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On a Fractional Quantum Potential

Robert Carroll
University of Illinois, Urbana, IL 61801, USA

Fractional quantum potential is considered in connection to the fractal calculus and
the scale relativity.

1 Introduction

For fractals we refer to [1, 2] and for differential equations
cf. also [3–7]. The theme of scale relativity as in [8–15]
provides a profound development of differential calculus in-
volving fractals (cf. also the work of Agop et al in the journal
Chaos, Solitons, and Fractals) and for interaction with frac-
tional calculus we mention [6,16–19]. There are also connec-
tions with the Riemann zeta function which we do not discuss
here (see e.g. [20]). Now the recent paper [21] of Kobelev de-
scribes a Leibnitz type fractional derivative and one can relate
fractional calculus with fractal structures as in [16,18,19,25]
for example. On the other hand scale relativity with Haus-
dorff dimension 2 is intimately related to the Schrödinger
equation (SE) and quantum mechanics (QM) (cf. [12]). We
show now that if one can write a meaningful Schrödinger
equation with Kobelev derivatives (α-derivatives) then there
will be a corresponding fractional quantum potential (QP)
(see e.g. [4, 6, 18, 19] for a related fractional equation and
recall that the classical wave function for the SE has the form
ψ = R exp(iS/ℏ)).

Going now to [21] we recall the Riemann-Liouville (RL)
type fractional operator (assumed to exist here)

cDα
z [ f (z)] =



1
Γ(−α)

∫ z

c
(z − ζ)−α−1 f (ζ)dζ

c ∈ R, Re(α) < 0
dm

dzm cDα−m
z [ f (z)]

m − 1 ≤ ℜα < m

(1.1)

(the latter for m ∈ N = {1, 2, 3, . . .}). For c = 0 one writes
(1A) 0Dα

z [ f (z)] = Dα
z [ f (z)] as in the classical RL operator

of order α (or −α). Moreover when c → ∞ (1.1) may be
identified with the familiar Weyl fractional derivative (or inte-
gral) of order α (or −α). An ordinary derivative corresponds
to α = 1 with (1B) (d/dz)[ f (z)] = Dα

z [ f (z)]. The binomial
Leibnitz rule for derivatives is

D1
z [ f (z)g(z)] = g(z)D1

z [ f (z)] + f (z)D1
z [g(z)] (1.2)

whose extension in terms of RL operators Dα
z has the form

Dα
z [ f (z)g(z)] =

∞∑
n=0

(
α
n

)
Dα−n

z [ f (z)]Dn
z [g(z)]; (1.3)

(
α
k

)
=

Γ(α + 1)
Γ(α − k + 1)Γ(k + 1)

; α, k ∈ C.

The infinite sum in (1.3) complicates things and the bi-
nomial Leibnitz rule of [21] will simplify things enormously.
Thus consider first a momomial zβ so that

Dα
z [zβ] =

Γ(β + 1)
Γ(β − α + 1)

zβ−α; ℜ(α) < 0; ℜ(β) > −1. (1.4)

Thus the RL derivative of zβ is the product

Dα
z [zβ] = C∗(β, α)zβ−α; C∗(β, ga) =

Γ(β + 1)
Γ(β − α+)

. (1.5)

Now one considers a new definition of a fractional deriva-
tive referred to as an α derivative in the form

dα
dz

[zβ] = dα[zβ] = C(β, α)zβ−α. (1.6)

This is required to satisfy the Leibnitz rule (1.2) by def-
inition, given suitable conditions on C(β, α). Thus first (1C)
zβ = f (z)g(z) with f (z) = zβ−ϵ and g(z) = zϵ for arbitrary ϵ the
application of (1.3) implies that

dα
dz

[zβ] = zϵ
dα
dz

zβ−ϵ + zβ−ϵ
dα
dz

zϵ

= zϵC(β − ϵ, α)zβ−ϵ−α + zβ−ϵC(ϵ, α)zϵ−α

= [C(β − ϵ, α) +C(ϵ, α)]zβ−α.

(1.7)

Comparison of (1.6) and (1.7) yields (1D) C(β − ϵ, α) +
C(ϵ, α) = C(β, α). To guarantee (1.2) this must be satisfied for
any β, ϵ, α. Thus (1D) is the basic functional equation and its
solution is (1E) C(β, α) = A(α)β. Thus for the validity of the
Leibnitz rule the α-derivative must be of the form

dα[zβ] =
dα
dz

[zβ] = A(α)βzβ−α. (1.8)

One notes that C∗(β, α) in (1.5) is not of the form (1E)
and the RL operator Dα

z does not in general possess a Leibnitz
rule. One can assume now that A(α) is arbitrary and A(α) = 1
is chosen. Consequently for any β

dα
dz

zβ = βzβ−α;
dα
dz

zα = α;
dα
dz

z0 = 0. (1.9)

Now let K denote an algebraically closed field of char-
acteristic 0 with K[x] the corresponding polynomial ring and
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K(x) the field of rational functions. Let F(z) have a Laurent
series expansion about 0 of the form

F(z) =
∞∑
−∞

ckzk;

F+(z) =
∞∑
0

ckzk;

F−(z) =
−1∑
−∞

ckzk; ck ∈ K

(1.10)

and generally there is a k0 such that ck = 0 for k ≤ k0.
The standard ideas of differentiation hold for F(z) and for-
mal power series form a ring K[[x]] with quotient field K((x))
(formal Laurent series). One considers now the union (1F)
K ≪ x ≫= ∪∞1 K((x1/k)). This becomes a field if we set

x1/1 = x, xm/n = (x1/n)m. (1.11)

Then K ≪ x ≫ is called the field of fractional power
series or the field of Puiseux series. If f ∈ K ≪ x ≫ has
the form (1G) f =

∑∞
ko

ck xmk/nk where c1 , 0 and mk, nk ∈
N = {1, 2, 3, . . .}, (mi/ni) < (m j/n j) for i < j then the order is
(1H) O( f ) = m/n where m = m1, n = n1 and f (x) = F(x1/n).
Now given n and z complex we look at functions

f (z) =
∞∑
−∞

ck(z − z0)k/n = f+(z) + f−(z);

f+(z) =
∞∑
0

ck(z − z0)k/n,

f−(z) =
−1∑
−∞

ck(z − z0)k/n; ck = 0 (k ≤ k0)

(1.12)

(cf. [21] for more algebraic information - there are some mis-
prints).

One considers next the α-derivative for a basis (1I) α =
m/n; 0 < m < n; m, n ∈ N = {1, 2, 3, · · ·}. The α-derivative
of a Puiseux function of order O( f ) = 1/n is again a Puiseux
function of order (1 − m)/n. For α = 1/n we have

f+ =
∞∑
0

ckzk/n =

∞∑
0

ckzβ; β = β(k) =
k
n

(1.13)

leading to

dα
dz

f+(z) =
∞∑
1

αβckz(k−1)/n =

∞∑
0

cp+1αβzp/m; (1.14)

dα
dz

f−(z) =

−1∑
−∞

ckαβz(k−1)/n =

−2∑
−∞

cp+1αβzp/n

=

−1∑
−∞

ĉpzp/n; ĉ−1 = 0.

Similar calculations hold for α = m/n (there are numer-
ous typos and errors in indexing in [21] which we don’t men-
tion further). The crucial property however is the Leibnitz
rule

dα
dz

( fg) = g
dα
dz

f + f
dα
dz
g; (dα ∼

dα
dz

) (1.15)

which is proved via arguments with Puiseux functions. This
leads to the important chain rule

dα
dz

F(gi(z)) =
∑ ∂F

∂gk

dα
dz
gk(z). (1.16)

Further calculation yields (again via use of Puiseux func-
tions)

dm
α

dzm

[
dℓα
dzℓ

f
]
=

dℓα
dzℓ

[
dm
α

dzm f
]
, (1.17)

∫
f (z)dαz =

∞∑
0

∫
zβdαz;

∫
zβdαz =

zβ+α

β + α
, (1.18)

dα
dz

∫
f (z)dαz = f (z) =

∫
dα
dz

dαz, (1.19)

where dαz here is an integration symbol here).
The α-exponent is defined as

Eα(z) =
∞∑
0

(zα/α)k

Γ(α + 1)
= exp

(
zα

α

)
;

E1(z) = ez; Eα(0) = 1 (0 < α, 1).

(1.20)

The definition is motivated by the fact that Eα(z) satisfies
the α-differential equation (1J) (dα/dz)Eα(z) = Eα(z) with
Eα(0) = 1. This is proved by term to term differentiation of
(1.20). It is worth mentioning that Eα(z) does not possess the
semigroup property (1K) Eα(z1 + z2) , Eα(z1)Eα(z2).

2 Fractals and fractional calculus

For relations between fractals and fractional calculus we re-
fer to [16, 18, 19, 24, 25, 27, 28]. In [16] for example one as-
sumes time and space scale isotropically and writes [xµ] = −1
for µ = 0, 1, · · · ,D − 1 and the standard measure is replaced
by (2A) dDx → dρ(x) with [ρ] = −Dα , −D (note [ ] de-
notes the engineering dimension in momentum units). Here
0 < α < 1 is a parameter related to the operational defi-
nition of Hausdorff dimension which determines the scaling
of a Euclidean volume (or mass distribution) of characteris-
tic size R (i.e. V(R) ∝ RdH ). Taking ρ ∝ d(rDα) one has
(2B) V(R) ∝

∫
dρEuclid(r) =∝

∫ R
0 drrDα−1 ∝ RDα, showing

that α = dH/D. In general as cited in [16] the Hausdorff di-
mension of a random process (Brownian motin) described by
a fractional differintegral is proportional to the order α of the
differintegral. The same relation holds for deterministic frac-
tals and in general the fractional differintegration of a curve
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changes its Hausdorff dimension as dH → dH + α. More-
over integrals on “net fractals” can be approximated by the
left sided RL fractional of a function L(t) via∫ t̄

0
dρ(t)L(t) ∝ 0Iαt̄ L(t) =

1
Γ(t)

∫ t̄

0
dt(t̄ − t)α−1L(t);

ρ(t) =
t̄α − (t̄ − t)α

Γ(α + 1)
,

(2.1)

where α is related to the Hausdorff dimension of the set (cf.
[24]). Note that a change of variables t → t̄ − t transforms
(2.1) to

1
Γ(α)

∫ t

0
dttα−1L(t̄ − t). (2.2)

The RL integral above can be mapped into a Weyl inte-
gral for t̄ → ∞. Assuming limt̄→∞ the limit is formal if the
Lagrangian L is not autonomous and one assumes therefore
that limt̄→∞L(t̄ − t) = L[q(t), q̇(t)] (leading to a Stieltjes field
theory action). After constructing a “fractional phase space”
this analogy confirms the interpretation of the order of the
fractional integral as the Hausdorff dimension of the underly-
ing fractal (cf. [18]).

Now for the SE we go to [4, 6, 18, 19]. Thus from [4]
(1009.5533) one looks at a Hamiltonian operator

Hα(p, r) = Dα|p|α + V(r) (1 < α ≤ 2). (2.3)

When α = 2 one has D2 = 1/2m which gives the stan-
dard Hamiltonian operator (2C) Ĥ( p̂, r̂) = (1/2m)p̂2 + V̂(r̂).
Thus the fractional QM (FQM) based on the Levy path inte-
gral generalizes the standard QM based on the Feynman in-
tegral for example. This means that the path integral based
on Levy trajectories leads to the fractional SE. For Levy in-
dex α = 2 the Levy motion becomes Brownian motion so that
FQM is well founded. Then via (2.2) one obtains a fractional
SE (GSE) in the form

iℏ∂tψ = Dα(−ℏ2∆)α/2ψ + V(r)ψ (1 < α ≤ 2) (2.4)

with 3D generalization of the fractional quantum Riesz
derivative (−ℏ2∆)α/2 introduced via

(−ℏ2∆)α/2ψ(r, t) =
1

(2πℏ)3

∫
d3 pe

ipr
ℏ |p|αϕ(p, t) (2.5)

where ϕ and ψ are Fourier transforms. The 1D FSE has the
form

iℏ∂tψ(x, t) = −Dα(ℏ∇)αψ + Vψ (1 < α ≤ 2). (2.6)

The quantum Riesz fractional derivative is defined via

(ℏ∇)αψ(x, t) = − 1
2piℏ

∫ ∞

−∞
dp e

ipx
ℏ |p|αϕ(p, t) (2.7)

where

ϕ(p, t) =
∫ ∞

−∞
dx e

−ixt
ℏ ψ(x, t) (2.8)

with the standard inverse. Evidently (2.6) can be written in
operator form as (2D) iℏ∂tψ = Hαψ; Hα = −Dα(ℏ∇)α +V(x)

In [6] (0510099) a different approach is used involving
the Caputo derivatives (where +c D(x)k = 0 for k = constant.
Here for (2E) f (kx) =

∑∞
0 an(kx)nα one writes (D→ D̄)

+
c f (kx) = kα

∞∑
0

an+1
Γ(1 + (n + 1)α)
Γ(1 + nα)

(kx)nα. (2.9)

Next to extend the definition to negative reals one writes

x→ χ̄(x) = sgn(x)|x|α; D̄(x) = sgn(x)+c D(|x|). (2.10)

There is a parity transformation Π satisfying (2F) Πχ̄(x)
= −χ̄(x) and ΠD̄(x) = −D̄(x). Then one defines (2G)
f (χ̄(kx)) =

∑∞
0 anχ̄

n(kx) with a well defined derivative

D̄ f (χ̄(kx))=sgn(k)|k|α
∞∑
0

an+1
Γ(1+(n+1)α)
Γ(1+nα)

χ̄n(kx). (2.11)

This leads to a Hamiltonian Hα with

Hα = −1
2

mc2
(
ℏ

mc

)2α

D̄iD̄i + V(X̂1, . . . , X̂i, . . . , X̂3N) (2.12)

with a time dependent SE

HαΨ =−1
2

mc2
(
ℏ

mc

)2α

D̄iD̄i + V(X̂1, . . . , X̂i, . . . X̂3N)

Ψ
= iℏ∂tΨ.

(2.13)

3 The SE with α-derivative

Now we look at a 1-D SE with α-derivatives dα ∼ dα/dx
(without motivational physics). We write dαxβ = βxβ−α as in
(1.9) and posit a candidate SE in the form

iℏ∂tψ = Dαℏ
2d2

αψ + V(x)ψ. (3.1)

In [11, 12] for example (cf. also [29]) one deals with a
Schrödinger type equation

D2∆ψ + iD∂tψ −
W
2m

ψ = 0 (3.2)

where D ∼ (ℏ/2m) in the quantum situation. Further D is
allowed to have macro values with possible application in bi-
ology and cosmology (see Remark 3.1 below).

Consider a possible solution corresponding to ψ =

R exp(iS/ℏ) in the form (3A) ψ = REα (iS/ℏ) with Eα as in
(1.20). Then one has for S = S (x, t) (3B) ψt = RtEα + R∂tEα

and via (1.15)-(1.16)

dα
[
REα

( iS
ℏ

)]
= (dαR)Eα + REα

i
ℏ

(dαS ); (3.3)

84 Robert Carroll. On a Fractional Quantum Potential



April, 2012 PROGRESS IN PHYSICS Volume 2

d2
α

[
REα

( iS
ℏ

)]
= (d2

αR)Eα + 2(dαR)Eα
i
ℏ

dαS+

+REα

( i
ℏ

dαS
)2

+ REα
i
ℏ

d2
αS ;

(3.4)

∂tEα(z) = ∂t

∞∑
0

(zα/α))k

Γ(k + 1
=

zt

α

∞∑
1

(zα/α)
Γ(k)

=

=
zt

α

∞∑
0

(zα/α)m

Γ(m + 1)
=

zt

α
Eα.

(3.5)

Then from (3B), (3.4), (3.3), and (3.5) we combine real
and imaginary parts in

iℏ
[
RtEα +

iS t

αℏ
REα

]
= VREα + Dαℏ

2
[
(d2
αR)Eα+

2(dαR)Eα
i
ℏ

dαS − RS Eα

ℏ2 (dαS )2 +
iREα

ℏ
d2
αS

] (3.6)

leading to

RtEα = −2DαdαREα(dαS ) − DαREαd2
αS ; (3.7)

− 1
α

S tREα = VREα + Dαℏ
2d2

αREα − REα(dαS )2.

Thus Eα cancels and we have

Rt = −2Dα(dαR)(dαS ) − DαRd2
αS ; (3.8)

− 1
α

S tR = VR + Dαℏ
2d2

αR − R(dαS )2.

Now recall the classical situation here as (cf. [30, 31])

S t +
S 2

x

2m
+ V − ℏ

2R′′

2mR
= 0; ∂t(R2) +

1
m

(R2S ′)′ = 0. (3.9)

This gives an obvious comparison:

1. Compare 2RRt + (1/m)(2RR′S ′ + R2S ′′) = 0 ∼ 2Rt +

(1/m)(2R′S ′ + RS ′′) = 0 with Rt = −2Dα(dαR)(dαS ) −
DαRd2

αS

2. Compare S t + (S 2
x/2m) + V − ℏ2R′′

2mR = 0 with − 1
α

S t =

V − Dαℏ
2d2

αR
R + (dαS )2

which leads to
THEOREM 3.1

The assumption (3.1) for a 1-D α-derivative Schrödinger type
equation leads to a fractional quantum potential

Qα = −
Dαℏ

2d2
αR

R
(3.10)

For the classical case with dαR ∼ R′ (i.e. α = 1) one has
Dα = 1/2m and one imagines more generally that Dαℏ

2 may
have macro values. ■

REMARK 3.1
We note that the techniques of scale relativity (cf. [11, 12])
lead to quantum mechanics (QM). In the non-relativistic case

the fractal Hausdorff dimension dH = 2 arises and one can
generate the standard quantum potential (QP) directly (cf.
also [29]). The QP turns out to be a critical factor in under-
standing QM (cf. [30–32, 35–37]) while various macro ver-
sions of QM have been suggested in biology, cosmology, etc.
(cf. [8, 11, 12, 38, 39]). The sign of the QP serves to distin-
guish diffusion from an equation with a structure forming en-
ergy term (namely QM for Dα = 1/2m and fractal paths of
Hausdorff dimension 2). The multi-fractal universe of [16,23]
can involve fractional calculus with various degrees α (i.e.
fractals of differing Hausdorff dimension). We have shown
that, given a physical input for (3.1) with the α-derivative of
Kobelev ( [21]), the accompanying α-QP could be related to
structure formation in the related theory. ■
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