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Einstein’s planetary equation can be solved by the method of successive approxima-
tions.This yields two linearly independent solutions. An analytical solution is presented
for this equation. This solution produces eight linearly independent mathematical solu-
tions, two of which are given approximately by the well-known method of successive
approximations.

1 Introduction

Einstein’s planetary equation is given [1] by

d2u
dφ2 + u − k

l2
=

3k
c2 u2 (1)

where φ and u are the instantaneous angular and reciprocal ra-
dial displacements of the planet in the fixed plane of motion,
with the Sun as origin, l is the constant angular momentum
per unit mass [2] and

k = GM (2)

where M is the rest mass of the Sun, G is the universal grav-
itational constant and c is the speed of light in vacuum. The
method of successive approximations yields the solution of
equation (1) [1] as:

r(φ) =
1

u(φ)
=

(
1 − ε2

0

)
a0

1 + ε0 cos
[(

1 − 3k2

c2l2

)
φ + α

] (3)

where ε0 is the eccentricity, a0 the semi-major axis and α
is the epoch. The second solution of equation (1) obtained
from the method of successive approximations is the solution
(3) with sine instead of cosine. The effect revealed by these
two approximate solutions is an anomalous precession of the
planetary orbit in which the perihelion advances by an angle
per revolution ∆ given [1] by

∆ =
6πk2

c2l2
. (4)

In this article, Einstein’s planetary equation (1) is solved
analytically.

2 Analytical Solution

Suppose the analytical solution of equation (1) is in the form
of a Taylor or Laurent series given as

u(φ) =

∞∑

n=0

An exp {ni (ωφ + φ0)} (5)

where An, ω and φ0 are constants. Then, substituting (5) into
(1), applying the linear independence of the exponential func-
tions and equating corresponding coefficients on both sides

yields the following system of equations:

3k
c2 A2

0 − A0 +
k
l2

= 0 (6)

ω2 = 1 − 6k
c2 A0 (7)

A1 = arbitrary constant (8)

A2 =
3k
c2

(
1 − 22ω2 − 6k

c2 A0

)−1

A2
1 (9)

A3 =
18k2

c4


(
1 − 22ω2 − 6k

c2 A0

)

(
1 − 32ω2 − 6k

c2 A0

)
−1

A3
1

(10)

and so on. Equation (6) is a binomial in A0 and has two pos-
sible roots given by

A0− =
c2

6k

1 −
(
1 − 12k2

c2l2

)1/2 (11)

and

A0+ =
c2

6k

1 +

(
1 − 12k2

c2l2

)1/2 (12)

It follows from substituting (11) into (7) that they are two
possible values of the parameter ω given as:

ω1 =

1 −
1 −

(
1 − 12k2

c2l2

)1/2


1/2

(13)

and

ω2 = −
1 −

1 −
(
1 − 12k2

c2l2

)1/2


1/2

(14)

Similarly, by substituting (12) into (7) other two possible
values of the parameter are obtained as:

ω3 =

1 −
1 +

(
1 − 12k2

c2l2

)1/2


1/2

(15)
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and

ω4 = −
1 −

1 +

(
1 − 12k2

c2l2

)1/2


1/2

. (16)

It follows from equation (9) that A2 has eight possible val-
ues given by

A21 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0+

)−1

A2
1 (17)

A22 =
3k
c2

(
1 − 22ω2

1 −
6k
c2 A0−

)−1

A2
1 (18)

A23 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0+

)−1

A2
1 (19)

A24 =
3k
c2

(
1 − 22ω2

2 −
6k
c2 A0−

)−1

A2
1 (20)

A25 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0+

)−1

A2
1 (21)

A26 =
3k
c2

(
1 − 22ω2

3 −
6k
c2 A0−

)−1

A2
1 (22)

A27 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0+

)−1

A2
1 (23)

A28 =
3k
c2

(
1 − 22ω2

4 −
6k
c2 A0−

)−1

A2
1 (24)

Similarly, it follows from (10) that A3 has eight possi-
ble values. The above sequence may be continued to derive
the eight possible corresponding values for each of the con-
stants A4, A5, . . . in terms of the arbitrary constant A1 . This
sequence implies eight mathematically possible analytical so-
lutions of Einstein’s planetary equation of the form:

u(φ) = A0 + A1exp
[
i (ωφ + φ0)

]
+

f2(A1)exp
[
2i (ωφ + φ0)

]
+ ...

fnexp
[
ni (ωφ + φ0)

]
+ ...

(25)

where φ0 and A1 are arbitrary.
Now, consider the first exact analytical solution corre-

sponding to equations (12) and (14). In this case, it follows
from (9) that

A2 = f2(A1) = − k
c2

(
1 − 6k

c2 A0−

)−1

A2
1 (26)

and
A3 = f3(A1) (27)

and in general

An = fn(A1), n = 4, 5, ... (28)

In this case, the exact analytical solution of Einstein’s
planetary equation is a complex function of φ which may be
written in Cartesian form as

u(φ) = x(φ) + iy(φ) (29)

where

x(φ) = A0− + A1 cos (ω1φ + φ0) +

f2(A1) cos 2
[
(ω1φ + φ0)

]
+ . . .

(30)

and
y(φ) = A0− + A1 sin (ω1φ + φ0) +

f2(A1) sin 2
[
(ω1φ + φ0)

]
+ . . .

(31)

Therefore it may be expressed in Euler form as

u(φ) = R(φ)eiΦ(φ) (32)

where R is the magnitude given by

R(φ) =
{
x2 (φ) + y2 (φ)

} 1
2 (33)

and Φ is the argument given by

Φ(φ) = tan−1
{
y(φ)
x(φ)

}
. (34)

Hence by definition the instantaneous radial coordinate of
the planet from the Sun, r , is given by

r (φ) = R−1 (φ) `−iΦ(φ). (35)

3 Physical Interpretation of First Analytical Solution

The instantaneous complex radial displacement r of the
planet from the Sun is given in terms of the angular displace-
ment Φ as

r (φ) = R−1 (φ) `−iΦ(φ). (36)

Therefore the magnitude of the instantaneous complex ra-
dial displacement of the planet from the Sun can be consid-
ered to be the real physically measurable instantaneous radial
displacement, rp. Thus,

rp (φ) = R−1 (φ) =

{
x2 (φ) + y2 (φ)

}− 1
2

. (37)

It may be noted from (9) and (10) that for n > 1 fn(A1) is
of order at most c−2n. Therefore as a first approximation let
us neglect all terms in fn(A1) for n > 1. Then it follows from
(37) and (31)–(32) that

rp (φ) =
A

1 + ε1 cos (ω1φ + φ0)
(38)

where

A =
1

A0−

(
1 +

A2
1

A2
0−

)− 1
2

(39)
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and

ε1 =
A1

A0−

(
1 +

A2
1

A2
0−

)−1

. (40)

Consequently, the orbit is a precesing conic section with
eccentricity and hence semi-major axis given by

a =
A

1 − ε2
1

(41)

and perihelion displacement angle ∆ given by

∆ = 2π
(
ω−1

1 − 1
)
. (42)

It follows from (42) and (14) that the perihelion displace-
ment angle from this analytical method is given explicitly as

∆ =
6πk2

c2l2
+

54πk4

c4l4
. (43)

This is an advance precisely as obtained from the method
of successive approximations. The leading term in (43) is
identically the same as the leading term of the corresponding
advance from the method of successive approximations [1].
Moreso, this analytical method reveals the exact corrections
of all orders of c−2 to the leading term in (44).

It also follows from (40) and (12) that the orbital eccen-
tricity ε1 from this analytical method is given explicitly as

ε1 =
l2A1

k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(44)

Thus, an experimental measurement of the orbital eccen-
tricity ε1 in equation (45) is sufficient to determine the pa-
rameter A1 that occurs in the exact analytical solution. It also
follows from this result that the analytical method in this ar-
ticle reveals post-Newtonian corrections of all order of c−2 to
the planetary orbital eccentricity which have not been derived
from the method of successive approximations.

It also follows from equations (41) and (14) that the or-
bital semi-major axis from this analytical method is given ex-
plicitly as

a =
l2(

1 − ε2
1

)
k

(
1 +

3k2

c2l2
+ . . .

)−1

[
1 +

l4A2
1

k2

(
1 +

3k2

c2l2
+ . . .

)−2]−1

.

(45)

Thus, this analytical method reveals post-Newtonian cor-
rections of all orders of c−2 to planetary semi-major axis,
which have not been derived from the method of successive
approximations.

4 Conclusion

This article uncovers an analytical solution to Einstein’s plan-
etary equation. The first analytical solution to the order of
c−2, reveals post-Newtonian corrections to the orbital eccen-
tricity and semi-major axis of a planet. Moreover, up to the
second iterate there is no such correction from the method
of successive approximations. Consequently, these unknown
corrections to orbital eccentricity revealed by the analytical
approach in this article are opened up for experimental inves-
tigation.
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