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Fractional quantum potential is considered in connection to the fractal calculus and

the scale relativity.

1 Introduction

For fractals we refer to [1, 2] and for differential equations
cf. also [3—7]. The theme of scale relativity as in [8—15]
provides a profound development of differential calculus in-
volving fractals (cf. also the work of Agop et al in the journal
Chaos, Solitons, and Fractals) and for interaction with frac-
tional calculus we mention [6,16-19]. There are also connec-
tions with the Riemann zeta function which we do not discuss
here (see e.g. [20]). Now the recent paper [21] of Kobelev de-
scribes a Leibnitz type fractional derivative and one can relate
fractional calculus with fractal structures as in [16, 18,19,25]
for example. On the other hand scale relativity with Haus-
dorff dimension 2 is intimately related to the Schrodinger
equation (SE) and quantum mechanics (QM) (cf. [12]). We
show now that if one can write a meaningful Schrodinger
equation with Kobelev derivatives (a-derivatives) then there
will be a corresponding fractional quantum potential (QP)
(see e.g. [4, 6, 18, 19] for a related fractional equation and
recall that the classical wave function for the SE has the form
¥ = Rexp(iS /h)).

Going now to [21] we recall the Riemann-Liouville (RL)
type fractional operator (assumed to exist here)

f (= O fQ)de

I'(—a)
cD(;[f(Z)]: ceR Re(a) <0 (1.1)
= DO f(2)]
-1 <Ra<m
(the latter for m € N = {1,2,3,...}). For ¢ = 0 one writes

(1A) oD?[f(2)] = D{[f(2)] as in the classical RL operator
of order @ (or —@). Moreover when ¢ — oo (1.1) may be
identified with the familiar Weyl fractional derivative (or inte-
gral) of order a (or —@). An ordinary derivative corresponds
to a = 1 with (1B) (d/dz)[f(z)] = D{[f(z)]. The binomial
Leibnitz rule for derivatives is

D![f(2)9(2)] = g@)DLf ()] + f(2)DLg(2)] (1.2)

whose extension in terms of RL operators DY has the form

[e]

DI f(@)g(2)] = Z( ’ )D‘Z‘"[f(z)]DZ [9()];

()

(1.3)

Fa+1)
Ta—k+Drar D @ keC
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The infinite sum in (1.3) complicates things and the bi-
nomial Leibnitz rule of [21] will simplify things enormously.
Thus consider first a momomial z# so that

Mzﬁ R(a) <0; R(PB)>—-1. (1.4)

D] = TG—arD

Thus the RL derivative of z# is the product

F(B+ 1)
T3 —a+)

Now one considers a new definition of a fractional deriva-
tive referred to as an « derivative in the form

D1 =C'B. )P C*(B,ga) = (1.5)

Z—‘;[zﬁ] =d,[] = CB, ). (1.6)

This is required to satisfy the Leibnitz rule (1.2) by def-
inition, given suitable conditions on C(B, @). Thus first (1C)

P = f(2)g9(z) with f(z) = 2#¢ and g(z) = z¢ for arbitrary € the
application of (1.3) implies that

dy _ de g, —edo .
d—z[zﬁ] —zdzzﬁ +7 &

=z7°C(B — ¢, P+ PEC (e, ) (1.7)

=[CB-¢€,a)+ C(e, )],
Comparison of (1.6) and (1.7) yields (ID) C(8 — €, ) +
C(e, @) = C(B, @). To guarantee (1.2) this must be satisfied for

any 3, €, a. Thus (1D) is the basic functional equation and its

solution is (1E) C(8, @) = A(@)B. Thus for the validity of the
Leibnitz rule the a-derivative must be of the form

dy o

dol?') = 1] = AP (1.8)

One notes that C*(B, @) in (1.5) is not of the form (1E)

and the RL operator D does not in general possess a Leibnitz

rule. One can assume now that A(a) is arbitrary and A(@) = 1

is chosen. Consequently for any 8

oz — a (y da
zﬁ B =a; =2 =0.

e (1.9)

Now let K denote an algebraically closed field of char-
acteristic 0 with K[x] the corresponding polynomial ring and

Robert Carroll. On a Fractional Quantum Potential



April, 2012

PROGRESS IN PHYSICS

Volume 2

K(x) the field of rational functions. Let F(z) have a Laurent
series expansion about 0 of the form

o

F(z) = Z adks

—00
00

Fi@) =) ads (1.10)
4
F_(z) = chzk; c €K
and generally there is a ko such that ¢, = 0 for k£ < k.

The standard ideas of differentiation hold for F(z) and for-
mal power series form a ring K[[x]] with quotient field K((x))
(formal Laurent series). One considers now the union (1F)
K < x>= UPK((x'/%)). This becomes a field if we set
K= X, nin — (xl/n)m. (1.11)
Then K <« x > is called the field of fractional power
series or the field of Puiseux series. If f € K <« x > has
the form (1G) f = Y cex™/™ where ¢; # 0 and my, ny €
N={1,2,3,...}, (mi/n;) < (mj/n;) fori < jthen the order is
(1H) O(f) = m/n where m = my, n = n; and f(x) = F(x'/").
Now given n and z complex we look at functions

00

f@) =) ez=20)" = fu@) + f-(;

—00
00

fi@) = Z cx(z = 200",

0
-1

@ =) alz=20)"" o

—00

(1.12)

=0 (k < ko)

(cf. [21] for more algebraic information - there are some mis-
prints).

One considers next the a-derivative for a basis (1I) a =
m/n; 0 <m<n; mneN=1{1,2,3,---}. The a-derivative
of a Puiseux function of order O(f) = 1/n is again a Puiseux
function of order (1 — m)/n. For @ = 1/n we have

(e

fo= > ad chzﬁ B =Bk =~ (1.13)
0 0
leading to
d(Y N -1)/n _ N m.
d—zf+(z)=zl:a,8ckz(k Din — ZO:CP+1aﬁz”/ D (L14)
-1 -2

1B

d, o
LI = Y=Y e,

—00

-1
= > e ey =0
—00
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Similar calculations hold for &« = m/n (there are numer-
ous typos and errors in indexing in [21] which we don’t men-
tion further). The crucial property however is the Leibnitz
rule

dy dq dy dy

— =g—f+f=-9; (dy ~— 1.15

p bt i o (1.15)
which is proved via arguments with Puiseux functions. This
leads to the important chain rule

F(g,(z)) = Z ——gk<z> (1.16)

Further calculation yields (again via use of Puiseux func-

tions)
dm df f df dm f (1 17)
dZ dZ dzm ’ :
=S [ 24 Bye = 2 1.18
ff(z) az—z():f 0% f e’ (1.18)
d
f @iz = @ = [ Sdiz (119
where d,z here is an integration symbol here).
The a-exponent is defined as
(Za/a,)k (Z(l)
Eq(2) = =exp|—|;
Ta+ D) T\a (1.20)
Ei(z) =€ Ey(0)=1(0<a,l).

The definition is motivated by the fact that E,(z) satisfies
the a-differential equation (1J) (d,/d2)E,(z) = E,(z) with
E,(0) = 1. This is proved by term to term differentiation of
(1.20). It is worth mentioning that E,(z) does not possess the
semigroup property (1K) E,(z1 + 22) # Eo(21)Eo(22)-

2 Fractals and fractional calculus

For relations between fractals and fractional calculus we re-
fer to [16, 18, 19,24,25,27,28]. In [16] for example one as-
sumes time and space scale isotropically and writes [x*] = —

foru =0,1,---,D — 1 and the standard measure is replaced
by (2A) d°x — dp(x) with [p] = —Da # —D (note [ ] de-
notes the engineering dimension in momentum units). Here
0 < a < 1 is a parameter related to the operational defi-
nition of Hausdorff dimension which determines the scaling
of a Euclidean volume (or mass distribution) of characteris-
tic size R (i.e. V(R) « R%). Taking p o« d(r°®) one has
(2B) VR) « [dppuia(r) =e [} drr®® o RP?, showing
that @ = dy/D. In general as cited in [16] the Hausdorff di-
mension of a random process (Brownian motin) described by
a fractional differintegral is proportional to the order « of the
differintegral. The same relation holds for deterministic frac-
tals and in general the fractional differintegration of a curve
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changes its Hausdorff dimension as dy — dy + a. More-
over integrals on “net fractals” can be approximated by the
left sided RL fractional of a function L(¢) via

f dp(t)L(1) o oI L(t) = FL f di(@ — N L(1);
0 ® Jo @0
P (-1 '

PO = T+

where « is related to the Hausdorff dimension of the set (cf.
[24]). Note that a change of variables t — 7 — ¢ transforms

(2.1) to
O
mjo\ drt® L(t - 1).

The RL integral above can be mapped into a Weyl inte-
gral for f — oco. Assuming lim;_,. the limit is formal if the
Lagrangian L is not autonomous and one assumes therefore
that lim;_,oL(f — t) = L[q(t), ¢(t)] (leading to a Stieltjes field
theory action). After constructing a “fractional phase space”
this analogy confirms the interpretation of the order of the
fractional integral as the Hausdorff dimension of the underly-
ing fractal (cf. [18]).

Now for the SE we go to [4, 6, 18, 19]. Thus from [4]
(1009.5533) one looks at a Hamiltonian operator

2.2)

Ho(p, 1) = Dolpl® + V(r) (1 <a £2). (2.3)

When @ = 2 one has D, = 1/2m which gives the stan-
dard Hamiltonian operator (2C) H(p,?) = (1/2m)p* + V(7).
Thus the fractional QM (FQM) based on the Levy path inte-
gral generalizes the standard QM based on the Feynman in-
tegral for example. This means that the path integral based
on Levy trajectories leads to the fractional SE. For Levy in-
dex @ = 2 the Levy motion becomes Brownian motion so that
FQM is well founded. Then via (2.2) one obtains a fractional

SE (GSE) in the form
ihO = Do(~-T2A) 2y + V(g (1 <a <2) (24)

with 3D generalization of the fractional quantum Riesz
derivative (—#2A)*/? introduced via

(R APy, 1) = f Ppetiplop.n (25

1
(2nh)3
where ¢ and ¢ are Fourier transforms. The 1D FSE has the
form

iho(x, 1) = Do (V)Y + Vi (1 < a < 2). (2.6)

The quantum Riesz fractional derivative is defined via

1 « ipx
(V)" Y(x, 1) = —5— | dpeT |p["¢(p.1)

2.7
2pih J_o 2.7)

where

d(p, 1) = f dxe  y(x, 1) 2.8)

00
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with the standard inverse. Evidently (2.6) can be written in
operator form as (2D) ihdy = HyY; H, = —Do(AV)* + V(x)
In [6] (0510099) a different approach is used involving
the Caputo derivatives (where [ D(x)k = 0 for k = constant.
Here for 2E) f(kx) = 33’ a,(kx)" one writes (D — D)

o

L) =K Y

0

Tl + (n + Da)

T

(2.9)

Next to extend the definition to negative reals one writes

x = J(x) = sgn(0)lxl”; D(x) = sgn(x); D(x).  (2.10)

There is a parity transformation IT satisfying (2F) ILy(x)
= —j(x) and TID(x) = —D(x). Then one defines (2G)
fGe(kx)) = X5 an)"(kx) with a well defined derivative

00

Df Ge(kx)=sgn(Ol" )" ey

0

Irad+@+ha) _,

This leads to a Hamiltonian H® with

1 o\ . A
HY = ——mcz(—) DD;+v(X',... . X,....X*Y) 2.12)
2 mc

with a time dependent SE

X', XL XN Y (2.13)

3 The SE with a-derivative

Now we look at a 1-D SE with a-derivatives d, ~ d,/dx
(without motivational physics). We write d,2® = Bx*~® as in
(1.9) and posit a candidate SE in the form

iy = Doli*d>y + V(x). (3.1)
In [11, 12] for example (cf. also [29]) one deals with a
Schrodinger type equation

D>AY + iDApp — lvdx =0 (3.2)
2m

where D ~ (7/2m) in the quantum situation. Further D is

allowed to have macro values with possible application in bi-

ology and cosmology (see Remark 3.1 below).

Consider a possible solution corresponding to ¢ =
Rexp(iS /) in the form (3A) ¥ = RE, (iS/h) with E, as in
(1.20). Then one has for S = S(x,7) 3B) ¥, = R.E, + RO,E,
and via (1.15)-(1.16)

dq [RE(, (%)] = (d R)E, + REQ%(dQS); (3.3)
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& [RE( )] (BREq + 2AdoROE, 5duS +

l. y (3.4)
+RE, (ﬁdaS) + RE, hd“
v @) Lo @)
0Eo(2) = 0; Thrl ald Th -
3.5

(o]
_ /)" %

Tm+1) a

Then from (3B), (3.4), (3.3), and (3.5) we combine real
and imaginary parts in

in|rE, +5 hf REQ] = VRE, + Do?* [(@R)E,+
2AdoROEa+d.S - RSE L5+ ’Rf sz] oo
leading to
R.E, = —2DydoRE(d,S) — DoRE,d>S ; (3.7)
—éS,RE[, = VRE, + D #*d>RE, — RE(d,S)*.
Thus E, cancels and we have
R; = —2Dy(d,R)(d,S) — DoRd>S (3.8)

1
——S,R = VR + D,i*d>R — R(d,S )*.
a

Now recall the classical situation here as (cf. [30,31])

SZ hZR// 1
Si+ X 4V- =0; (R + —(R’S"Y =0. (3.9)
2m 2mR m

This gives an obvious comparison:

1. Compare 2RR, + (1/m)(2RR’S’ + R?S"”") = 0 ~ 2R, +
(1/m)QR’S” + RS”") = 0 with R, = —2D,(doR)(d,S ) —
DoRd*S

2. Compare S, + (S2/2m) + V — ER. —
V- 2RER L 4,2

which leads to
THEOREM 3.1

The assumption (3.1) for a 1-D a-derivative Schrodinger type
equation leads to a fractional quantum potential

0 with ——S, =

0. = D *d>R (3.10)
a — R .
For the classical case with d,R ~ R’ (i.e. @ = 1) one has

D, = 1/2m and one imagines more generally that D, %> may
have macro values. m

REMARK 3.1
We note that the techniques of scale relativity (cf. [11, 12])
lead to quantum mechanics (QM). In the non-relativistic case

Robert Carroll. On a Fractional Quantum Potential

the fractal Hausdorff dimension dy = 2 arises and one can
generate the standard quantum potential (QP) directly (cf.
also [29]). The QP turns out to be a critical factor in under-
standing QM (cf. [30-32,35-37]) while various macro ver-
sions of QM have been suggested in biology, cosmology, etc.
(cf. [8,11,12,38,39]). The sign of the QP serves to distin-
guish diffusion from an equation with a structure forming en-
ergy term (namely QM for D, = 1/2m and fractal paths of
Hausdorff dimension 2). The multi-fractal universe of [16,23]
can involve fractional calculus with various degrees « (i.e.
fractals of differing Hausdorff dimension). We have shown
that, given a physical input for (3.1) with the a-derivative of
Kobelev ( [21]), the accompanying a-QP could be related to
structure formation in the related theory. m
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