ in the time dimen-
sion, where

Eτ = mv2
τ, (15)

and an energy component in the space dimensions, where

Es = mv2
s , (16)

so that
E = mc2 = Eτ + Es. (17)

6 The Schwarzschild metric

The full Schwarzschild metric for a spherical non-rotating
mass M with a Schwarzschild radius R, is typically expressed
with the reference coordinates in the form of spherical coor-
dinates, i.e.,

c2dτ2=c2
(
1−R

r

)
dt2− dr2

(1−R/r)
−r2dθ2−(r sin θ)2dφ2. (18)

When M = 0 and thus R = 0, the Schwarzschild metric
reduces to the Minkowski metric.

7 Expressing the Schwarzschild Metric as a sum of ve-
locities

In order to express the Schwarzschild metric as a sum of ve-
locities, a gravitational velocity vg can be defined using the
Newtonian definition of gravitational escape velocity, that is

vg = c

√
R
r
. (19)

Likewise because in the Schwarzschild metric space is
curved a spatial velocity velocity vss through curved space
can be defined as

vss =

√
1

1 − R/r

(
dr
dt

)2

+ r2

(
dθ
dt

)2

+ (r sin θ)2

(
dφ
dt

)2

. (20)

The Schwarzschild metric in (18) can now be expressed
as a sum of the velocities vτ, vg and vss. That is, (19) can be
rearranged as

c2dt2 = c2dτ2 + c2 R
r

dt2 +
dr2

(1 − R/r)
+

+r2dθ2 + (r sin θ)2dφ2,

(21)

and thus

c2 = c2
(

dτ
dt

)2

+ c2 R
r

+
1

1 − R/r

(
dr
dt

)2

+

+r2
(

dθ
dt

)2

+ (r sin θ)2
(

dφ
dt

)2

.

(22)
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Using the definition of vss set out in (20), the definition of
vτ set out in (9) and the definition of vg set out in (19), allows
(22) to be simplified to

c2 = v2
τ + v2

g + v2
ss. (23)

If a gravitational dimension is regarded as being orthog-
onal to both the dimensions of curved space and the time di-
mension, (23) can be written in the form of a vector sum, i.e.,

c =
∣∣∣~vτ +~vg +~vss

∣∣∣ . (24)

Equation (24) is the Schwarzschild metric written as a
sum of velocities. That is, the vector sum of the velocity in
the dimensions of time, space and gravity is always equal to
the speed of light c.

8 Using the Schwarzschild metric to apportion energy
equivalence

In order to see how the Schwarzschild metric apportions en-
ergy equivalence, it is only necessary to place a particle with
mass m anywhere in the field. From (24), a momentum of
mass m across five dimensions of time, space and gravity can
be expressed as

mc =
∣∣∣m~vτ + m~vg + m~vss

∣∣∣ . (25)

Equation (10) can also be rewritten as

mc2 = mv2
τ + mv2

g + mv2
ss. (26)

Equation (26) indicates how the Schwarzschild metric ap-
portions the energy equivalence of mass m into an energy
component Eτ, an energy component Ess in the space dimen-
sions, and an energy Eg component where

Eg = mv2
g, (27)

so that
E = mc2 = Eτ + Eg + Ess. (28)

9 Reciprocity in the apportionment of energy equiva-
lence

In a system of two particles, one particle having a mass m1
and a Schwarzschild radius of R1 and the other particle having
a mass m2 and a Schwarzschild radius of R2, the Schwarzs-
child metric allows the energy equivalence of each mass to
be apportion into, time, space and gravity components. For
example, when spatial coordinates (r1, θ1, φ1) are measured
with respect to m1 and local time τ1 is measured at the loca-
tion of m2, the energy equivalence of m2 can be apportioned
using the Schwarzchild metric,

c2dτ2
1 = c2

(
1 − R1

r1

)
dt2

1 −
dr2

1

(1 − R1/r1)
− r2

1dθ2
1−

−(r1 sin θ1)2dφ2
1,

(29)

into the following apportionment of energy equivalence:

m2c2 = m2v
2
τ1

+ m2v
2
g1

+ m2v
2
ss1

= Eτ1 + Eg1 + Es1 . (30)

Likewise, when spatial coordinates (r2, θ2, φ2) are mea-
sured with respect to m2 and local time τ2 is measured at the
location of m1, the energy equivalence of m1 can be appor-
tioned using the Schwarzschild metric,

c2dτ2
2 = c2

(
1 − R2

r2

)
dt2

2 −
dr2

2

(1 − R2/r2)
− r2

2dθ2
2−

−(r2 sin θ2)2dφ2
2,

(31)

into the following apportionment of energy equivalence:

m1c2 = m1v
2
τ2

+ m1v
2
g2

+ m1v
2
ss2

= Eτ2 + Eg2 + Es2 . (32)

10 Implications

The Schwarzschild metric apportions the energy equivalence
of a mass into a time component, a spatial component and
a gravitational component. This suggests that the source of
gravitational energy is the energy equivalence of the mass af-
fected by gravity and therefore that the magnitude of gravi-
tational energy cannot exceed the energy equivalence of that
mass. As pointed out by Weller [5, 6], this presents a very
significant difficulty for those who view gravity as an unlim-
ited source of energy to perform such tasks as forming black
holes and creating universes. This also tends to confirm the
assertions of Schwarzschild [7] and Einstein [8] that there is
indeed a maximum density of matter.
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