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The structure of a bound state of several Dirac particles is discussed. Relying on solid
mathematical arguments of the Wigner-Racah algebra, it is proved the a non-negligible
number of configurations is required for a description of this kind of systems. At
present, the main results are not widely known and this is the underlying reason for
the phenomenon called the proton spin crisis.

1 Introduction

Once upon a midnight dreary,
while I pondered weak and weary,
Over many a quaint and curious
volume of forgotten lore... [1].

The main objective if this work is to prove that the multi-
configuration structure of a bound state of several Dirac par-
ticles plays an extremely important role. The existence of
such a multi-configuration structure was already known many
decades ago [2, 3] and early electronic computers were used
for providing a numerical proof of this issue [4]. (Note that
the first edition of [2] was published in 1935.) Unfortunately,
this scientific evidence has not found its way to contempo-
rary textbooks of physics and has become a kind of a for-
gotten lore. For example, [5] uses a single configuration and
remarks that the error is about 5 per cent [5, see a comment on
p. 234]. Here [6, see p. 116] is a notable exception. The paper
proves the main points of this issue and shows its far reaching
meaning and its relevance to physical problems that are still
unsettled. In doing so the paper aims to make a contribution
to the correction of this situation.

It is well known that quantum mechanics explains the
Mendeleev periodic table of chemical elements. The shell
structure of electrons provides an easy interpretation of chem-
ical properties of noble gases (a full shell), halogens (a full
shell minus 1), alkali metals (a full shell + 1) etc. The stan-
dard explanation of the Mendeleev periodic table uses a sin-
gle configuration for a description of the electronic states of
each chemical element. Thus, for example, the helium and the
lithium atoms are described by the 1s2 and 1s22s configura-
tions, respectively. At this point the following problem arises:
Does the unique configuration structure of an atomic ground
state make an acceptable description of its quantum mechani-
cal system or is it just a useful pedagogical explanation of the
Mendeleev periodic table? The answer to this problem cer-
tainly must be obtained from a mathematical analysis of the
quantum mechanical state of systems that contain more than
one electron. By describing an outline of this task, the present
work proves beyond any doubt that an atomic state of more
than one electron has a multi-configuration structure and that
no single configuration dominates the system.

The conclusion stated above has two important aspects.
First, It is clear that a correct understanding of the structure
of any fundamental physical system is a vital theoretical as-
set for every physicist. Next, it turns out that the lack of
an adequate awareness of this physical evidence has already
caused the phenomenon called the “proton spin crisis” [7]
which haunts the particle physics community for decades.
The measurements published in [7] show that quarks carry
a very small portion of the proton’s spin and this evidence
has been regarded as a surprise. Now, it is shown in this work
that the multiconfiguration structure found in atomic states is
not a specific property of the Coulomb interaction. Thus, it
is expected to be also found in any bound state of three spin
1/2 quarks, like it is found in bound states of several spin 1/2
electrons. For this reason, one can state that if the experiment
described in [7] would have shown that quarks carry the en-
tire proton’s spin then this result should have been regarded
as a real crisis of fundamental quantum mechanical princi-
ples.

In this work, units where ~= c= 1 are used. The second
section contains a brief description of the main properties of a
bound state of several Dirac particles that are required for the
discussion. The underlying mathematical reasons for the mul-
ticonfiguration structure of states are discussed in the third
section. Some aspects of the results are pointed out in the last
section.

2 General Arguments

The main objective of this work is to find a reliable math-
ematical method for describing the ground state of a bound
system of spin 1/2 particles. Applying Wigner’s analysis of
the Poincare group [8, 9], one concludes that the total mass
(namely, energy) and the total spin are good quantum num-
bers. Thus, one assumes that an energy operator (namely,
a Hamiltonian) exists. For this reason, one can construct a
Hilbert space of functions that can be used for describing the
given system as an eigenfunction of the Hamiltonian. Evi-
dently, in the system’s rest frame, an energy eigenfunction
has the time dependent factor exp(−iEt). This factor can be
removed and the basis of the Hilbert space contains time in-
dependent functions.

The fact that every relatively stable state has a well de-
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fined total spin J can be used for making a considerable sim-
plification of the problem. Thus, one uses a basis for the
Hilbert space that is made of functions that have the required
spin J and ignores all functions that do not satisfy this con-
dition. Evidently, a smaller Hilbert space reduces the amount
of technical work needed for finding the Hamiltonian’s eigen-
functions. An additional argument holds for systems whose
state is determined by a parity conserving interaction, like
the strong and the electromagnetic interactions. Thus, one
can use functions that have a well defined parity and build
the Hilbert space only from functions that have the required
parity. This procedure makes a further simplification of the
problem.

The notion of a configuration of a system of several Dirac
particles is a useful mathematical tool that satisfies the two
requirements stated above [2, see p. 113] and [10, see p. 245].
A configuration is written in the form of a product of single
particle wave functions describing the corresponding radial
and orbital state of each particle belonging to the system (the
m quantum number is ignored). For atomic systems a non-
relativistic notation is commonly used and the values of the
nl quantum numbers denote a configuration, like 1s22s1. In
relativistic cases the variables nl j [10, see p. 245] are used.
In the latter case, the variables n jπ (here π denotes parity and
it takes the values ±1) is an equivalent notation for a rela-
tivistic configuration because l = j ± 1/2 and the numerical
parity of the l-value of a Dirac spinor upper part defines the
single particle’s parity. (This work uses the n jπ notation.) Ev-
idently, any acceptable configuration must be consistent with
the Pauli exclusion principle.

For any given state where the total spin J and parity are
given, one can use configurations that are consistent with J
and the product of the single-particle parity equals the par-
ity of the system. The total angular momentum J is obtained
from an application of the law of vector addition of angular
momentum [2, see p. 56] and [10, see p. 95]. Here the tri-
angular condition holds [10, see p. 98]. Thus, for example,
an acceptable configuration for the two-electron 0+ ground
state of the helium atom must take the form n1 jπ1

1 n2 jπ2
2 , where

j1 = j2 and π1 = π2. Similarly, a description of a 2-electron
state where Jπ = 3+ cannot contain a configuration of the form
n1

1
2
+ n2

3
2
+, because the two J values 1/2 and 3/2 can only

yield a total J = 1 or J = 2.
At this point the structure of the relevant Hilbert space

is known. It is made of configurations that satisfy certain
requirements. This is one of the useful properties of using
configurations - the relevant Hilbert space is smaller because
many configurations can be ignored due to the total spin and
parity requirements. Obviously, a smaller Hilbert space in-
dicates shorter computational efforts. Thus, the framework
needed for the analysis is established. The problem of find-
ing how many configurations are required for an acceptable
description of an atomic state is discussed in the following
section.

3 The Multi-Configuration Structure of Atomic States

The purpose of this section is to outline a proof that shows
why a bound state of several electrons takes the form of a lin-
ear combination of terms, each of which belongs to a specific
configuration. For this purpose, the Hamiltonian matrix is
constructed for a Hilbert space whose basis is made of func-
tions that take a configuration form. Evidently, non-vanishing
off-diagonal matrix elements prove that the required state is a
linear combination of configurations. It is shown that this
property holds even for the simplest atomic state of more
than one electron, namely the Jπ = 0+ ground state of the 2-
electron Helium atom.

It is explained in the previous section that the required
Hilbert space contains functions that have the given total spin
and parity. The form of a two electron function is written as
follows

χ(r1, r2) = Fi(r1)Fk(r2)( jπ1
1 jπ2

2 JM). (1)

Here, Fi(r1), Fk(r2) denote radial functions of the appropriate
electron, j1, j2, π1, π2 denote the single particle spin and par-
ity of the electrons, respectively, J is the total spin obtained
by using the appropriate Clebsch-Gordan coefficients [2, 10]
and M denotes the magnetic quantum number of the total an-
gular momentum,

Let us use the principles described in the previous sec-
tion and try to find the structure of the helium atom ground
state. Thus, due to the triangular rule [10, see p. 98] and in
order to be consistent with J = 0, we must use configurations
where j1 = j2. Similarly, in order to have an even total parity,
we must use configurations where the two electrons have the
same parity. Thus, the required Hilbert space contains func-
tions of the following form

χ(r1, r2) = Fi(r1)Fk(r2)( jπ jπ00), (2)

where j is a positive number of the form j = n+ 1/2, n is an
integer and π= ± 1.

The angular parts of any two different functions of (2) are
orthogonal. Hence, off-diagonal matrix elements of any pure
radial operator vanish. Since the following discussion is fo-
cused on finding off-diagonal matrix elements of the Hamil-
tonian, radial coordinates and radial operators are not always
shown explicitly in expressions.

At this point one can use a given Hamiltonian and con-
struct its matrix. Before doing this assignment one has to find
a practical procedure that can be used for overcoming the in-
finite number of configurations that can be obtained from the
different values of n, j and π. For this purpose one organizes
the configurations of (2) in an ascending order of j and exam-
ines a Hilbert subspace made of the first N0 functions, where
N0 is a positive integer. Here a finite Hamiltonian matrix is
obtained and one can diagonalize it, find the smallest eigen-
value E0 and its associated eigenfunction Ψ0. The quantities
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found here represent an approximation for the required solu-
tion. Let this approximate solution be denoted in this form

{E0,Ψ0}. (3)

In order to evaluate the goodness of this approximation, one
replaces N0 by N1 =N0 + 1 and repeats the procedure. The
new solution {E1,Ψ1} is a better approximation because it
relies on a larger Hilbert subspace. The difference between
these solutions provides an estimate for the goodness of the
solutions obtained. This procedure can be repeated for an in-
creasing value of Ni. Thus, if a satisfactory approximation is
reached for a certain value of Ni then one may terminate the
calculation and use the solution obtained from this procedure
as a good approximation to the accurate solution.

Now we are ready to examine the Hamiltonian’s matrix
elements. This examination demonstrates the advantage of
using configurations as a basis for the Hilbert space. Thus, the
angular part of the kinetic energy of each electron takes the
form found for the hydrogen atom and only diagonal matrix
elements do not vanish. The same result is obtained for the
spherically symmetric radial potential operator Ze2/r of the
nucleus. It follows that off-diagonal matrix elements can be
obtained only from the interaction between the two electrons.
(This quantity does not exist for the one electron hydrogen
atom and for this reason, each of the hydrogen atom eigen-
functions takes the form of a unique configuration.) In a full
relativistic case the two-electron interaction takes the form
of Breit interaction [11, see p. 170]. which contains the in-
stantaneous ordinary Coulomb term and a velocity-dependent
term. The existence and the results of the Hamiltonian’s off-
diagonal matrix elements are the main objective of this dis-
cussion and it is shown below that for this purpose the exam-
ination of the relatively simple Coulomb term is enough.

Thus, one has to write the 1/r12 operator in a form that is
suitable for a calculation that uses the single particle indepen-
dent variables r1, r2 of the configurations (2). This objective
is achieved by carrying out a tensor expansion of the inter-
action [10, see p. 208]. For the specific case of the Coulomb
interaction, one obtains [12, see p. 114]

1
r12
=

∞∑
k=0

rk
<

rk+1
>

Pk(cos θ12). (4)

Here r< and r> denote the smaller and the larger values of
r1 and r2, respectively and θ12 is the angle between them.
Pk(cos θ12) is the Legendre polynomial of order k. At this
point one uses the addition theorem for spherical harmon-
ics [10, see p. 113]

Pk(cos θ12) =
4π

2k + 1

k∑
m=−k

(−1)mYk,−m(θ1, ϕ1)Yk,m(θ2, ϕ2) (5)

and obtains an expansion of the appropriate Legendre poly-
nomial Pk(cos θ12) of (4) in terms of spherical harmonics that

depend on single particle angular variables. This analysis
shows how matrix elements can be obtained for a Hilbert
space whose basis is made of functions that are an appropriate
set of configurations.

At this point the wave functions of the Hilbert space basis
as well as the Hamiltonian operator depend on the radial and
the angular coordinates of single particle functions. The main
objective of this section is to explain why the electronic states
are described as a linear combination of configurations. It is
shown above that the configurations of the Hilbert space ba-
sis are eigenfunctions of the operators representing the kinetic
energy and the interaction with the spherically symmetric po-
tential of the nucleus. Hence, the discussion is limited to the
two particle operator (4) that depends on the expansion (5).

Let us find, for example, the off-diagonal matrix element
of the configurations ((1 1

2
+)200) and ((2 3

2
−)200) of the Hilbert

space basis (2). Consider the 2-electron Coulomb interaction
obtained for the upper (large) component of the Dirac spinor.
Thus, 1

2
+ is a spatial s-wave and 3

2
− is a spatial p-wave. The

Wigner-Racah algebra provides explicit formulas for expres-
sions that depend on the angular coordinates. Now, as stated
above, the main objective of the discussion is to show that
off-diagonal matrix elements do not vanish. For this purpose,
only the main points of the calculation are written and readers
can use explicit reference for working out the details.

The formal form of the angular component of the off-
diagonal matrix element is

Hi j =< j1 j2JM| 1
r12
| j ′1 j ′2JM > . (6)

Here j1, j2 of the ket are angular momentum values of the
first and the second electron, respectively and they are cou-
pled to a total J, M. The bra has an analogous structure. In
the particular case discussed here J =M = 0 and (6) takes the
form

Hi j =<
1
2

1
2 00| 1

r12
| 32

3
2 00 > . (7)

The following points describe the steps used in the calcu-
lation of (7).

1. The Wigner-Eckart theorem shows that (6) can be cast
into a product of a Wigner 3j symbol and a reduced
matrix element [10, see p. 117]

2. In (4), the expansion (5) of 1/r12 is a scalar product of
two tensors [10, see p. 128].

3. The reduced matrix element of such a scalar product
can be put in the form of a product of a Racah coeffi-
cient and two reduced matrix elements that depend on
the first and the second electron, respectively [10, see
p. 129].

4. Each of these reduced matrix elements takes the form
< sl j||Yk ||sl′ j′ > where sl denote single particle spin
and spatial angular momentum that are coupled to the
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particle’s total angular momentum j. In the specific
case discussed here it is < 1

2 0 1
2 ||Y1|| 12 1 3

2 >. The value of
the last expression can be readily obtained as a product
of a square root of an integer and a Wigner 3 j symbol
[10, see p. 521]. The final value is

< 1
2 0 1

2 ||Y1|| 12 1 3
2 >=

−2
√

4π
. (8)

This discussion shows that the Hamiltonian’s off diagonal
matrix elements do not vanish for the J = 0 ground state of
the He atom. It means that a single configuration does not
describe accurately this state. The next step is to carry out an
explicit calculation and find out how good is the usage of a
single configuration. This task has already been carried out
[4] and it was proved that the description of the ground state
of the He atom requires many configurations. Here radial
and angular excitations take place and no single configuration
plays a dominant role.

4 Discussion

Several aspects of the conclusion obtained in the previous
section are discussed below.

Intuitively, the multiconfiguration structure of the ground
state may be regarded as a mistake. Indeed, the ground state
takes the lowest energy possible. Hence, how can a mixture
of a lower energy state and a higher energy state yield a com-
bined state whose energy is lower than either of the two single
mono-configuration states? The answer to this question relies
on a solid mathematical basis. Thus, a diagonalization of a
Hermitian matrix reduces the lowest eigenvalue and increases
the highest eigenvalue [12, see e.g. pp. 420–423]. Hence,
for a Hermitian matrix, any off-diagonal matrix element in-
creases the difference between the corresponding diagonal el-
ements. It means that the smaller diagonal element decreases
and the larger diagonal element increases. Since the Hamilto-
nian is a Hermitian operator, one concludes that if the Hilbert
space basis yields a non-diagonal Hamiltonian matrix then
the lowest eigenvalue ”favors” eigenfunctions that are a lin-
ear combination of the Hilbert space basis functions.

It is shown in the previous section that the non-vanishing
off-diagonal matrix elements rely on the two body Coulomb
interaction between electrons. Thus, the tensor expansion of
the interaction (4) casts the 2-body Coulomb interaction into
a series of Legendre polynomials where cosθ12 is the polyno-
mial’s argument. Evidently, any physically meaningful inter-
action depends on the distance between the interacting parti-
cles. Hence, an expansion in terms of the Legendre polyno-
mials can be obtained. This expansion proves that the math-
ematical procedure described in the previous section has a
comprehensive validity [10, see p. 208]. Thus, what is found
in the previous section for electrons in the He atom ground
state also holds for quarks in the proton. Moreover, the proton
is an extremely relativistic system of quarks and, as such, its

spin-dependent interactions are expected to be quite strong.
Evidently, spin dependent interactions make a contribution to
off-diagonal matrix elements. On the basis of this conclusion,
one infers that the proton’s quark state must be described by
a linear combination of many configurations.

A polarized proton experiment has been carried out where
the instantaneous spin direction of quarks was measured [7].
The measurements have shown that the total quark spin con-
stitutes a rather small fraction of the proton’s spin. This result
is in a complete agreement with the mathematical analysis
carried out above. Thus, the relativistic proton dynamics indi-
cates that the j j-coupling provides a better approach (and this
is the reason for the usage of this notation here). In each quark
configuration, spin and spatial angular momentum are cou-
pled to a total single particle j-value and the Clebsch-Gordan
coefficients determine the portion of spin-up and spin-down
of the quark. Next, The relativistic quark state indicates that,
unlike the case of the hydrogen atom, the lower part of the
Dirac spinor of quarks is quite large. As is well known, if in
the upper part of a Dirac spinor is l= j±1/2 then its lower part
is l= j ∓ 1/2. Hence, different Clebsch-Gordan coefficients
are used for the upper and the lower parts of the Dirac spinor.
Furthermore, in different configurations, different Clebsch-
Gordan coefficients are used for the single particle coupling
of the three quarks to the total proton’s spin and the overall
weight of the spin-up and spin-down components takes a sim-
ilar value. This argument indicates that the outcome of [7] is
quite obvious and that if the experiment would have yielded
a different conclusion where quarks carry the entire proton’s
spin then this result should have been regarded as a real crisis
of fundamental quantum mechanical principles. This discus-
sion also shows that the quite frequently used description of
the results of [7] as “the proton spin crisis” is unjustified.

Computers are based on quantum mechanical processes
that take place in solid state devices. Hence, it is clear that
people who have established the laws of quantum mechan-
ics had no access to the computational power of computers.
For this reason, several approximations have been contrived
in order to get an insight into atomic structure. A method that
deals with configurations is called central field approxima-
tion [5, see p. 225]. Here, for every electron, the actual field
of all other electrons is replaced by an approximate spheri-
cally symmetric radial field. Evidently, as explained in the
third section, such a radial field does not cause a configuration
mixture and, in this approximation, a single configuration is
used for describing atomic states. This approach is frequently
used in a description of the Mendeleev’s periodic table [5, see
pp. 240–247].

However, even in the early days of quantum mechanics,
the central field approximation has been regarded as an ap-
proximation and people have constructed mathematical tools
for treating the multi-configuration atomic structure which is
known as the Wigner-Racah algebra of angular momentum.
These mathematical tools have been used in the early days of
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electronic computers [4] and the result is quite clear: many
configurations are required even for the simplest case of the
ground state J = 0 of the 2-electron He atom and no single
configuration plays a dominant role. Today, this outcome
is still known [6, see p. 116] but unfortunately not widely
known. Thus, [6] is based on lectures delivered in a chemistry
department. On the other hand, the birth and the long dura-
tion of the idea concerning the proton spin crisis prove that
this fundamental physical issue is indeed not widely known.
This paper has been written for the purpose of improving the
present status.
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