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It is shown how the fractal paths of SR = scale relativity (following Nottale) can be
introduced into a TD = thermodynamic context (following Asadov-Kechkin).

1 Preliminary remarks

The SR program of Nottale et al (cf. [1]) has produced a mar-
velous structure for describing quantum phenomena on the
QM type paths of Hausdorff dimension two (see below). Due
to a standard Hamiltonian TD dictionary (cf. [2]) an exten-
sion to TD phenomena seems plausible. However among the
various extensive and intensive variables of TD it seems un-
clear which to embelish with fractality. We avoid this feature
by going to [3] which describes the arrow of time in con-
nection with QM and gravity. This introduces a complex
time (1A) τ = t − (i~/2)β where β = 1/kT with k = kB

the Bolzmann constant and a complex Hamiltonian (1B) H =
E − (i~Γ/2) where E is a standard energy term, e.g. (1C) E ∼
(1/2)mv2+W(x). One recalls that complex time has appeared
frequently in mathematical physics. We will show how frac-
tality can be introduced into the equations of [3] without re-
sorting to several complex variables or quaternions.

Thus from [3] one has equations

H = E −
(

i~
2
Γ

)
; τ = t − i~

2
β; [E,Γ] = [H,H†] = 0; (1.1)

Ψ = exp−
iHτ
~ ψ; Pn =

wn

Z
;wn = ρnexp[−Enβ+Γnt];

i~∂τΨ = HΨ;Ψ =
∑

Cnψn;

Hn = En −
i~
2
Γn; [H,H†] = 0;

Eψn = Enψn;Γψn = Γnψn; (ψn, ψk) = δnk.

One could introduce another complex variable here, say j
with j2 = −1, but this can be avoided.

Now go to the SR theory and recall the equations

d̂
dt
=

1
2

(
d+
dt
+

d−
dt

)
− i

2

(
d+
dt
− d−

dt

)
; (1.2)

V = d̂x
dt
= V − iU =

1
2

(v+ + v−) − i
2

(v+ − v−);

d̂
dt
= ∂t +V · ∇ − iD∆;

H = m
2
V2 − imD∇ ·V +W =

1
2m
P2 − iD ·P+W; (1.3)

H = V · P − iD∇ · P − L;

V̂ = V − iD∇; (∂t + V̂ · ∇)V = −∇W
m

; (1.4)

U = D∇log(P); P = |ψ|2; ψ = eiS/2mD;

Q = −2mD2∆
√

P
√

P
; (1.5)

V = −2iD∇[log(ψ)]; S0 = 2mD;

D2∆ψ + iD∂tψ −
W
2m

ψ = 0; (1.6)

dV
dt
=

F
m
= U · ∇U +D∆U.

This has been written for 3 space dimensions but we will
restrict attention to a 1-D space based on x below.

We will combine the ideas in (1.1) and (1.2) in Section
2 below. Note here Q is the QP = quantum potential (see
e.g. [5–8] for background).

2 Combination and interaction

From (1.2)-(1.6) we see that the fractal paths in one space
dimension have Hausdorff dimension 2 and we note that U
in (1.2) is related to an osmotic velocity and completely de-
termines the QP Q. Note that these equations (1.2)-(1.6)
produce a macro-quantum mechanics (where D = ~/2m for
QM). It is known that a QP represents a stabilizing organiza-
tional anti-diffusion force which suggests an important con-
nection between the fractal picture above and biological pro-
cesses involving life (cf. [1, 9–13]). We also refer to [14–16]
for probabalistic aspects of quantum mechanics and entropy
and recommend a number of papers of Agop et al (cf. [17])
which deal with fractality (usually involving Hausdorff di-
mension 2 or 3) in differential equations such as Ginzburg-
Landau, Korteweg de-Vries, and Navier-Stokes; this work
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includes some formulations in Weyl-Dirac geometry (Feoli-
Gregorash-Papini-Wood formulation) involving super-
conductivity in a gravitational context.

Now let us imagine that W ∼ W and V ∼ v so that the
energy terms in the real part of the SE arising from (1.2)-(1.6)
will take the form

E ∼ 1
2

mV2 +W +Q (2.1)

and we identify this with E in the TD problem where

Q = −2mD2∆
√

P
√

P
; P = |Ψ|2. (2.2)

One arrives at QM forD = ~/2m as mentioned above and
one notes that the mean value Ē used in the analysis of [3]
will now have the form

Ē =
1
2

∫
mV2Pdx +

∫
|W|2Pdx +

∫
QPdx (2.3)

and the last term
∫
QPdx has a special meaning in terms of

Fisher information as developed in [5–7, 19–21]. In fact one
has ∫

QPdx = −2mD2
∫

∂2
x

√
P

√
P

Pdx = (2.4)

= −D
2

2

∫ 2P′′

P
−

(
P′

P

)2 Pdx =
mD2

2

∫
(P′)2

P
dx

In the quantum situationD = ~/2m leading to∫
QPdx =

~2

8m

∫
(P′)2

P
dx =

~2

8m
FI (2.5)

where FI denotes Fisher information (cf. [7, 21]). And this
term can be construed as a contribution from fractality.

One can now sketch very briefly the treatment of [3] based
on (1.1). Thus one constructs a generalized QM (with arrow
of time and connections to gravity for which we refer to [3]).
The eigenvalues En, Γn, in (1.1) are exploited with

ρn = |Cn|2; Pn =
wn

Z
;

Ψ =
∑

Cnψn; wn = ρne−Enβ+Γnt. (2.6)

One considers two special systems:

1. First let the eigenvectors Γn all be the same (decay free
system) and then wn = ρnexp[−Enβ] which means that
β is actually the inverse absolute temperature (multi-
plied by kB) when En is identified with the n-th energy
level and the system is decay free.

2. Next let all the En be the same so wn = ρnexp[−Γnt]
and all the ΓN have the sense of decay parameters if t is
the conventional physical time.

Thus the solution space of the theory space can be decom-
posed into the direct sum of subspaces which have a given
value of the energy or of the decay parameter. It is seen that
for β = constant the dynamical equation for the basis proba-
bilities is

dPn

dt
= −(Γn − Γ̄)Pn;

dΓ̄
dt
= −D2

Γ; D2
Γ = (Γ − Γ̄)2. (2.7)

From (2.7) one sees that Γ̄(t) is not increasing which
means that the isothermal regime of evolution has an arrow
of time, which is related to the average value of the decay
operator. Thus Pn increases if Γ̄ > Γn and decreases when
Γ̄ < Γn. One can also show that in the general case of β = β(t)
the dynamical equations for the Pn have the form

dPn

dt
= −

[
Γn − Γ̄ + (En − Ē)

dβ
dt

]
Pn. (2.8)

Here the specific function dβ/dt must be specified or ex-
tracted from a regime condition f (t, β, Ā(t, β)) = 0 for some
observable A (e.g. Ē = constant is an adiabatic condition). In
the adiabatic case for example when Ē =

∑
n EnPn = constant

there results
dβ
dt
= −ET − ĒT̄

D2
E

(2.9)

where DE denotes a dispersion of the energy operator E. Us-
ing (2.8)-(2.9) one obtains

dΓ̄
dt
= −D2

Γ

1 − (ET − ĒT̄ )2

D2
E

D2
Γ

 ≥ 0. (2.10)

Subsequently classical dynamics is considered for ~ → 0
and connections to gravity are indicated with kinematically
independent geometric and thermal times (cf. [3]).
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