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The structure of spin and isospin is analyzed. Although both spin and isospin are related
to the same SU(2) group, they represent different dynamical effects. The Wigner-Racah
algebra is used for providing a description of bound states of several Dirac particles in
general and of the proton state in particular. Isospin states of the four ∆(1232) baryons
are discussed. The work explains the small contribution of quarks spin to the overall
proton spin (the proton spin crisis). It is also proved that the addition of QCD’s color is
not required for a construction of an antisymmetric state for the ∆++(1232) baryon.

1 Introduction

The isospin notion has been conceived by W. Heisenberg in
1932 [1, see p. 106]. It aims to construct a mathematical ba-
sis that represents the proton-neutron similarity with respect
to the strong nuclear force. Both spin and isospin have the
same SU(2) group structure. Thus, like spin multiplets of a
quantum state, one combines corresponding states of nuclear
isobars in an isospin multiplet. For example, the ground state
of the 14C, 14O and the Jπ = 0+ excited state of 14N are mem-
bers of an isospin triplet. Obviously, one must remember that
isospin is a useful approximation that neglects proton-neutron
differences that are related to their mass and their electromag-
netic interactions.

Later developments have shown that the proton-neutron
similarity stems from the similarity between the u, d quarks.
It follows that the usefulness of isospin symmetry extends to
particle physics. For example, the three pions are members
of an isospin triplet. Due to historical development, isospin
notation takes different form in nuclear and particle physics.
Here T and I denote isospin in nuclear and particle physics,
respectively. In this work the symbol T is used, mainly be-
cause of the following reason. In the case of spin, the symbols
J and j denote total and single particle angular momentum
operators, respectively. Similarly, the symbols T and t de-
note the corresponding isospin operators. Thus, due to the
same underlying SU(2) group, isospin relations can be read-
ily borrowed from their corresponding spin counterparts. The
operators T and t are used in the discussion presented in this
work.

This work examines states of electrons and quarks. These
particles have spin-1/2 and experimental data are consistent
with their elementary pointlike property. Evidently, a theo-
retical analysis of an elementary pointlike particle is a much
simpler task than that of a composite particle. The discussion
begins with an examination of relevant properties of elec-
tronic states of atoms. The mathematical structure of the
SU(2) group is used later for a similar analysis of isospin
states.

Two important conclusions are derived from this analy-
sis. First, it is well known that quarks’ spin carry only a small
fraction of the entire proton’s spin [2]. This experimental ev-
idence, which is called the second EMC effect and also the
proton spin crisis, is shown here to be an obvious result of
the multi-configuration structure of states of more than one
Dirac particle. Another result is that the anti-symmetric state
of the ∆++(1232) baryon is well understood and there is no
need to introduce a new degree of freedom for its explana-
tion. It means that the historical starting point of the QCD
construction has no theoretical basis. (Below, the symbol ∆
refers to this isospin quartet of baryons.)

Generally, in order to simplify notation, the specific value
of normalization factor is omitted from the expressions. The
second and the third sections analyze spin and isospin, re-
spectively. The fourth section provides an explanation for the
proton spin crisis. The fifth section explains the antisymmet-
ric structure of the ∆++ baryon (without using color). The last
section contains concluding remarks.

2 Spin States

A comprehensive discussion of angular momentum can be
found in textbooks [3]. In this short work some elements of
this theory are mentioned together with a brief explanation.
This is done for the purpose of arriving rapidly at the main
conclusions. A relativistic notation is used and for this reason
the j j coupling [3] takes place.

Let us begin with a discussion of spin and spatial angu-
lar momentum. These quantities are dimensionless and this
property indicates that they may be coupled. Now, the mag-
netic field depends on space and time. Moreover, the theory
must be consistent with the experimental fact where both spa-
tial angular momentum and spin of an electron have the same
kind of magnetic field. Thus, it is required to construct a rela-
tivistically consistent coupling of these quantities. This is the
theoretical basis for the well known usage of spin and spa-
tial angular momentum coupling in the analysis of electronic
states of atoms.
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A motionless free electron is the simplest case and the
spin-up electron state is [4, see p. 10]

ψ(xµ) = Ce−imt


1
0
0
0

 , (1)

where m denotes the electron’s mass.
A second example is the state of an electron bound to a

hypothetical pointlike very massive positive charge. Here the
electron is bound to a spherically symmetric charge Ze. The
general form of a jπ hydrogen atom wave function is [5, see
pp. 926–927]

ψ(rθϕ) =
(

FY jlm

GY jl′m

)
, (2)

where Y jlm denotes the ordinary Ylm coupled with a spin-1/2
to j, j = l ± 1/2, l ′ = l ± 1, F,G are radial functions and the
parity is (−1)l.

By the general laws of electrodynamics, the state must be
an eigenfunction of angular momentum and parity. Further-
more, here we have a problem of one electron (the source at
the origin is treated as an inert object) and indeed, its wave
function (2) is an eigenfunction of both angular momentum
and parity [5, see p. 927].

The next problem is a set of n-electrons bound to an at-
tractive positive charge at the origin. (This is a kind of an
ideal atom where the source’s volume and spin are ignored.)
Obviously, the general laws of electrodynamics hold and the
system is represented by an eigenfunction of the total angular
momentum and parity Jπ. Here a single electron is affected by
a spherically symmetric attractive field and by the repulsive
fields of the other electrons. Hence, a single electron does not
move in a spherically symmetric field and it cannot be rep-
resented by a well defined single particle angular momentum
and parity.

The general procedure used for solving this problem is to
expand the overall state as a sum of configurations. In every
configuration, the electrons’ single particle angular momen-
tum and parity are well defined. These angular momenta are
coupled to the overall angular momentum J and the product
of the single particle parity is the parity of the entire system.
The role of configurations has already been recognized in the
early decades of quantum physics [6]. An application of the
first generation of electronic computers has provided a nu-
merical proof of the vital role of finding the correct configu-
ration interaction required for a description of even the sim-
plest case of the ground state of the two electron He atom [7].
The result has proved that several configurations are required
for a good description of this state and no configuration dom-
inates the others. This issue plays a very important role in the
interpretation of the state of the proton and of the ∆++.

For example, let us write down the 0+ ground state Heg of

the Helium atom as a sum of configurations:

ψ(Heg) = f0(r1) f0(r2) 1
2
+ 1

2
+ + f1(r1) f1(r2) 1

2
− 1

2
−+

f2(r1) f2(r2) 3
2
− 3

2
− + f3(r1) f3(r2) 3

2
+ 3

2
++

f4(r1) f4(r2) 5
2
+ 5

2
+ + . . .

(3)

Here and below, the radial functions fi(r), gi(r) and hi(r)
denote the two-component Dirac radial wave function (mul-
tiplied be the corresponding coefficients). In order to cou-
ple to J = 0 the two single particle j states must be equal
and in order to make an even total parity both must have the
same parity. These requirements make a severe restriction on
acceptable configurations needed for a description of the 0+

ground state of the He atom.
Higher two-electron total angular momentum allows the

usage of a larger number of acceptable configurations. For
example, the Jπ = 1− state of the He atom can be written as
follows:

ψ(He1−) = g0(r1)h0(r2) 1
2
+ 1

2
− + g1(r1)h1(r2) 1

2
+ 3

2
−+

g2(r1)h2(r2) 1
2
− 3

2
+ + g3(r1)h3(r2) 3

2
− 3

2
++

g4(r1)h4(r2) 3
2
− 5

2
+ + g5(r1)h5(r2) 3

2
+ 5

2
−+

g6(r1)h6(r2) 5
2
+ 5

2
− . . .

(4)

Using the same rules one can apply simple combinatorial
calculations and find a larger number of acceptable configura-
tions for a three or more electron atom. The main conclusion
of this section is that, unlike a quite common belief, there are
only three restrictions on configurations required for a good
description of a Jπ state of more than one Dirac particles:

1. Each configuration must have the total angular momen-
tum J.

2. Each configuration must have the total parity π.

3. Following the Pauli exclusion principle, each configu-
ration should not contain two or more identical single
particle quantum states of the same Dirac particle.

These restrictions indicate that a state can be written as a sum
of many configurations, each of which has a well defined sin-
gle particles angular momentum and parity of its Dirac parti-
cles.

The mathematical basis of this procedure is as follows.
Take the Hilbert sub-space made of configurations that sat-
isfy the three requirements mentioned above and calculate
the Hamiltonian matrix. A diagonalization of this Hamilto-
nian yields eigenvalues and eigenstates. These eigenvalues
and eigenstates are related to a set of physical states that have
the given Jπ. As pointed out above, calculations show that
for a quite good approximation to a quantum state one needs
a not very small number of configurations and that no con-
figuration has a dominant weight. These conclusions will be
used later in this work.
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3 Isopin States

Spin and isospin are based on the same mathematical group
called SU(2). Its three generators are denoted jx, jy, jz. An
equivalent basis is [1, see pp. 357–363]

j+ = jx + i jy, j− = jx − i jy, jz. (5)

All the j operators mentioned above commute with the
total j 2 operator. For this reason, if one of them operates
on a member of a (2J + 1) multiplet of an SU(2) irreducible
representation then the result belongs to this multiplet. The
two j± operators are of a particular importance. Thus, let
ψJ,M denote a member of such a multiplet and one finds

JzJ−ψJ,M = (M − 1)J−ψJ,M . (6)

This relation means that J− casts ψJ,M into ψJ,M−1

J−ψJ,M =
√

J(J + 1) − M(M − 1)ψJ,M−1, (7)

where the appropriate coefficient is written explicitly. Analo-
gous relations hold for the J+ operator.

Let us turn to isospin. The required operators are simply
obtained by taking the mathematical structure of spin and re-
placing the total spin operator J and the single particle spin
operator j by the corresponding isospin operators T, t. (Here,
like in the spin case, M, m denote the eigenvalue of Tz, tz, re-
spectively.) The issue to be examined is the structure of the
isospin multiplet of the four baryons:

∆−, ∆0, ∆+, ∆++. (8)

These ∆(1232) baryons have the lowest energy of the fam-
ily of the ∆ baryons [8]. The ∆++ baryon has three u quarks
and ψ∆(uuu) denotes its state. Therefore, its isospin state is
T = 3/2, M = 3/2 and the isospin component of the wave
function is symmetric with respect to an exchange of any pair
of quark.

Let us examine the operation of T− on ∆++.

T−ψ∆(uuu) = (t1− + t2− + t3−)ψ∆(uuu)
= ψ∆(duu) + ψ∆(udu) + ψ∆(uud), (9)

where ti− operates on the ith quark. This is the way how one
obtains a yet unnormalized expression for the ∆+ baryon from
that of ∆++. A successive application of T− yields expressions
for every member of the isospin quartet (8).

Now, the ∆++ state is symmetric with respect to its quark
constituents and the same symmetry holds for the isospin op-
erator T− = t1− + t2− + t3−. Hence, also the ∆+ is symmetric
with respect to its uud quark states. This argument proves that
isospin space of every member of the baryonic quartet (8) is
symmetric. The same result can be obtained from a differ-
ent argument. The u, d quarks are fermions and their overall
state must be antisymmetric with respect to an interchange of

any pair of quarks. Now, the isospin operators used above do
not affect other coordinates of quarks. It means that for ev-
ery members of the isospin quartet (8), the entire symmetry
of the other coordinates remain antisymmetric and the isospin
coordinate is symmetric.

The data confirms the similarity between members of an
isospin multiplet. Thus, for example, the mass difference be-
tween the ∆0 and ∆++ baryons is less than 3 MeV [8], whereas
the mass difference between the ∆ multiplet and the nucleons
is about 300 MeV. This evidence shows the goodness of the
isospin notion, where strong interactions dominate the state
of members of an isospin multiplet and the effect of all other
interactions can be regarded as a small perturbation.

4 The Proton Spin Crisis

The proton’s Jπ = 1/2+ state is determined by three valence
uud quarks. The non-negligible probability of the existence
of an additional quark-antiquark pair [1, see p. 282] indicates
that it is a highly relativistic system. The discussion of section
2 holds for the spin-1/2 point-like quarks and the expansion
in configurations is a useful approach. Here the three single
particle jπ represent the uud quarks, in that order. Evidently,
each configuration must satisfy the three requirement written
few lines below (4). However, the Pauli exclusion principle of
restriction 3 does not hold for the d quark. Thus, in analogy to
(3) and (4) one expands the proton’s wave function as a sum
of terms of specific configurations. A truncated expression
for this expansion is shown below:

ψ(uud) = f0(r1) f0(r2)h0(r3) 1
2
+ 1

2
+(0) 1

2
++

f1(r1) f1(r2)h1(r3) 1
2
− 1

2
−(0) 1

2
++

f2(r1)g2(r2)h2(r3) 1
2
+ 1

2
+(1) 1

2
++

f3(r1)g3(r2)h3(r3) 1
2
− 1

2
−(1) 1

2
++

f4(r1)g4(r2)h4(r3) 1
2
+ 1

2
−(0) 1

2
−+

f5(r1)g5(r2)h5(r3) 1
2
+ 1

2
−(1) 1

2
−+

f6(r1)g6(r2)h6(r3) 1
2
+ 3

2
+(1) 1

2
++

f7(r1)g7(r2)h7(r3) 1
2
− 3

2
+(1) 1

2
−+

f8(r1)g8(r2)h8(r3) 1
2
+ 1

2
+(1) 3

2
++

f9(r1)g9(r2)h9(r3) 1
2
− 1

2
−(1) 3

2
++

fa(r1)ga(r2)ha(r3) 1
2
− 3

2
−(1) 1

2
++

fb(r1)gb(r2)hb(r3) 1
2
+ 3

2
−(1) 1

2
−+

fc(r1)gc(r2)hc(r3) 1
2
+ 1

2
−(1) 3

2
− + . . .

(10)

The symbols 0...9,a,b,c are used for enumerating the terms of
(10). Here, like in (3) and (4), fi(r), gi(r) and hi(r) denote the
Dirac two-component radial wave function of the uud quarks,
respectively (multiplied be the corresponding coefficients). In
each term, the number in parentheses indicates how the two
angular momenta of the uu quarks are coupled. Below, Juu

denotes the value of this quantity.
The following remarks explain the form of these terms.

An important issue is the coupling of the two uu quark that
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abide by the Pauli exclusion principle. For this reason, Juu

is given explicitly in each term. Another restriction stems
from the rule of angular momentum addition. Thus, for every
term, the following relation must hold in order to yield a total
spin-1/2 for the proton: Juu = jd ± 1/2. These rules explain
the specific structure of each term of (10) which is described
below.

In terms 0,1 the two spin-1/2 are coupled antisymmetri-
cally to Juu = 0 and the two radial function are the same. In
terms 2,3 these spins are coupled symmetrically to Juu = 1
and antisymmetry is obtained from the two orthogonal radial
functions. In terms 4,5 the different orbitals of the uu quarks
enable antisymmetrization. Thus, the two spin-1/2 functions
are coupled to Juu = 0 and Juu = 1, respectively. The radial
functions are not the same because of the different orbitals.
In terms 6,7 the spins are coupled to Juu = 1. In terms 8,9 we
have a symmetric angular momentum coupling Juu = 1 and
the antisymmetry is obtained from the orthogonality of the
radial function fi(r), gi(r). Terms a,b are analogous to terms
6,7, respectively. In term c the different uu orbitals enable an-
tisymmetrization and they are coupled to Juu = 1.

A comparison of the expansion of the He atom ground
state (3) and that of the proton (10) shows the following
points:

1. If the expansion is truncated after the same value of a
single particle angular momentum then the number of
terms in the proton’s expansion is significantly larger.

2. This conclusion is strengthened by the fact that the pro-
ton has a non-negligible probability of an additional
quark-antiquark pair. Evidently, an inclusion of this
pair increases the number of acceptable configurations.

3. Calculations show that the number of configurations re-
quired for the ground state spin-0 of the two electron
He atom is not very small and that there is no single
configuration that dominates the state [7]. Now the
proton is a spin-1/2 relativistic particle made of three
valence quarks. Therefore, it is very reasonable to as-
sume that its wave function takes a multiconfiguration
form.

Using angular momentum algebra, one realizes that in
most cases an individual quark does not take the proton’s
spin direction. This is seen on two levels. First, the upper
and the lower parts of the quark single particle function have
l = j± 1/2. Furthermore, the relativistic quark state indicates
that the coefficients of the upper and the lower part of the
Dirac four component function take a similar size. Hence,
for the case where j = l − 1/2, the Clebsch-Gordan coef-
ficients [3] used for coupling the spatial angular momentum
and the spin indicate that the spin of either the upper or the
lower Dirac spinor has no definite direction and that the co-
efficient of the spin down is not smaller than that of the spin
up [3, see p. 519].

Let us turn to the coupling of the quark spins. The 3-quark

n p 938

∆− ∆0 ∆+ ∆++
1232

Fig. 1: Energy levels of the nucleon and the ∆ isospin multiplets
(MeV).

terms can be divided into two sets having juu = 0 and juu > 0,
respectively. For juu = 0 one finds that the single particle jd =
1/2 and this spin is partially parallel to the proton’s spin. For
cases where juu > 0, the proton’s quark spins are coupled in a
form where they take both up and down direction so that they
practically cancel each other. The additional quark-antiquark
pair increases spin direction mixture. It can be concluded that
the quark spin contribute a not very large portion of the proton
spin and the rest comes from the quark spatial motion. This
conclusion is supported by experiment [9].

5 The State of the ∆++ Baryon

In textbooks it is argued that without QCD, the state of the
∆++ baryon demonstrates a fiasco of the Fermi-Dirac statis-
tics [10, see p. 5]. The argument is based on the claim that the
∆++ takes the lowest energy state of the ∆ baryons [11] and
therefore, its spatial wave function consists of three single
particle symmetric s-waves of each of its three uuu quarks.
Now the Jπ = 3/2+ state of the ∆ baryons shows that also
their spin is symmetric. It means that the ∆++ is regarded
to have space, spin and isospin symmetric components of its
wave function. As stated above, textbooks claim that this out-
come contradicts the Fermi-Dirac statistics. However, using
the physical issues discussed in this work and the energy level
diagram (see Fig. 1) of the nucleon and the ∆ baryons, it is
proved that this textbook argument is incorrect.

• As explained in section 3, all members of an isospin
multiplet have the same symmetry. Hence, if there is a
problem with the Fermi-Dirac statistics of the ∆++ then
the same problem exists with ∆+ and ∆0. It follows that
if the above mentioned textbook argument is correct
then it is certainly incomplete.

• The data described in fig. 1 shows that ∆+ is an excited
state of the proton. Hence, its larger mass is completely
understood. Thus, there is no problem with the Fermi-
Dirac statistics of the ∆+ baryon. Analogous relations
hold for the neutron and the ∆0 baryons. Using the
identical statistical state of the four ∆ baryons (8), one
realizes that there is no problem with the Fermi-Dirac
statistics of the ∆++ and the ∆− baryons.

• The multi-configuration structure of a bound system of
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Dirac particles is known for about 50 years [7]. In par-
ticular, the multi-configurations structure of all baryons
(like in (10)) proves that, contrary to the above men-
tioned textbook argument [10, see p. 5], the single par-
ticle spatial wave functions of the three u quarks of the
∆++ baryon are not a pure s-wave.

6 Conclusions

This work uses the Wigner-Racah mathematical structure and
proves two very important points. It explains the small con-
tribution of quark’s spin to the overall proton spin. Therefore,
it eliminates the basis for the proton spin crisis. It also proves
that everything is OK with the Fermi-Dirac statistics of the
∆++ baryon. It follows that there is no need to introduce the
QCD’s color degree of freedom in order to build an antisym-
metric wave function for this baryon.
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