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We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran-
sition in the early Universe. Assuming an underlying theory that violates Lorentz in-
variance, we start with a Dirac like equation, involving four massless fields, and which
does not exhibit Lorentz invariance. We then perform transformations that restore it to
its covariant form along with a mass term for the fermion field. It is proposed that these
transformations can be visualized as waves traveling in an anisotropic media. The trans-
formation it/ℏ→ β is then utilized to transit to a statistical thermodynamics system and
the partition function then gives a better insight into the character of this transition. The
statistical system hence realized is a two level system with each state doubly degenerate.
We propose that modeling the transition this way can help explain the matter antimatter
asymmetry of the Universe.

1 Introduction

The idea that the Universe is homogeneous, isotropic and that
space-time is Lorentz invariant are important pillars of theo-
retical physics. Whereas the cosmological principal assumes
the Universe to be homogeneous and isotropic, Lorentz in-
variance is required to be a symmetry of any relativistic quan-
tum field theory. These requirements have robust footings,
but there can possibly be scenarios where these ideas are not
sufficient to describe the dynamics of a system. Temperature
fluctuations in the Cosmic Microwave Background (CMB)
radiation indicate that the assumptions made by the cosmo-
logical principal are not perfect. There is no conclusive ev-
idence of Lorentz violation to date but this has been a topic
of considerable interest and the Standard Model Extension
(SME) has been constructed which includes various terms
that preserve observer Lorentz transformations but violate
particle Lorentz transformations [1]. Limits have been placed
on the coefficients of various terms in the SME as well [2].
Another important question is the matter-antimatter asymme-
try of the Universe which is not completely resolved. Sak-
harov, in 1967 derived three conditions (baryon violation, C
and CP violation and out of thermal equilibrium) for a the-
ory to satisfy in order to explain the baryon asymmetry of the
Universe.

Origin of fermion masses is also one of the most intrigu-
ing questions which is now close to be answered by the AT-
LAS and CMS experiments at the Large Hadron Collider.
Hints of this particle have been seen and we will know for
sure this year, hopefully mid 2012, whether it exists or not. If
the Higgs does not exist than the formalism presented in this
article can also serve as a possible explanation for the origin
of mass of fermions.

In this paper we intend to describe the evolution of a
theory that violates Lorentz invariance to a theory that pre-
serves it. The fields that are involved in the Lorentz violat-
ing theory can be viewed in analogy with fields traveling in

an anisotropic medium. When the system evolves from the
anisotropic to isotropic phase the symmetry of the theory is
restored and the partition function formalism can be used to
better understand how this transition takes place. This for-
malism, we propose, can help explain the matter-antimatter
asymmetry of the Universe. The paper is organized as fol-
lows: In section 2 and 3 we describe these transformations
and propose a way to interpret them as plane wave transitions
into anisotropic media. In section 4 the partition function is
used to get a better insight into how the transformations in
section 2 occur and we conclude in section 5.

2 Transformations leading to Covariant Dirac equation

In this section we outline a set of transformations that lead
to the Dirac equation for a QED (Quantum Electrodynamics)
like theory with no interaction terms. We start with a Dirac-
like equation which involves four fields (χa, χb, χc, χd). These
fields can be redefined in a simple way such that the covariant
form of the Dirac equation is restored along with a mass term.
We assume a minimal scenario and consider just the kinetic
terms for the fields in the underlying theory. If we start with
the following equation (ℏ = c = 1):

iχ̄aγ
0∂0χa + iχ̄bγ

1∂1χb + iχ̄cγ
2∂2χc + iχ̄dγ

3∂3χd = 0, (1)

and transform each of the χ fields in the following manner,

χa(x)→ eiαmγ0 x0ψ(x), χb(x)→ eiβmγ1 x1ψ(x),

χc(x)→ eiδmγ2 x2ψ(x), χd(x)→ eiσmγ3 x3ψ(x), (2)

we get the Dirac equation in covariant form, along with a
mass term (using, for e.g., eiβmγ1 x1γ0 = γ0e−iβmγ1 x1 ),

ψ[iγµ∂µ − (α + β + δ + σ)m]ψ = 0, (3)

where α, β, δandσ are real positive constants. For plane wave
solution for particles, ψ = e−ip.xu(p), the above redefinition
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for the field χa, for example, is a solution of the following
equation:

∂

∂t
χa(x) = −i(E − αmγ0)χa(x), (4)

with similar equations for the other fields. Equation (4), is
similar to equation (27) in reference [3] which is a solution
of the differential equation governing linear elastic motions
in an anisotropic medium (with a constant matrix, see section
III of the reference). With α = 0 the left hand side is just the
Hamiltonian with the plane wave its eigenstate.

Note that the manner in which we can transform equa-
tion (1) to (3) is not unique and there are various ways to do
this with different combinations of the χ fields along with the
field ψ. A mass term (mχχ) for the χ fields could have been
added to equation (1), but the redefinitions (2) can be used to
eliminate it. So, if we want our resulting equation to describe
a massive fermion, these fields should be massless or cannot
have mass term of the form mχχ. This argument will be fur-
ther corroborated with the results we present in section 4. The
transformation matrices in equation (2) are not all unitary, the
matrix eiαmγ0 x0 is unitary while the rest (eiβmγi xi ) are hermitian.

The fields in equation (1) can be considered as indepen-
dent degrees of freedom satisfying equation (4) in an under-
lying theory that violates Lorentz invariance. The transfor-
mations (2) can, therefore, be seen as reducing the degrees
of freedom of the theory from four to one. In such an un-
derlying theory, various interaction terms can be written for
these fields. Since we intend to obtain the free Dirac equation,
we have considered only kinetic terms involving the fields χ.
A quadratic term involving different χ fields (mχiχ j) can be
added to equation (1) but this leads to a term that violates
Lorentz invariance in the resulting Dirac equation. A quartic
term (cχiχiχ jχ j) is possible and would result in a dimension
6 operator for the field ψ with the constant c suppressed by
the square of a cutoff scale. So, with the restriction that the
resulting Dirac equation only contains terms that are Lorentz
scalars the number of terms we can write for the χ fields can
be limited. In other words we impose Lorentz symmetry in
the resulting equation so that various terms vanish or have
very small coefficients.

3 Visualizing field Redefinitions

Space-time dependent field redefinitions in the usual Dirac
Lagrangian result in violation of Lorentz invariance. For ex-
ample, the field redefinition ψ→ e−iaµxµψ leads to the Lorentz
violating terms in the Lagrangian [1]. This particular redefini-
tion, however, would not lead to physically observable effects
for a single fermion. A transformation of this type amounts
to shifting the four momentum of the field. It can also be
viewed in analogy with plane waves entering another medium
of a different refractive index which results in a change in the
wave number of the transmitted wave. Similarly, transforma-
tions (2) can be interpreted as transitions of a wave from an

anisotropic to isotropic medium or vice versa as done in the
Stroh’s matrix formalism [3]. For plane wave solutions of ψ,
the χ fields have propagative, exponentially decaying and in-
creasing solutions (for example, e±imx, e±mx). This wave be-
havior is similar to that in an anisotropic medium or a medium
made of layers of anisotropic medium. The eigenvalues of the
Dirac matrices being the wave numbers of these waves in this
case. The coefficients in the exponent relates to how fast the
wave oscillates, decays and/or increases exponentially. The
transfer matrix in Stroh’s formalism describe the properties of
the material and in this case can possibly represent the prop-
erties of the anisotropic phase from which the transition to the
isotropic phase occurs.

Therefore, we can visualize a global and local transforma-
tion as transitions of plane waves to different types of media.
The wave function of a particle (E > V) which comes across
a potential barrier of a finite width and height undergoes a
phase rotation (eiklψ) upon transmission. If the width of the
barrier extends to infinity, the wave function can be viewed as
undergoing a position dependent phase rotation (eikxψ). The
transformations (2) can similarly be seen as a plane wave en-
tering an anisotropic medium. Another phenomenon called
birefringence in optics can be used to explain why these four
fields map on to the same field ψ. Birefringence results in a
plane wave splitting into two distinct waves inside a medium
having different refractive indices along different directions
in a crystal. These analogies can serve as crude sketches to
visualize how the transformations in equation (2) can occur.

In the usual symmetry breaking mechanism a Higgs field
acquires a vacuum expectation value (VEV) and the resulting
mass term does not respect the symmetry of the underlying
group. For example, in the Standard Model, due to its chiral
nature, a Higgs field is introduced in order to manifest gauge
invariance. Once the Higgs field acquires a VEV the mass
term only respects the symmetry of the resulting group which
is U(1)EM. In our case the mass term arises after symmetry
of the Dirac equation is restored. Consider the simple case
where we have one field χa in addition to the field ψ:

iχ̄aγ
0∂0χa + iψ̄γi∂iψ = 0, (5)

and this field transforms to the field ψ as χa(x)→ eiαmγ0 x0ψ(x)
, leading to the Dirac equation. In order to discuss the symme-
tries of the above equation let’s assume that the two indepen-
dent degrees of freedom are described by the above equation.
Equation (5) then has two independent global U(1) symme-
tries and the resulting equation has one. In fact, there is a list
of symmetries of equation (5) not possessed by (3), for ex-
ample invariance under local transformations, χa → eibiθ(xi)χ′a
(i, j = 1, 2, 3), where bi can be a constant vector, the matrix
γ0 or any matrix that commutes with γ0 (e.g., σi j, γ5γi). This
implies invariance under global and local SO(3) transforma-
tions (rotations of the fields χa but not boosts). Similarly,
ψ→ eiA θ(t)ψ′ is a symmetry, where A can be a constant or the
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matrix iγ0γ5 which commutes with the three Dirac matrices
γi. After the transformation χa → eimγ0tψ the equation is no
more invariant under these symmetries and the SO(1,3) sym-
metry of the Dirac equation is restored along with a global
U(1) symmetry.

4 Partition Function as a Transfer Matrix

In the early Universe, a transition from a Lorentz asymmetric
to a symmetric phase could possibly induce transformations
of the form (2). Let’s again consider the simple example in
equation (5). For this case the eigenvalues of the Dirac ma-
trix γ0 define the wave numbers of the waves traveling in the
anisotropic medium. The direction of anisotropy in this case
is the temporal direction, which means that the time evolu-
tion of these waves is not like usual plane waves. It is not
straight forward to visualize the fields, the dynamics of whom
are described by the anisotropy of space time, but we can use
the partition function method to get a better insight into this.
We can, by using this formalism, calculate the temperature at
which the transformations in equation (2) occur.

We next perform a transition to a thermodynamics system
by making the transformation it → β, where β = 1/kBT [4].
The partition function is then given by the trace of the trans-
formation matrix eimγ0t,

Z = Tr(emβγ0 ) = 2eβm + 2e−βm. (6)

This partition function is similar to that of a two-level sys-
tem of spin 1/2 particles localized on a lattice and placed in
a magnetic field with each state, in this case, having a degen-
eracy of two. The lower energy state corresponding to spin
parallel to the field (E = −m, Z1 = eβm). In this case the
doubly degenerate states correspond to spins up and down of
the particle or anti-particle. For N distinguishable particles
the partition function is ZN , N here is the total number of
particles and antiparticles of a particular species. So, we are
modeling our system as being on a lattice with the spin along
the field as representing a particle and spin opposite to the
field representing an antiparticle.

The evolution of this system with temperature represents
the time evolution of the system in equation (1). In other
words the partition function describes the evolution of these
waves from anisotropic to isotropic phase as the temperature
decreases. For a two level system the orientation of the dipole
moments becomes completely random for large enough tem-
peratures so that there is no net magnetization. In our case we
can introduce another quantity, namely a gravitational dipole,
which would imply that the four states (particle/antiparticle,
spin up/down) of N such particles at high enough tempera-
tures orient themselves in a way that the system is massless.
This just serves as an analogy and does not mean that the
masses are orientating themselves the same way as dipoles
would do in space. The anisotropic character can be seen as
mimicking the behavior of the field in a two level system. The

population of a particular energy level is given by

np(p) =
Ne±βm

eβm + e−βm , (7)

which shows that the number density of particles and antipar-
ticles vary in a different way with respect to temperature.
In the early Universe, therefore the anisotropic character of
space-time seems to play an important role such that parti-
cles and anti-particles behave in different manners. As the
temperature decreases the number density of the anti-particles
decreases and is vanishingly small for small temperatures (∼
e−2βm). When the decoupling temperature is attained there is a
difference in the number density of the particles and antipar-
ticles as described by equation (7). This leads to an excess
of particles over antiparticles. The decoupling temperature
of a particular species of particle with mass m and which is
non-relativistic is given by, kBT ≲ 2m. Below this tempera-
ture the particles annihilate to photons but the photons do not
have enough energy to produce the pair. This can be used to
get the ratio of antiparticles over particles (matter radiation
decoupling). For βm ≈ 0.5, we get

np − np

np
≈ 0.6 , (8)

which implies an excess of particles over antiparticles and
thus can serve as another possible way to explain the mat-
ter antimatter asymmetry of the Universe. This number is
very large compared to the one predicted by standard cos-
mology (∼ 10−9). The above expression yields this order for
βm ≈ 10−9 which implies a large temperature. For electrons
this would imply a temperature of the order 1018K which is
large and the electrons are relativistic. So if we assume that
the decoupling takes place at a higher temperature, the baryon
asymmetry can be explained. Even without this assumption
the conditions proposed by Sakharov can also enhance the
number of particles over the antiparticles. Sakharov’s condi-
tions involve the interaction dynamics of the fields in the early
Universe whereas in our case the statistical system serves
more as a model describing the dynamics of space-time to
a more ordered phase.

Statistical mechanics, therefore, enables us to visualize
this transition in a rather lucid way. In a two level system the
net magnetization at any given temperature is analogous to
the excess of particles over antiparticles in the early Universe.
The time evolution of this anisotropic to isotropic transition
is modeled on the evolution of a statistical thermodynamics
system with particles on a lattice placed in a magnetic field.
The particles on the lattice are localized, static and have no
mutual interaction. The free energy of the system is given by:

F = −NkBT ln{4 cosh
[
mβ

]}. (9)

From this we can calculate the entropy S , heat capacity
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Fig. 1: Plot of heat capacity CV for the mass of electron, up quark,
neutrino and W boson. The maximum of the heat capacity of the
electron occurs at 4.8 × 109K, for the up quarks is 1.9 × 1013K, for
neutrinos is 291K and for the W bosons is 7.8 × 1014K. We use
kB = 8.6 × 10−5 eV/K and mν = 0.03 eV.

CV and mean energy U of the system:

S = −
(
∂F
∂T

)
V

= NkB ln
{
4 cosh

[
mβ

]} − NmkBβ tanh
[
mβ

]
(10)

U = F + TS = −Nm tanh
[
mβ

]
(11)

CV =

(
∂U
∂T

)
V
= NkBm2β2sech2 [

mβ
]

(12)

In Fig. 1, the peaks in the heat capacity represent phase
transition of a particular particle species. These are second
order phase transitions and the peak in the heat capacity is
usually referred to as the Schottky anomaly [5]. Note that the
phase transition we model our system on is a magnetic one.
So, modeling the complex system in the early Universe on a
lattice with spin 1/2 particles can reduce the complications of
the actual system by a considerable amount.

The Schottky anomaly of such a magnetic system, there-
fore, represents phase transitions in the early Universe. For
a particular species of particles the Schottky anomaly shows
a peak around mc2 ≈ kT . The phase transition for the elec-
trons occurs at the temperature where nuclei start forming in
the early Universe. For the quarks the transition temperature
refers to confinement into protons and neutrons. Similarly, W
boson’s transition occurs at the electroweak breaking scale.
The W boson, being a spin 1 particle, is not described by the
Dirac equation, but the heat capacity entails this feature of
showing a phase transition for the energy scale relevant to the
mass of a particle.

The curve for neutrinos implies that the transition tem-
perature for neutrinos is around 291 K, which means that
the density of antineutrinos from the big bang for present

neutrino background temperatures (∼ 2 K) is not negligible.
The ratio of antineutrinos over neutrinos for T = 2 K, is
nν/nν ∼ 10−15000 (mν = 2 eV) and for an even lower neu-
trino mass mν = 0.1 eV the ratio is nν/nν ∼ 10−500, which for
other more massive particles is much smaller. A cosmic neu-
trino and antineutrino background is one of the predictions of
standard cosmology but is still unobserved. This model pre-
dicts an antineutrino background much less than the neutrino
one.

In Fig. 2, the plots of mean energy and entropy are shown
in dimensionless units. In the massless limit for fermions the
entropy attains its maximum value of NkBln4. The plots show
that the energy of the system approaches zero as the temper-
ature approaches infinity. This situation is analogous to the
spins being completely random at high temperatures for the
two level system. The same way that the magnetic energy
of the system on the lattice is zero at high temperatures, the
mass of this system is zero in the very early Universe. As the
temperature decreases the energy of the system attains it min-
imum value (U = −Nm) and the particles become massive at
the temperature less than the value given by the peak of the
heat capacity. The entropy for high temperatures asymptoti-
cally approaches its maximum value of NkBln4.

According to the statistical thermodynamics model that
describes this transition, as this phase transition occurs an-
tiparticles will start changing into particles and as can be seen
from the figure the system will move towards all spins aligned
parallel with the “field”, i.e., towards being particles. From
Fig. 2 we can see that the energy of the system starts attain-
ing the minimum value as the temperature decreases where
all particles are aligned with the field and are “particles”. The
plot of entropy vs. temperature also represents an important
feature of these transformations. The entropy decreases with
decreasing temperature and this represents the transition to a
more ordered phase using equations (2). The plots of energy
of the system U in Fig. 2 show that the system will eventu-
ally settle down to the lowest energy state which in this case
means that the system will have almost all particles with neg-
ligible number of antiparticles. In short, the plot of the heat
capacity reflects the phase transitions, the plot of energy U
represents the transition from massless to massive states and
the plot of entropy represents the transition of space time to a
more ordered phase.

The Big Bang theory is one of the most promising can-
didates to describe how the Universe began. According to
this theory, the Universe expanded from a singularity where
curved space-time, being locally Minkowskian, eventually b-
ecame flat. It is possible that there even was a transition to the
Minkowski space from a non-Minkowski one. If the Universe
began with a state of maximum entropy than we can very well
assume that space-time was not Minkowskian even locally.
The fields that dwell in space-time are representation of the
symmetry group that describes it. The χ fields in the underly-
ing theory, described by equation (1), are therefore, not rep-
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Fig. 2: Plot of entropy and energy for a particle of mass m. For large
enough temperatures the energy of the system approaches zero and
the entropy approaches the limiting value of NkBln4.

resentations of the Lorentz group. The CPT theorem assumes
symmetries of Minkowski space-time in implying the simi-
larities between particles and antiparticles. If the underlying
theory is not Minkowskian than particles and antiparticles can
behave differently and this is what the model described in this
section implies.

Finally, we would like to point out that the occurrence
of the Schottky anomaly has motivated the study of negative
temperatures [6]. Note that the partition functions is invari-
ant under the transformation T → −T but the equations for
the free energy, entropy and energy are not. The existence
of negative temperatures has been observed in experiments.
Negative temperatures, for example, can be realized in a sys-
tem of spins if the direction of the magnetic field is suddenly
reversed for a system of spins initially aligned with the mag-
netic field [5]. Similarly, as described in reference [6] the al-
lowed states of the system must have an upper limit. Whereas
this is not the case for the actual particles in the early Uni-
verse, the statistical mechanics system on which it can be
modeled on has this property. A negative temperature sys-
tem would eventually settle down to the lower energy state
(U = Nm) which in our case would mean that the Universe
would ends up having more antiparticles than particles. This
is yet another interesting insight we get by modeling the early
Universe on a two state system.

5 Conclusions

We analyzed transformations that restore the Dirac equation
to its covariant form from an underlying theory that violates
Lorentz invariance. The fields in the underlying theory are
massless and the transformations yielding the Dirac equation
describe a massive fermion field. The transformations per-
formed, we suggest, can be interpreted as waves traveling
in an anisotropic medium. The partition function formalism
then, enabled us to model these transformations on the evolu-
tion of a system of spin 1/2 particles on a lattice placed in a
magnetic field. Symmetry breaking in this case takes place in
this lattice, the partition function of which characterizes the
transition. Also, since space-time is not Minkowskian in the
underlying theory, the CPT theorem does not hold, implying a
difference in the behavior of particles and antiparticles. This

is in agreement with the analogy created with the statistical
system whereby spin up and down particles behave in differ-
ent ways with the evolution of the system. This formalism
can arguably serve as another possible way to explain the ori-
gin of fermion masses till the final results related to the Higgs
boson are presented in 2012.

We then showed that this model can describe the anis-
otropic to isotropic phase transitions in the early Universe.
Three important features of the early Universe are depicted
in this model: (1) The heat capacity shows the occurrence of
phase transitions. (2) The mean energy of the system shows
how the particles become massive from being massless. (3)
The plot of entropy shows that the transition to a Lorentz sym-
metric phase occurred from an asymmetric one. At any given
temperature the net magnetization measures the excess of par-
ticles over antiparticles. We then suggest that this model can
be used to explain the matter antimatter asymmetry of the
Universe.
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