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LETTERS TO PROGRESS IN PHYSICS

On the Exact Solution Explaining the Accelerate Expanding Universe
According to General Relativity

Dmitri Rabounski

A new method of calculation is applied to the frequency of a photon according to the tra-
velled distance. It consists in solving the scalar geodesic equation (equation of energy)
of the photon, and manifests gravitation, non-holonomity, and deformation of space as
the intrinsic geometric factors affecting the photon’s frequency. The solution obtained
in the expanding space of Friedmann’s metric manifests the exponential cosmological
redshift: its magnitude increases, exponentially, with distance. This explains the acce-
lerate expansion of the Universe registered recently by the astronomers. According to
the obtained solution, the redshift reaches the ultimately high valuez= eπ − 1= 22.14 at
the event horizon.

During the last three years, commencing in 2009, I published
a series of research papers [1–5] wherein I went, step-by-
step, in depth of the cosmological redshift problem. I tar-
geted an explanation of the non-linearity of the cosmological
redshift law and, hence, the accelerate expansion of the Uni-
verse. I suggested that the explanation may be found due to
the space-time geometry, i.e. solely with the use of the geo-
metric methods of the General Theory of Relativity.

Naturally, this is the most promising way to proceed in
this problem. Consider the following: in 1927, Lemaı̂tre’s
theory [6] already predicted the linear reshift law in an expan-
ding space of Friedmann’s metric (a Friedmann universe). As
was then shown by Lemaı̂tre, this theoretical result matches
the linear redshift law registered in distant galaxies∗. The ano-
malously high redshift registered in very distant Ia-type su-
pernovae in the last decade [7–9] manifests the non-linearity
of the redshift law. It was then interpreted as the accelerate
expansion of our Universe. Thus, once the space-time ge-
ometry has already made Lemaı̂tre successful in explaining
the linear redshift, we should expect a success with the non-
linear redshift law when digging more in the theory.

Lemâıtre deduced the cosmological redshift on the basis
of Einstein’s field equation. The left-hand side of the equation
manifests the space curvature, while the right-hand side des-
cribes the substance filling the space. In an expanding space,
all objects scatter from each other with the velocity of the
space expansion. Lemaı̂tre considered the simplest case of
deforming spaces — the space of Friedmann’s metric. Such a
space is free of gravitational fields and rotation, but is curved
due to its deformation (expansion or compression). Solving
Einstein’s equation for Friedmann’s metric, Lemaı̂tre obtai-
ned the curvature radiusR of the space and the speed of its

∗According to the astronomical observations, spectral lines of distant
galaxies and quasars are redshifted as if these objects scatter with the radial
velocity u=H0 d, which increases 72 km/sec per each megaparsec of the
distanced to the object.H0= 72±8 km/sec×Mpc= (2.3±0.3)×10−18 sec−1 is
known as the Hubble constant. 1 parsec= 3.0857×1018 cm' 3.1×1018 cm.

changeṘ. Then he calculated the redshift, assuming that it is
a result of the Doppler effect on the scattering objects of the
expanding Friedmann universe.

Lemâıtre’s method of deduction would remain quite good,
except for three drawbacks, namely —

1) It works only in deforming spaces, i.e. under the as-
sumption that the cosmological redshift is a result of
the Doppler effect in an expanding space. In static
(non-deforming) spaces, this method does not work. In
other words, herein is not a way to calculate how the
frequency of a photon will change with the distance of
the photon’s travel in the space of a static cosmological
metric (which is known to be of many kinds);

2) In this old method, the Doppler effect does not follow
from the space (space-time) geometry but has the same
formula as that of classical physics. Only the speed of
change of the curvature radius with timeṘ (due to the
expansion of space) is used as the velocity of the light
source. In other words, the Doppler formula of clas-
sical physics is assumed to be the same in an expan-
ding Friedmann universe. This is a very serious sim-
plification, because it is obvious that the Doppler effect
should have a formula, which follows from the space
geometry (Friedmann’s metric in this case);

3) This method gives the linear redshift law — a straight
line z= Ṙ

c , which “digs” in the wall Ṙ= c. As a re-
sult, the predicted cosmological redshift is limited by
the numerical valuezmax= 1. However, we know do-
zens of much more redshifted galaxies and quasars. In
2011, the highest redshift registered by the astronomers
is z= 10.3 (the galaxy UDFj-39546284).

So, in his theory, Lemaı̂tre calculated the cosmological
redshift in a roundabout way: by substituting, into the Dop-
pler formula of classical physics, the speed of change of the
curvature radiuṡR he obtained his redshift law, i.e., by sol-
ving Einstein’s equation for Friedmann’s metric.
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In contrast to Lemâıtre, I suggested that the cosmologi-
cal redshift law can be deduced in a more direct and pro-
found way. It is as follows. The generally covariant geode-
sic equation — the four-dimensional equation of motion of a
particle — can be projected onto the time line and the three-
dimensional spatial section of an observer. As a result, we
obtain the scalar geodesic equation, which is the equation of
energy of the particle, and the vectorial geodesic equation (the
three-dimensional equation of motion). The in-depth mathe-
matical formalism of the said projection was introduced in
1944 by Zelmanov [10, 11], and is known as the theory of
chronometric invariants∗. Solving the scalar geodesic equa-
tion (equation of energy) of a photon, we shall obtain how
the photon’s energy and frequency change according to the
remoteness of the signal’s source to the observer. This is the
frequency shift law, particular forms of which we can deduce
by solving the scalar geodesic equation of a photon in the
space of any particular metric.

The same method of deduction may be applied to mass-
bearing particles. By solving the scalar geodesic equation for
a mass-bearing particle (“stone-like objects”), we shall obtain
that the relativistic mass of the object changes according to
the remoteness to the observer in the particular space.

First, following this new way of deduction, I showed that
the redshift, observed by the astronomers, should be present
in a space which rotates at the velocity of light [1, 2]. In this
case, the Hubble constant plays a rôle of the frequency of
the rotation. The redshift due to the space rotation should be
present even if the space is static (non-deforming).

The light-speed rotation is only attributed to the so-called
isotropic region of space (home of the trajectories of light).
This can be shown by “adapting” the space metric to the iso-
tropic space condition (equality of the metric to zero), which
makes a replacement among the componentsg00 andg0i of
the fundamental metric tensorgαβ. In Minkowski’s space,
this replacement means that the isotropic region has a non-
diagonal metric, whereg00= 0, g0i = 1, g11= g22= g33=−1.
Such isotropic metrics were studied in the 1950’s by Petrov:
see§25 and the others in hisEinstein Spaces[12]. More in-
sight into this subject is provided in my third paper on the
redshift problem [3].

On the other hand, a regular sublight-speed observer shall
observe all events according to the components of the funda-
mental metric tensorgαβ of his own (non-isotropic) space —
home of “solid objects”. Therefore, I then continued the rese-
arch study with the regular metrics, which are not “adapted”
to the isotropic space condition.

In two recent papers [4, 5], I solved the scalar geode-
sic equation for mass-bearing particles and massless particles
(photons), in the most studied particular spaces: in the space
of Schwarzschild’s mass-point metric, in the space of an elec-

∗The property of chronometric invariance means that the quantity is in-
variant along the three-dimensional spatial section of the observer.

trically charged mass-point (the Reissner-Nordström metric),
in the rotating space of G̈odel’s metric (a homogeneous dis-
tribution of ideal liquid and physical vacuum), in the space of
a sphere of incompressible liquid (Schwarzschild’s metric), in
the space of a sphere filled with physical vacuum (de Sitter’s
metric), and in the deforming space of Friedmann’s metric
(empty or filled with ideal liquid and physical vacuum).

Herein I shall go into the details of just one of the ob-
tained solutions — that in an expanding Friedmann universe,
— wherein I obtained the exponential cosmological redshift,
thus giving a theoretical explanation to the accelerate expan-
sion of the Universe registered recently by the astronomers.

The other obtained solutions shall be omitted from this
presentation. The readers who are curious about them are
directly referred to my two recent publications [4,5].

So, according to Zelmanov’s chronometrically invariant
formalism [10, 11], any four-dimensional (generally covari-
ant) quantity is presented with its observable projections onto
the line of time and the three-dimensional spatial section of
an observer. This is as well true about the generally covari-
ant geodesic equation. As Zelmanov obtained, the projected
(chronometrically invariant) geodesic equations of a mass-
bearing particle, whose relativistic mass ism, are

dm
dτ
−

m
c2

Fi v
i +

m
c2

Dik vivk = 0 , (1)

d(mvi)
dτ

−mFi + 2m
(
Di

k + A∙ik∙
)
vk + m4i

nkvnvk = 0 , (2)

while the projected geodesic equations of a massless particle-
photon, whose relativistic frequency isω, have the form

dω
dτ
−
ω

c2
Fi c

i +
ω

c2
Dik cick = 0 , (3)

d(ωci)
dτ

− ωFi + 2ω
(
Di

k + A∙ik∙
)
ck + ω4i

nkcnck = 0 . (4)

Heredτ=
√
g00 dt− 1

c2 vi dxi is the observable time, which
depends on the gravitational potential w= c2 (1−

√
g00 ) and

the linear velocityvi =−
cg0i√
g00

of the rotation of space. Four
factors affect the particles: the gravitational inertial forceFi ,
the angular velocityAik of the rotation of space, the deforma-
tion Dik of space, and the Christoffel symbolsΔi

jk (expressing
the space non-uniformity). According to the scalar geodesic
equation (equation of energy), two factors,Fi andDik, affect
the energy of the particle. They are determined [10,11] as

Fi =
1
√
g00

(
∂w
∂xi
−
∂vi
∂t

)

,
√
g00 = 1−

w
c2
, (5)

Dik =
1

2
√
g00

∂hik

∂t
, Dik =−

1
2
√
g00

∂hik

∂t
, D=

∂ ln
√

h
√
g00 ∂t

, (6)

whereD= hikDik, while hik is the chr.inv.-metric tensor

hik = −gik +
1
c2
vi vk , hik = −gik, hi

k = δ
i
k . (7)
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The geodesic equations of mass-bearing and massless
particles have the same form. Only the sublight velocity vi

and the relativistic massm are used for mass-bearing parti-
cles, instead of the observable velocity of lightci and the fre-
quencyω of the photon. Therefore, they can be solved in the
same way to yield similar solutions.

My suggestion is then self-obvious. By solving the scalar
geodesic equation of a mass-bearing particle in each of the
so-called cosmological metrics, we should obtain how the ob-
served (relativistic) mass of the particle changes according to
the distance from the observer in each of these universes. I
will further refer to it as thecosmological mass-defect. The
scalar geodesic equation of a photon should give the formula
of the frequency shift of the photon according to the travelled
distance (thecosmological frequency shift).

Consider the space of Friedmann’s metric

ds2 = c2dt2 − R2

[
dr2

1− κ r2
+ r2

(
dθ2 + sin2θ dϕ2

)]

, (8)

wherein Lemâtre [6] deduced the linear redshift law. Here
R=R(t) is the curvature radius of the space, whileκ= 0,±1
is the curvature factor. Ifκ=−1, the three-dimensional subs-
pace possesses hyperbolic (open) geometry. Ifκ= 0, its geo-
metry is flat. Ifκ=+1, it has elliptic (closed) geometry.

As is seen from the metric, such a space — a Friedmann
universe — is free of (g00= 1) and rotation (g0i = 0), but is
deforming, which reveals the functionsgik = gik (t). It may
expand, compress, or oscillate. Such a space can be empty, or
filled with a homogeneous and isotropic distribution of ideal
(non-viscous) liquid in common with physical vacuum (Λ-
field), or filled with one of the media.

Friedmann’s metric is expressed through a “homogene-
ous” radial coordinater. This is the regular radial coordinate
divided by the curvature radius, whose scales change accor-
ding to the deforming space. As a result, the homogeneous
radial coordinater does not change its scale with time.

The scalar geodesic equation for a photon travelling along
the radial direction in a Friedmann universe takes the form

dω
dτ

+
ω

c2
D11c1c1 = 0 , (9)

wherec1 [sec−1] is the solely nonzero component of the ob-
servable “homogeneous” velocity of the photon. The square
of the velocity ish11c1c1 = c2 [cm2/sec2]. We calculate the
components of the chr-inv.-metric tensorhik according to Fri-
edmann’s metric. After some algebra, we obtain

h11 =
R2

1− κ r2
, h22 = R2r2, h33 = R2r2 sin2θ , (10)

h = det‖hik‖ = h11h22h33 =
R6r4 sin2θ

1− κ r2
, (11)

h11 =
1− κ r2

R2
, h22 =

1
R2r2

, h33 =
1

R2r2 sin2θ
. (12)

With these formulae of the components ofhik, we obtain
the tensor of the space deformationDik in a Friedmann uni-
verse. According to the definition (6), we obtain

D =
3Ṙ
R
, D11 =

RṘ
1− κ r2

, D1
1 =

Ṙ
R
. (13)

The curvature radius as a function of time,R=R(t), can
be found by assuming a particular type of the space defor-
mation. The trace of the tensor of the space deformation,
D= hikDik, is by definition the speed of relative deformation
of the volume. A volume, which is deforming freely, expands
or compresses so that its volume undergoes equal relative
changes with time

D = const, (14)

which, in turn, is a world-constant of the space. This is the
primary type of space deformation: I suggest referring to it as
theconstant(homotachydioncotic) deformation∗.

Consider a constant-deformation (homotachydioncotic)
Friedmann universe. WithD= 3Ṙ

R according to Friedmann’s

metric, we haveṘ
R =A= const in this case. We thus arrive

at the equation1
R dR=Adt, which isd ln R=Adt. Assuming

the curvature radius at the moment of timet= t0 to bea0, we
obtain

R= a0eAt, Ṙ= a0 AeAt , (15)

and, therefore,

D = 3A , D11 =
a2

0 Ae2At

1− κ r2
, D1

1 = A . (16)

Return now to the scalar geodesic equation of a photon in
a Friedmann universe, which is formula (9). Becauseg00= 1
andg0i = 0 according to Friedmann’s metric, we havedτ= dt.
Therefore, becauseh11c1c1 = c2, the scalar geodesic
equation transforms intoh11

dω
dt +ωD11= 0. From here we ob-

tainh11
dω
ω
=−D11dt, and, finally, the equation

h11 d lnω = −D11dt . (17)

By substitutingh11 andD11, we obtain

d lnω = −A dt, (18)

whereA= Ṙ
R is a world-constant of the Friedmann space.

As is seen, this equation is independent of the curvature
factor κ. Therefore, its solution will be common for the hy-
perbolic (κ=−1), flat (κ= 0), and elliptic (κ=+1) geometry
of the Friedmann space.

This equation solves as lnω=−At+ ln B, where B is
an integration constant. So forth, we obtainω= B e−At. We
calculate the integration constantB from the conditionω=ω0

∗I refer to this kind of universe ashomotachydioncotic(in Greek —
oμoταχυδιoγκωτικó). This term originates fromhomotachydioncosis—
oμoταχυδιóγκωσης— volume expansion with a constant speed, fromóμo
which is the first part of́oμoιoς (omeos) — the same,ταχύτητα — speed,
διóγκωση — volume expansion, while compression can be considered as
negative expansion.
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at the initial moment of timet= t0 = 0. We haveB=ω0. Thus,
we obtain the final solutionω=ω0 e−At of the scalar geodesic
equation. Expanding the world-constantA= Ṙ

R and the dura-
tion of the photon’s travelt= d

c , we have

ω = ω0 e
− Ṙ

R
d
c , (19)

whered= ct [cm] is the distance to the source emitting the
photon. At small distances (and durations) of the photon’s
travel, the obtained solution takes the linearized form

ω ' ω0

(

1−
Ṙ
R

d
c

)

. (20)

The obtained solution manifests that photons travelling in
a constant-deformation (homotachydiastolic) Friedmann uni-
verse which expands (A> 0) should lose energy and frequen-
cy with each mile of the travelled distance. The energy and
frequency loss law is exponential (19) at large distances of
the photon’s travel, and is linear (20) at small distances.

Accordingly, the photon’s frequency should be redshifted.
The magnitude of the redshift increases with the travelled dis-
tance. This is acosmological redshift, in other words.

Let a photon have a wavelengthλ0 =
c
ω0

being emitted by
a distantly located source, while its frequency registered at
the arrival isλ= c

ω
. Then we obtain the magnitudez= λ−λ0

λ0
=

=
ω0−ω
ω

of the redshift in an expanding constant-deformation
(homotachydiastolic) Friedmann universe. It is

z= e
Ṙ
R

d
c − 1 , (21)

which is anexponential redshift law. At small distances of
the photon travel, it takes the linearized form

z'
Ṙ
R

d
c
. (22)

which manifests alinear redshift law.
If such a universe compresses (A< 0), this effect changes

its sign, thus becoming acosmological blueshift.
Our linearized redshift formula (22) is the same asz= Ṙ

R
d
c

obtained by Lemâıtre [6], the “father” of the theory of an
expanding universe. He followed, however, another way of
deduction which limited him only to the linear formula. He
therefore was confined to believing in the linear redshift law
alone.

The ultimately high redshiftzmax, which could be registe-
red in our Universe, is calculated by substituting the ultima-
tely large distance into the redshift law. If following Lemaı̂-
tre’s theory [6],zmax should follow from the linear redshift
law z= Ṙ

R
d
c =Ad

c . BecauseA= Ṙ
R is the world-constant of the

Friedmann space, the ultimately large curvature radiusRmax

is determined by the ultimately high velocity of the space
expansion which is the velocity of lighṫRmax= c. Hence,
Rmax=

c
A
. The ultimately large distancedmax (the event ho-

rizon) is regularly determined from the linear law for scat-
tering galaxies, which isu=H0d: the scattering velocityu

should reach the velocity of light (u= c) at the event horizon
(d= dmax).∗ The law u=H0d is known due to galaxies and
quasars whose scattering velocities are much lower than the
velocity of light. Despite this fact, the empirical linear law
u=H0d is regularly assumed to be valid upto the event hori-
zon. Thus, they obtaindmax=

c
H0

= (1.3±0.2)×1028 cm. Then
they assume the linear coefficient H0 of the empirical law of
the scattering galaxies to be the world-constantA= Ṙ

R, which
follows from the space geometry. As a result, they obtain
dmax=Rmax and zmax=H0

dmax

c = 1 due to the linear redshift
law. How then to explain the dozens of very distant galaxies
and quasars, whose redshift is much higher thanz= 1?

On the other hand, it is obvious that the ultimately high
redshift zmax, ensuing from the space (space-time) geome-
try, should be a result of the laws of relativistic physics. In
other words,z= zmax should follow from not a straight line
z= Ṙ

R
d
c =H0

d
c =

u
c , which digs in the vertical “wall”u= c, but

from a non-linear relativistic function.
In this case, the Hubble constantH0 remains a linear coef-

ficient only in the pseudo-linear beginning of the real redshift
law arc, wherein the velocities of scattering are small in com-
parison with the velocity of light. At velocities of scattering
close to the velocity of light (close to the event
horizon), the Hubble constantH0 loses the meaning of the
linear coefficient and the world-constantA due to the increa-
sing non-linearity of the real redshift law.

Such a non-linear formula has been found in the frame-
work of our theory alluded to here. This is the exponen-
tial redshift law (21), which then gives the Lemaı̂tre linear
redshift law (22) as an approximation at small distances.

We now use the exponential redshift law (21) to calculate
the ultimately high redshiftzmax, which could be conceivable
in an expanding Friedmann space of the constant-deformation
type. The event horizond= dmax is determined by the world-
constantA= Ṙ

R of the space. Thus, the ultimately large cur-
vature radius isRmax=

c
A, while the distance corresponding to

Rmax on the hypersurface isdmax= πRmax=
πc
A . Suppose now

that a photon has arrived from a source, which is located at
the event horizon. According to the exponential redshift law
(21), the photon’s redshift at the arrival should be

zmax = e
Ṙ
R

dmax
c − 1 = eπ − 1 = 22.14, (23)

which is the ultimately high redshift in such a universe.
The deduced exponential increase of the redshift implies

the accelerate expansion of space. This “key prediction” of
our theory was surely registered by the astronomers in the
last decade: the very distant Ia-type supernovae manifested
the increasing non-linearity of the redshift law and, hence,
the accelerate expansion of our Universe [7–9].

∗The law for scattering galaxies dictates that distant galaxies and quasars
scatter with the radial velocityu=H0d, increasing as 72 km/sec per each
megaparsec. The linear coefficient of the law,H0= 72±8 km/sec×Mpc=
= (2.3±0.3)×10−18 sec−1, is known as the Hubble constant.
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We therefore can conclude that the observed non-linear
redshift law and the accelerate expansion of space have been
explained in the constant-deformation (homotachydioncotic)
Friedmann universe.

The deduced exponential law points out the ultimately
high redshiftzmax= 22.14 for objects located at the event ho-
rizon. The highest redshifted objects, registered by the astro-
nomers, are now the galaxies UDFj-39546284 (z= 10.3) and
UDFy-38135539 (z= 8.55). According to our theory, they
are still distantly located from the “world end”. We therefore
shall expect, with years of further astronomical observation,
more “high redshifted surprises” which will approach the up-
per limit zmax= 22.14.

In analogy to massless particles-photons, we can consider
the scalar geodesic equation of a mass-bearing particle. In
a Friedmann universe this equation takes the form

dm
dτ

+
m
c2

D11v1v1 = 0 , (24)

which, alone, is non-solvable. This is because mass-bearing
particles can travel at any sub-light velocity, which is there-
fore an unknown variable of the equation.

This problem vanishes in a constant-deformation Fried-
mann universe, by the assumption according to which mas-
sive bodies travel not arbitrarily, but are only being carried
out with the expanding (or compressing) space. In this parti-
cular case, particles travel with the velocity of space deforma-
tion, v= Ṙ. Because v2= hikvivk, we havehikvivk= Ṙ2. Thus,
and withdτ= dt according to Friedmann’s metric, the scalar
geodesic equation of mass-bearing particles transforms into
h11

dm
dt +

m
c2 D11Ṙ2= 0, i.e.h11

dm
m =− Ṙ2

c2 D11dt. We obtain

h11 d ln m= −
Ṙ2

c2
D11dt . (25)

Then, expandingR, Ṙ (15), andD11 (16) according to
a constant-deformation space, we obtain the scalar geodesic
equation in the form

d ln m= −
a2

0 A3e2At

c2
dt , (26)

where A= Ṙ
R = const. It solves as lnm=−

a2
0 A2

2c2 e2At+ ln B,
where the integration constantB can be found from the con-
dition m=m0 at the initial moment of timet= t0 = 0. After
some algebra, we obtain the final solution of the scalar geo-
desic equation. It is the double-exponential function

m= m0 e
−

a2
0 A2

2c2
(e2At−1)

, (27)

which, at a small distance to the object, takes the linearized
form

m' m0


1−

a2
0 A3 t

c2


 . (28)

The obtained solution manifests thecosmological mass-
defectin a constant-deformation (homotachydiastolic) Fried-
mann universe: the more distant an object we observe in an
expanding universe is, the less should be its observed massm
to its real massm0. Contrarily, the more distant an object we
observe in a compressing universe, the heavier should be this
object according to observation.

Our Universe seems to be expanding. This is due to the
cosmological redshift registered in the distant galaxies and
quasars. Therefore, according to the cosmological mass-
defect deduced here, we should expect distantly located cos-
mic objects to be much heavier than we estimate on the basis
of astronomical observations. The magnitude of the expected
mass-defect should be, according to the obtained solution, in
the order of the redshift of the objects.

The cosmological mass-defect complies with the cosmo-
logical redshift. Both of these effects are deduced in the same
way, by solving the scalar geodesic equation for mass-bearing
and massless particles, respectively. One effect cannot be in
the absence of the other, because the geodesic equations have
the same form. This is a basis of the space (space-time) ge-
ometry, in other words. Therefore, once the astronomers re-
gister the linear redshift law and its non-linearity in very dis-
tant cosmic objects, they should also find the corresponding
cosmological mass-defect according to the solution presented
here. Once the cosmological mass-defect is discovered, we
will be able to say, surely, that our Universe is an expanding
Friedmann universe of the constant-deformation (homotachy-
diastolic) type.
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