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A 4th family b’ quark would confirm that our physical Universe is mathematical and
is discrete at the Planck scale. I explain how the Fischer-Greiss Monster Group dic-
tates the Standard Model of leptons and quarks in discrete 4-D internal symmetry space
and, combined with discrete 4-D spacetime, uniquely produces the finite group Weyl
E8 x Weyl E8 = “Weyl” SO(9,1). The Monster’s j-invariant function determines mass
ratios of the particles in finite binary rotational subgroups of the Standard Model gauge
group, dictates Möbius transformations that lead to the conservation laws, and connects
interactions to triality, the Leech lattice, and Golay-24 information coding.

1 Introduction

The ultimate idea that our physical Universe is mathematical
at the fundamental scale has been conjectured for many cen-
turies. In the past, our marginal understanding of the origin
of the physical rules of the Universe has been peppered with
huge gaps, but today our increased understanding of funda-
mental particles promises to eliminate most of those gaps to
enable us to determine with reasonable certainty whether this
conjecture is true or false.

My principal goal is to show that if a 4th quark fam-
ily exists, the physical rules of the Universe follow directly
from mathematical properties dictated by the Fischer-Greiss
Monster Group via the Monster’s j-invariant function and the
Möbius transformation in discrete spacetime, with everything
related to the Golay-24 information code for the Leech lattice.

In a series of articles and conference talks beginning in
1992 [1–3] I have been predicting that a 4th quark family with
a b’ quark at about 80 GeV and a t’ quark at about 2600 GeV
will be produced at the colliders. Its detection will support
these proposals:

1. The Standard Model (SM) of leptons and quarks pro-
vides an excellent approximation to the actual discrete
symmetry groups of these fundamental particles and
requires little modification for extension to the Planck
scale.

2. There are 3 lepton families and 4 quark families, each
family of two states defined by a different finite binary
rotational subgroup of the SU(2)L x U(1)Y part of the
SM gauge group.

3. The leptons are 3-D polyhedral entities, and the quarks
are 4-D polytope entities which combine into 3-D col-
orless hadrons, color being a 4-D property with exact
symmetry derived from 4-D rotations.

4. Lepton and quark approximate mass values are deter-
mined by the j-invariant function of elliptic modular
functions, being related to the above subgroups and
Möbius transformations in both discrete lattice spaces
and continuous spaces.

5. Both 4-D spacetime and 4-D internal symmetry space
are discrete at the Planck scale, and both spaces can
be telescoped upwards mathematically by icosians to
8-D spaces that uniquely combine into 10-D discrete
spacetime with discrete Weyl E8 x Weyl E8 symmetry
(not the E8 x E8 Lie group of superstrings/M-theory).

6. All the above is related to the Fischer-Greiss Monster
Group which herein I argue actually dictates all the
rules of physics, except perhaps the entropy law.

7. Consequently, our physical Universe is mathematical
with only one set of rules and physical constants, which
eliminates any multiverse with different values.

8. We live in the only possible Universe, the one with 4-D
discrete spacetime dictated by the Monster Group and
its relation to information coding and the Leech lattice.

My discrete geometrical approach briefly outlined above
fits within the realm of the SM, so its past successes should
still apply. One simply must “discretize” the SM lagrangian.
Even Noether’s theorem works in discrete spaces [4] to con-
nect conservation laws to symmetries, the conserved quantity
being continuous but periodic.

2 Brief orientation for discreteness

A few years ago a comprehensive review [5] summarized
many of the historical mathematical and physical arguments
for considering the Universe to be mathematical. Included
were the three hypotheses: (1) the External Reality Hypoth-
esis (ERH) — there exists an external physical reality com-
pletely independent of us humans; (2) the Mathematical Uni-
verse Hypothesis (MUH) — our external physical reality is
a mathematical structure; and (3) the Computable Universe
Hypothesis (CUH) — the mathematical structure that is our
external physical reality is defined by computable functions.
Recall that a computable function must be specifiable by a
finite number of bits. The mathematical details are in that
article.

The ERH is relatively easy to accept, for the universe cer-
tainly existed long before we humans came on the scene. The
MUH is the conjecture for which I hope the data from the
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colliders will help us decide. One assumption here is that
Gödel’s Incompleteness Theorem is not an impediment, i.e.,
there is no limit to being able to determine the ultimate source
of all the rules of Nature and what these rules actually are.

The most interesting statements [5] regarding challenges
to the CUH are “. . . virtually all historically successful theo-
ries of physics violate the CUH . . . ” and “The main source
of CUH violation comes from incorporating the continuum,
usually in the form of real or complex numbers, which can-
not even comprise the input to a finite computation since they
generically require infinitely many bits to specify.” To me,
therein lies the problem: continuous spaces.

In particle physics, we consider two spaces: (1) a con-
tinuous spacetime for particle movement such as translations,
rotations and Lorentz transformations, and (2) a continuous
internal symmetry space at each spacetime point for the local
gauge interactions of the Standard Model. In both spaces we
have successfully used continuous functions for our descrip-
tions of the behavior of Nature.

My proposed solution to this problem is to consider both
spaces to be discrete spaces “hidden” underneath the continu-
ous approximation, as if we do not yet have enough resolution
to detect this discreteness. All our successful physics theo-
ries are then excellent effective theories containing continu-
ous fields and continuous wave function amplitudes in this
approximate world.

We will not be entering a strange new world by consider-
ing a discrete approach, for we use difference equations, lat-
tice models, and discrete computations to approximate con-
tinuum physics all the time in numerical calculations, and the
results are quite reliable and amazingly accurate. Therefore,
I suggest that a fundamental discreteness at the Plank scale of
about 10−35 meters is not unreasonable [3].

The possibility that the Monster Group, whose influence
looms over all of mathematics, could dictate all of physics
was put forth in several of my previous papers and confer-
ence talks over the last two decades, but other physicists have
conjectured a similar proposal. What the others have not re-
alized is the direct connection in a discrete internal symme-
try space from the Monster to the lepton and quark states via
the j-invariant of elliptic modular functions. In this article, I
provide additional essential arguments to establish the hege-
mony of the Monster Group and I arrive at the conclusions
that spacetime is discrete and our Universe is mathematical.

3 The Monster and the j-invariant

The very large discrete symmetry group called the Monster
group M is a finite simple group because it has only two
normal subgroups, the trivial one-dimensional group and the
whole group itself. Finite simple groups can be used as build-
ing blocks in that any other type of finite group can be con-
structed from them. The list of all finite simple groups is:
(i) the cyclic groups Cp, with p prime, (ii) the alternating

groups An, n > 4, (iii) 16 infinite families of Lie groups, and
(iv) 26 sporadic groups. The smallest sporadic is the Math-
ieu Group M11 of order 7920 discovered in 1861, while the
largest sporadic is the Monster M constructed in 1980 with
order of about 8 x 1053. The Monster has 194 different irre-
ducible representations, with the smallest irreducible matrix
representations of M being in space dimensions 1, 196883,
21296876, and 842609326.

As I explain in the next section, the most direct connec-
tion of M with the SM of leptons and quarks is via the j-
invariant of elliptic modular functions

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . (1)

where q = e2iπτ and τ is a ratio for a 2-D lattice that we will
define in a later section. I.e., this 2-D lattice approach in our
discrete spaces leads directly to the symmetry groups for the
lepton and quark families and for the Lorentz transformations
in spacetime.

As has been determined by mathematicians, the coeffi-
cients of the powers of q are simple linear combinations of
dimensions of irreducible representations of the identity oper-
ation of M, a correlation known as “Monstrous Moonshine”.
E.g., 196884 = 1 + 196883, and 21493760 = 21296876 +
196883 + 1, etc. More mathematical and historical informa-
tion about the Monster can be learned from the online papers
and books by T. Gannon [6].

4 Binary rotation groups and the j-invariant

Here I review the connection between the j-invariant and the
discrete symmetry groups for the leptons and quarks. I have
proposed [1–3] that the lepton and quark flavors, being elec-
troweak eigenstates, correspond to orthogonal states in spe-
cific discrete symmetry groups called finite binary rotational
groups. These seven subgroups of the SM local gauge group
act in the R3 and R4 real subspaces of the 2-D unitary space
C2 for SU(2)L x U(1)Y . In fact, I am using discrete R3 and R4.

The lepton families correspond to the 3-D finite binary
rotational groups called the binary tetrahedral group 2T, the
binary octahedral group 2O, and the binary icosahedral group
2I, also labelled as [3, 3, 2], [4, 3, 2], and [5, 3, 2], respec-
tively, in Table 1. These are groups of discrete symmetry rota-
tions and reflections. Binary here refers to the double cover of
the SO(3) rotation group by Spin(3) = SU(2), so these groups
are finite subgroups of SU(2) and SU(2)L x U(1)Y .

Having exhausted the group possibilities inR3, one moves
up one real spatial dimension to R4 in order to define the
quark families, which then correspond to the finite binary ro-
tation groups [3, 3, 3], [4, 3, 3], [3, 4, 3], and [5, 3, 3] of the
regular 4-D convex polytopes. One may not need the number
of quark families to match the number of lepton families for
anomaly cancellation because this geometrical approach de-
fines leptons and quarks as 3-D and 4-D entities, respectively.
I.e., the interactions are not among point particles.
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Leptons Quarks

Pred. Emp. Pred. Emp.
Mass Mass Mass Mass

group order family N (MeV) (MeV) group order family N (GeV) (GeV)

. .

. [3, 3, 3] 120 d−1/3 1/4 0.011 0.007

. u+2/3 0.38 0.004

[3, 3, 2] 24 e− 1 [1] 0.511 [4, 3, 3] 384 s−1/3 1 0.046 0.2
νe 0? 0.0? c+2/3 [1.5] 1.5

[4, 3, 2] 48 µ− 108 108 103.5 [3, 4, 3] 1152 b−1/3 108 [5] 5.0
νµ 0? 0.0? t+2/3 160 171.4

[5, 3, 2] 120 τ− 1728 1728 1771.0 [5, 3, 3] 14400 b’−1/3 1728 ∼ 80 ?.?
ντ 0? 0.0? t’+2/3 ∼ 2600 ?.?

Table 1: Lepton and quark families for the binary rotational groups [a, b, c], their j-invariant proportionality constant N, and the predicted
mass values for the quarks based upon group-to-group N ratios with the charm quark mass [1.5 GeV] and bottom quark mass [5 GeV] as
reference masses for ratios of the “up-like” and “down-like” quark states, respectively. These are the “bare” mass predictions. Drawings
with these symmetries are online [3].

Each lepton group represents the binary rotational sym-
metries of familiar 3-D regular polyhedrons, the tetrahedron,
the octahedron, and the icosahedron. In terms of two com-
plex variables z1 and z2, there are three algebraic equations
for each regular polyhedron that remain invariant under the
operations of its binary group, corresponding to the complex
equations for the vertices, the face centers, and the edge cen-
ters. Call these three equations W1, W2 and W3, respectively.
F. Klein, in a famous 1884 book [7], reported that these three
equations are not independent because they form a mathemat-
ical syzygy. He showed that two independent equations W1
and W2, say, have a ratio proportional to the j-invariant

j(τ) =
W1

NW2
(2)

where N is a specific integer, being 1, 108, and 1728, for the
three groups, 2T, 2O, and 2I, respectively. Certain integrals,
including a mass integral, for the particle states would involve
these N values as important factors.

The four binary rotational groups for the quarks are han-
dled [8] by projecting their physical 4-D polytopes onto the
2-D unitary plane C2 and realizing that their symmetries lead
to the same invariant algebraic equations as for the leptons,
with the addition of one other symmetry group syzygy for [3,
3, 3]. The corresponding N values are thus 1/4, 1, 108, 1728.

These N values suggest the pairings of the lepton families
to quark families as shown horizontally in Table 1. Notice
that these family pairings are different from the traditional ad
hoc pairings that are normally suggested for the SM because
here there exist fundamental geometrical connections.

5 Particle mass values

The influence of the j-invariant of the Monster continues. In
spaces where the j-invariant applies, all rational functions (ra-
tio of two polynomials) are proportional to the j-invariant
and invariant under all fractional linear transformations (also
called Möbius transformations). For physics purposes, mass
of a fundamental particle is proportional to the j-invariant
because mass is an invariant under Möbius transformations.
Conservation laws in physics can be related to Möbius trans-
formations in both discrete and continuous spaces.

At this stage there is no absolute mass scale, so I must use
mass ratios only, selecting a different reference mass value for
the “up” states and for the “down” states. For the lepton mass
values, we have the N ratios 1:108:1728. Table 1 shows the
predicted and the actual values. The patterns of ratios match
roughly and they were the clue to considering these binary
rotational groups.

Note that without using the reference empirical masses
for the ratios, the two predicted states in each family would
be degenerate with the same mass. One should form two
new orthogonal linear superposition states from these origi-
nal degenerate states. These states would have different “bare
mass” values and would be sensitive to the “vacuum” envi-
ronment.

For the electroweak interactions, a zero-order approxima-
tion to the quark CKM mixing matrix and the lepton PMNS
mixing matrix follows directly from the characteristic equa-
tions of the 3-D and 4-D symmetries projected to the unitary
plane C2, producing unitary eigenvectors and eigenvalues λ j

= exp[iε j]. The two angles (ε1, ε2) are (π, π) for [3,3,2], (2π/3,
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4π/3) for [4,3,2], (2π/5, 8π/5) for [5,3,2], (2π/5, 8π/5) for
[3,3,3], (π/3, π) for [4,3,3], (π/6, 7π/6) for [3,4,3], and (π/15,
19π/15) for [5,3,3].

One can define a 3 x 3 unitary matrix [9] and substitute
angle difference values for the lepton mixing matrix PMNS
and a 3 x 3 quark mixing matrix CKM3, producing

PMNS =

 0.5 0.866 ε
−0.579 0.335 0.743
0.643 −0.372 0.669

 (3)

CKM3 =

 0.978 0.208 ε
−0.180 0.847 0.5
0.104 −0.489 0.866

 (4)

with ε small. Several of the off-diagonal values in VCKM3
would require higher order corrections in order to better agree
with empirically determined values.

A 4 x 4 unitary mixing matrix for our four quark families
that brings in c34 and s34 in the 3rd and 4th rows leads to

VCKM4 =


0.978 0.208 ε1 ε2
−0.180 0.847 0.5 ε3
0.099 −0.465 0.842 0.309
−0.032 0.151 −0.268 0.951

 (5)

with all the ε values small. Adjustments can be made by con-
sidering higher order corrections.

One should not ignore the fact that a degrees-of-freedom
argument would make neutrinos that are zero mass exactly.
My two lepton states in each family have 4 d.o.f. total, which
can partition into the massive electron state with 3 d.o.f., leav-
ing just 1 d.o.f. for the neutrino state. Thus, the neutrino is
massless and can have one helicity state only. Alternately, if
both lepton states per family share the 4 d.o.f. equally with
2 d.o.f. each, then these would be two massless states, i.e.,
possibly two sterile neutrino states. Nature appears to have
chosen the unequal split, but sterile neutrinos are still a possi-
bility. As to the quarks, the two 4-D quark family states have
a total of 6 d.o.f. to split 3-3, guaranteeing the existence of
the two massive quark states per family we measure.

The discovery of the b’ quark, probably by the FCNC de-
cay b’→ b + γ, is the acid test of this geometrical approach
toward understanding the SM. There is already some hint in
the Fermilab data for this decay but the signal/noise ratio is
not good enough. The 4th quark family has recently been in
vogue because the baryonic particle-antiparticle asymmetry
in the Universe (BAU) can then be explained by CP violation
with a new value for the Jarlskog invariant that is about 1013

times larger [10] than for only 3 quark families. As far as I
know, the b’ quark remains a viable possibility.

6 Discrete internal symmetry space

In this geometrical approach, the internal symmetry space is
discrete C2 at the Planck scale. Therefore we must consider

the mathematical properties of a 2-D hexagonal lattice (or of
a 2-D rectangular lattice) of mathematical nodes either with
two real axes R2, or two complex axes C2, or two quaternion
axesH2, etc. All its nodes can be represented by integer linear
combinations of two complex numbers that we label ω1 and
ω2 forming a right-handed basis (ω1, ω2). We can change
these two numbers without changing the lattice by letting

ω′1 = aω1 + bω2
ω′2 = cω1 + dω2

(6)

where a, b, c, and d, are integer elements of a 2 x 2 matrix
with determinant 1. Such matrices form a symmetry group
called the “modular group” SL(2, Z) which is related to el-
liptic curves. Actually, all that matters is the ratio τ = ω1/ω2
which defines the τ for the j-invariant in Eq. 1. Since

f (τ) = f
(aτ + b

cτ + d

)
, (7)

all modular functions f (τ) on the lattice depend only upon its
shape. The j-invariant is such a function, and all other SL(2,
Z)-invariant functions are rational functions of j(τ).

Eq. 7 defines the fractional linear transformations, i.e.,
the Möbius transformations, which are based upon the trans-
formations τ→ 1 + τ and τ→ -1/τ for translations, rotations,
etc. In the limit when the node spacing approaches zero, the
continuous approximation appears and the Möbius transfor-
mations include the continuous symmetry transformations.

7 Geometry of the boson interactions

The 12 bosons of the SM, 8 gluons and 4 EW bosons, op-
erate on the fermion states in a continuous internal symmetry
space. For a continuous space one can map the complex plane
C = R2 and unitary plane C2 = R4 to the 2-D Riemann sphere.
Its 2-D surface has no demarcations, thus allowing any small
or large rotation. Consequently, the symmetry group for the
SM interactions is the continuous gauge group of operations.

In my geometrical approach this internal symmetry space
is discrete, so only specific finite rotation groups can produce
these boson operations. However, when the internal sym-
metry space is discrete and particle symmetries are defined
by the specific finite binary rotation groups for leptons and
quarks, the Riemann surface is tessellated, i.e., composed of
identical equilateral triangles, their number uniquely deter-
mined by the binary rotation group. Then the number of rota-
tional operations becomes severely restricted and each boson
operator must respect the integrity of the symmetry group for
the lepton or quark families participating in the interaction.

Geometry provides the important clue. We desire a small
group in our discrete space for defining these interactions
(i.e., producing the appropriate rotations by the bosons), and
we find the binary icosahedral group 2I or [5, 3, 2]. How-
ever, there will be some missed operations on the symmetry
for the binary octahedral group 2O. But if we take 2I twice,
i.e., including its “reciprocal” [5, 3, 2], then we get it all.
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In order to appreciate this geometry, quaternion algebra
simplifies the game. Recall that the SU(2) matrix representa-
tion and the unit quaternion q are related by

q = w1 + xi + yj + zk⇐⇒
(
w + iz x + iy
−x + iy w − iz

)
(8)

where the i, j, and k are unit imaginaries, the coefficients w,
x, y, and z are real, and w2+x2+y2+z2 = 1. We can represent
the two orthogonal lepton or quark states in each family by
two orthogonal unit quaternions in C2.

There is also a conjugate plane C′2 for the antiparticles
and its Riemann sphere. The conjugate quaternion is q’ =w1
- xi - yj - zk. What we discuss for the particle states works
for the antiparticle states, too. Having a conjugate space is
very special. Clifford algebra and Bott periodicity dictate that
only R4, R8, and other real spaces Rn with dimensions divis-
ible by four have two equivalent conjugate spaces. This spe-
cific mathematical property dictates a world with both particle
states and their antiparticle states for these dimensions only.

One more mathematical fact. The group U(1)Y for weak
hypercharge Y in SU(2)L x U(1)Y has the important role of
reducing the symmetry between the two spaces, normal and
conjugate, in R4 = C2 from being simply equivalent to their
being gauge equivalent. The physics consequence is that par-
ticles and antiparticles have the same positive mass but all
other properties can be opposite sign. Alternately, we can
use the 2-element inversion group Ci to accomplish the same
distinction as well as to determine the intrinsic parity of the
particle states, odd for particles and even for antiparticles.

Furthermore, the use of quaternions for the electroweak
operations tells us that the L in SU(2)L, which means left-
handed chirality only for the weak interaction, is really dic-
tated by quaternion properties, so that the left-handed physics
restriction for the weak interaction in C2 follows. That is,
in the normal unitary plane all unit quaternions have left-
handed screw transformations that mix the two orthogonal
states and right-handed screw transformations that do not.
Put another way, the quaternions transform the two orthogo-
nal flavor states as left-handed doublets and right-handed sin-
glets. For example, in the first lepton family, they are (νeL,
eL) and (νeR) and (eR). In the conjugate unitary plane for an-
tiparticles, the quaternion transformations have the opposite
handedness.

Now back to rotating the Riemann sphere. In the simplest
electroweak (EW) interactions of a boson with an incoming
fermion, the fermion state either remains the same (via γ or
Z0) or changes from the initial state to an orthogonal state (via
W±). As examples, the γ may be the identity and the Z0 may
produce a 4π rotation, while the W± operates between differ-
ent states. The 120 operations of the binary icosahedral group
2I are represented by 120 unit quaternions, and 2I contains
almost all the rotation operations needed for the 7 fermion
family groups. However, several symmetry operations of 2O

would be absent. One needs to add the “reciprocal” binary
icosahedral group to include all the operations of 2O, making
a grand total of 240 operations. (n.b. One could also consider
just the generators to realize the same result.)

Here comes an interesting and unexpected mathematical
consequence. The first set of 120 quaternions can be ex-
pressed as 120 special unit quaternions known as icosians
which telescope 4-D discrete-space quaternions up to being
8-D discrete-space octonions to locate points that form a spe-
cial lattice in R8 called D8. The second set of 120 quaternions
does the same, forming another D8 lattice in R8 by filling the
holes in the first D8 lattice.

The icosians are special unit quaternions qi which have
the mathematical form

qi = (e1 + e2
√

5) + (e3 + e4
√

5)i+
+(e5 + e6

√
5) j + (e7 + e8

√
5)k

(9)

where the eight e j are special rational numbers. The impor-
tant mathematical fact here is that in each pair, such as (e3
+ e4
√

5), exactly one of the e j is nonzero. Therefore, even
though the icosians are telescoping us up to an 8-D space,
their primary importance is that they represent 4-D operations
in R4 even though we can now define identical quaternion op-
erations via octonions in the much larger R8 space also.

Together, these two D8 lattices of 120 icosians each com-
bine to form the 240 octonions that define the famous E8 lat-
tice in R8. The symmetry group for this E8 lattice is not the
Lie group E8 but the discrete group Weyl E8.

Therefore, the operations of the SM occur in discrete 4-D
internal symmetry space, but they operate also in the discrete
8-D space because these icosians span both spaces simultane-
ously.

8 Quark color, gluons, and hadron states

Now I must back up to show that the gluon interactions can
occur in R4 for SU(3)C even though one normally expects the
larger space C3. Because 4-D rotations are simultaneous rota-
tions in two orthogonal planes, each of the three quark color
charges Red, Green, and Blue, can be assigned to the three
possible rotation plane pairs [wx, yz], [xy, zw], and [yw, xz],
respectively. Actually, because these three 4-D rotation pairs
are equivalent and we could have made the color assignments
in any order, we learn the mathematical reason for color being
an exact physical symmetry.

Contained within the above specific icosians are the gluon
operations on the color states, but one can use a specific 4
x 4 rotation block matrix R to define the transition from one
color state in the 4-D space to another. There are 8 orthogonal
gluon matrices in agreement with the 8 gluons of the SU(3)C

gauge group of the SM.
Hadrons are colorless quark combinations, so they occur

when the combined resultant 4 x 4 matrices produce no net 4-
D rotation, i.e., are the identity matrix. One can show that this
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colorless state exists for three combinations of quark states
only: (1) the quark-antiquark pair with color and anticolor,
(2) three quarks, or (3) three antiquarks, with the appropriate
linear combinations of colors or anticolors.

The mathematics itself distinguishes quarks (and baryon
number) from leptons: the quarks are 4-D entities and the
leptons are 3-D entities, with only the 4-D entities capable of
the color interaction because color is an exact symmetry in
R4. Quark confinement results because isolated quarks are 4-
D entities which cannot exist in a 3-D space, so one can never
have an isolated single quark in our 3-D spatial world.

The colorless hadron states, being those special mathe-
matical combinations of quark 4-D entities, are now actually
3-D entities like the lepton states are. That is, the color-
less combinations of quarks are 3-D composite particle states
because their geometrical intersections define 3-D geometric
entities.

Therefore, in my geometrical version of the SM, we have
3-D lepton states, 3-D hadron states, 3-D electroweak boson
states, but 4-D quark states and 4-D gluon states. The 4-D
quark and gluon states are confined, i.e., they cannot exist as
separate entities in our 3-D spatial world, but the 3-D lep-
ton, 3-D hadron, and 3-D electroweak boson states can move
through 4-D discrete spacetime with its 3 spatial dimensions.

9 Geometry of discrete 4-D spacetime

Our 3-D particles move in discrete 4-D spacetime. We know
that continuous 4-D spacetime has symmetries related to its
continuous Lorentz group SO(3,1). For a discrete 4-D space-
time and its Lorentz transformations we need to determine a
finite subgroup of SO(3,1) for its discrete symmetry.

A clever mathematical approach to 4-D spacetime was in-
troduced by R. Penrose [11] long ago, who showed how to
utilize his “heavenly sphere” to account for Lorentz transfor-
mations, etc. This “heavenly sphere” is actually 4-D space-
time (t, x, y, z) mapped onto the Riemann sphere. Consider
being in the center of the “heavenly sphere” so that light rays
from stars overhead pass through unique points on the unit
celestial sphere surrounding you. A Lorentz boost is a con-
formal transformation of the star locations: the constellations
will look distorted because the apparent lengths of the lines
connecting the stars will change but the angles between these
connecting lines will remain the same.

In our discrete 4-D spacetime we need to tesselate this
Riemann surface into identical equilateral triangles and then
perform the symmetry transformations of the sphere. But
we have already achieved this tesselation earlier with the bi-
nary rotation groups when we considered the discrete internal
symmetry space mapped to the Riemann sphere, so we know
the result. Using the isomorphism SO(3,1) = PSL(2,C), we
see [2] that the group mathematics connects the conformal
transformations just described to the Möbius group via

SO(3, 1) = Möbius group = PSL(2,C), (10)

with the discrete Lorentz transformations of the tessellated
Riemann sphere already contained in SO(3,1). Thus, we have
a unit quaternion group PSL(2,C) (equivalently, an SU(2) ma-
trix or spinor) representation of the Lorentz transformation.

Therefore, we are back to our discrete symmetries of the
binary polyhedral groups because they are finite modular sub-
groups of the Möbius group PSL(2,C). Therefore, the 240
special quaternions called icosians are now required for dis-
crete Lorentz boosts and discrete rotations in the discrete 4-D
spacetime. We obtain a second E8 lattice in R8 with symme-
try group Weyl E8.

10 Unification of spacetime and the Standard Model

We can now unite the discrete internal symmetry space oper-
ations with the discrete spacetime operations [2]. The direct
product of our two Weyl E8 groups results in a subgroup of
the continuous group PSL(2,O), where O represents all the
unit octonions. For the continuous case, PSL(2,C) has be-
come PSL(2,O) = SO(9,1), the Lorentz group in 10-D space-
time. That is, the final combined spacetime is bigger than I
expected, being isomorphic to a 10-D spacetime instead of an
8-D spacetime.

Applying this result to our discrete case, the combined
finite subgroup

finite PSL(2,O) = finite SO(9, 1), (11)

the finite Lorentz group in discrete 10-D spacetime. The same
result, expressed in terms of the direct product of the Weyl E8
groups is

Weyl E8 x Weyl E8 = “Weyl′′ SO(9, 1), (12)

a finite subgroup of SO(9,1).
Therefore, the big surprise is that the combination of a

4-D discrete spacetime with a 4-D discrete internal symmetry
space creates a unique connection to 10-D discrete spacetime,
not to an 8-D discrete spacetime. Unlike the situation with
continuous spaces, we do not have a 6-D “curled up” internal
symmetry space with about 10500 possibilities.

The mathematics has dictated a beautiful result: there
seems to be only one way for our Universe to exist when
spacetime is discrete.

11 A physical particle model

Even though the mathematics telescopes us up from R4 to R8,
we still need a physical model of particles in the discrete 4-D
spacetime defining our Universe. The leptons, hadrons, and
the electroweak bosons are non-point-like 3-D entities that
appear to be point-like particles at our normal size resolution
of about 1011 times larger than the Planck scale.

Peering in at the Planck scale, however, I expect the dis-
crete 4-D internal symmetry space at each spacetime point
to conjoin into the discrete 4-D spacetime. In order to do
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so, each particle must emerge by “gathering in” nodes of the
lattice to make its 3-D or 4-D entity with its correct symme-
try. For example, if the particle is an electron, we expect the
symmetry of the node collection will be tetrahedral to agree
with its [3, 3, 2] symmetry. If the lattice of nodes was orig-
inally uniformly spaced in this region of discrete space, then
the existence of the electron has distorted this lattice with a
decreasing distortion amount for increasing distance from the
electron’s center.

Note that this geometrical approach assumes that the lat-
tice nodes themselves do not have any measurable physical
properties. Consequently, we have arrived finally at the end
of the hierarchy of physical particles within particles. At this
point in the geometrical approach we simply must accept this
gathering-of-nodes process because the mathematics dictates
this process via graph theory and Kuratowski’s theorem.

Kuratowski’s theorem is important here because it states
that a graph is planar if and only if it does not contain a Kura-
towski subgraph K5 or K3,3. For example, if an n-dimensional
graph (a lattice of nodes) in a spatial dimension higher that 2-
D does not contain a Kuratowski K5 subgraph, also known
as the complete graph of five vertices, then this n-D graph
reduces to 2-D.

But the first quark family’s binary rotational group [3, 3,
3] symmetry is the rotationally symmetric version of the Ku-
ratowski subgraph K5. Therefore, at least one quark state of
the first quark family is stable as it moves through the lattice,
while all other quark families have states that will decay down
to [3, 3, 3] quark states. Indeed, the physics agrees with this
mathematical prediction.

At the DISCRETE’08 conference in December, 2008
where I tried to present this geometrical approach in my allot-
ted 20 minutes (!), C. Jarlskog asked me an interesting ques-
tion: Why can’t the universe have only quarks and gluons?
I.e., a QCD world seems complete by itself. Why complicate
the material world with leptons and the electroweak interac-
tion? To which I immediately answered: Kuratowski’s The-
orem in mathematics does not allow such a world, but I was
not encouraged to elaborate with any of the details.

Here is the rest of my argument. If quarks are 4-D en-
tities, most quark states decay because they do not have the
structure of K5 (or K3,3), so the initial structure will re-form
into two or more new particles. In a universe with only quarks
and gluons, a problem arises because gluons change only the
color state for a particular quark but cannot change one quark
flavor into another. In order to obey Kuratowski’s theorem,
Nature had no choice but to bring in more particles, notably
the leptons and the electroweak interaction bosons. Voilà!

The immortality of the electron with group [3,3,2] seems
to depend upon its close geometrical relation to the regular
K5 symmetry group [3, 3, 3]. Of course, the electron could
annihilate with its antiparticle (and so can a quark).

At this point one might be concerned about the emergence
of fermion particles from the “vacuum” state. In order to ac-

count for all the particles in the known Universe, the equiv-
alent of about one new hydrogen atom per cubic meter per
10 million years is required. This process can occur because
fermions are represented by spinors, and spinors originate
from zero-length vectors. That is, according to E. Cartan, one
zero-length vector splits into a spinor and conjugate spinor
mathematically. The spinor is the fermion such as an elec-
tron and the conjugate spinor is the anti-fermion positron, for
example. If their total energy remains zero by adding up all
energy forms, then this creation process is viable.

As the electron or any 3-D particle moves through the lat-
tice, I would expect that the particle’s lattice distortion ef-
fect moves with it, with its previous distortions relaxing back
toward being a regular lattice while the oncoming positions
become more distorted. Mathematically, the Möbius trans-
formations guarantee the integrity of this movement. That
is, for our lattice, the transformation τ → 1+ τ ensures that
the movement process is identical everywhere in the lattice.
The second Möbius transformation τ→ - 1/τ when combined
with the one above allows rotations and other linear transfor-
mations to occur in the lattice.

This lattice distortion by a particle in 4-D discrete space-
time is the “warping of spacetime” associated with the grav-
itational interaction proposed by A. Einstein in the general
theory of relativity. In this way, gravitation appears to be dif-
ferent from the other fundamental interactions which appear
to be more localized.

More details of this particle model, such as the geometry
of the gravitational interaction, the origin of the rules of quan-
tum mechanics, the origin of time, and the information coding
of the fundamental particles, will be discussed thoroughly in
the second paper of this series.

12 Triality, the Leech lattice, and information coding

We know that particle EW interactions can be described in
lowest order by the Feynman diagram (Fig. 1) involving three
particles with three lines meeting at a point. There can be two
fermions interacting with one of the electroweak (W±, Z0,
or γ) or color (8 gluons) bosons. There can be three gluons
interacting. More complicated diagrams can be drawn but
they will all be made from combinations of this generic one.

This lowest order Feynman diagram with two fermions
and one boson is a mathematical triality diagram with the
fermions representing spinors and the boson representing a
vector Jordan algebra entity. Triality is a relationship between
three vector spaces over a field F that are all isomorphic to
each other. Thus, the common vector space is isomorphic to
R, C, H, or O, i.e., involving spinors in dimensions 1, 2, 4,
and 8, respectively [12].

In our 4-D discrete spacetime the fermion states can be
represented by quaternions. In fact, Clifford algebra tells us
that there will be two quaternion representations in R4 called
the right-handed spinor representation S+4 and the left-handed
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Fig. 1: The incoming fermion emits or absorbs a boson and a
fermion exits. E.g., an electron emits a photon and continues in a dif-
ferent direction. This diagram represents triality among two spinors
(electron in and electron out) and a vector boson.

spinor representation S−4 . In general, for even dimensional
spacetimes, i.e., even n values, the two spinor representations
have dimension 2n/2−1, but the vector representation has di-
mension n. For example, in n = 4 space, the boson vector
representation is a 4 x 4 real matrix and the fermion spinor
representation is a 2 x 2 complex matrix or, equivalently, also
a 4 x 4 real matrix. I.e., the fermions and bosons are the same
dimension.

We know that the icosians telescope us up to discrete 8-D.
With n = 8, the spinor representations are again the same size
as the vector representation, both represented by 8 x 8 real
matrices. Even so, they are not equivalent representations.
However, one can permute the vector, left-handed spinor, and
right-handed spinor representations into each other [12]. In
4-D, for example, there is a parity operator that can do this
change of a left-handed spinor into a right-handed spinor and
vice-versa.

For the generic Feynman diagram, one can think about
the two fermions and the one boson as being three E8 lat-
tices which come together momentarily to form a 24-D lat-
tice called the Leech lattice. The Monster Group again plays
its governing role through the j-invariant function. The nu-
merator of j(τ), being 1 + 720 q + 146512 q2 + . . ., is the
generating function for the lattice vectors in this product of
three copies of the E8 lattice. And for conformal field theo-
ries, the j-invariant is the partition function for the Monster
Group [13].

Another very important mathematical connection takes us
to information coding theory. One could say that each particle
in the triality diagram brings in its 8-bit Hamming code word
to temporarily form the 24-bit binary Golay code word or,
equivalently, the 12-bit ternary Golay code word, related to
the Leech lattice. The 8-bit Hamming code has 72 distinct
code words in 9 different but overlapping sets [14], the exact
number required for the fundamental particles of the SM: 6
leptons plus 8 x 3 = 24 quarks sums to 30 fermion states;
when doubled for anti-particles, makes 60 particle states; then
add the 12 bosons to get 72. The 24-bit Golay code word
encodes 12 data bits defining up to 212 = 4096 different items,
easily covering the possible interaction triples of the SM.

These code words support the hegemony of the Monster

Group because the allowed SM interactions of the leptons and
quarks can be related to information theory in 24 dimensions.
The second article includes details of the Turyn construction
for these Golay-Leech lattice code words and their relation-
ship to quantum information theory and the Monster Group.

13 Conclusion

In this brief article I have outlined specific connections be-
tween the mathematics of the Monster Group and fundamen-
tal physics particles and rules. These connections support the
three hypotheses ERH, MUH, and CUH, so I conclude that
the Universe is mathematical and that we live in the only pos-
sible one. I await the empirical confirmation by the discovery
of the 4th quark family, particularly the b’ quark at about 80
GeV. Hopefully, the wait will not be long.
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