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The radial electron distribution in the Hydrogen atom was analyzed for the ground state
and low-lying excited states by means of a fractal scaling model originally published
by Müller in this journal. It is shown that M̈uller’s standard model is not fully adequate
to fit these data and an additional phase shift must be introduced into its mathematical
apparatus. With this extension, the radial expectation values could be expressed on
the logarithmic number line by very short continued fractions where all numerators are
Euler’s number. Within the rounding accuracy, no numerical differences between the
expectation values (calculated from the wavefunctions)and the corresponding modeled
values exist, so the model matches these quantum mechanical data exactly. Besides that,
Müller’s concept of proton resonance states can be transferred to electron resonances
and the radial expectation values can be interpreted as both, proton resonance lengths
and electron resonance lengths. The analyzed data point to the fact that Müller’s model
of oscillations in a chain system is compatible with quantum mechanics.

1 Introduction

The radial electron probability density in the Hydrogen atom
was analyzed by a new fractal scaling model, originally pub-
lished by M̈uller [1–3] in this journal. This model is basing
on four principal facts:

1. The proton is interpreted as an oscillator.

2. Most matter in the universe is provided by protons,
therfore the proton isthe dominant oscillation statein
all the universe.

3. Space is not considered as completely empty, conse-
quently all proton oscillators are somehow coupled to
each other. A quite simple form to consider such a cou-
pling is the formation of a chain of proton harmonic
oscillators.

4. Provided that items 1–3 are correct, every process or
state in the universe which is abundantly realized or
allowed to exist over very long time scales, is conse-
quently coupled to the proton oscillations, and should
retain some properties that can be explained from the
mathematical structure of a chain of proton harmonic
oscillators.

Müller has shown that a chain of similar harmonic oscil-
lators generates a spectrum of eigenfrequencies, that can be
expressed by a continued fraction equation [2]

f = fp expS, (1)

where f is any natural oscillation frequency of the chain sys-
tem, fp the oscillation frequency of one proton andS the con-
tinued fraction corresponding tof . S was suggested to be in
the canonical form with all partial numerators equal 1 and the

partial denominators are positive or negative integer values:

S = n0 +
1

n1 +
1

n2 +
1

n3 + ...

. (2)

Besides the canonical form, M̈uller proposed fractions
with all numerators equal 2 and all denominators are divisible
by 3. Such fractions divide the logarithmic scale in allowed
values and empty gaps, i.e. ranges of numbers which cannot
be expressed with this type of continued fractions.

In three previous articles [4–6] it was shown that the
model works quite well when all the numerators were sub-
stituted by Euler’s number, so that

S = n0 +
e

n1 +
e

n2 +
e

n3 + ...

. (3)

In this work, the attention has been focused to the spatial
electron distribution in the Hydrogen atom, considering the
ground state (n= 1) and the first low-lying excited electronic
states (n= 2–6).

In the Hydrogen atom, the distance between the electron
and the proton is always very small and quantum mechanics
allows to calculate the exact spatial electron density distribu-
tion. If the proton is somehow oscillating and Müller’s model
applies, one can expect a characteristic signature in the set of
radial expectation values.

Actually these values compose an extremely interesting
data set to analyze, since the expectation values can be cal-
culated by quantum mechanics from exact analytical wave-
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functions and do not have any measurement error (errors in
physical constants such asa0 and~ can be neglected).

Therefore, it can be requested that Müller’s model must
reproduce these expectation valuesexactly, which is indeed
possible, but only when introducing a further modification to
the model.

2 Data sources and computational details

When considering polar coordinates, the solutions of the non-
relativistic Schr̈odinger equationĤΨ = EΨ for a spherical
potential can be written in the form

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ),

whereR(r) is the so-called radial part of the wavefunctionΨ,
and the functionsΘ(θ) andΦ(φ) are the angular parts.

For every orbital or wavefunction, the probability to find
the electron on a shell with inner radiusr and outer radius
r + dr is proportional tor2R2dr (note that the functions as
given in Table 1 are not normalized). Following the formal-
ism of quantum mechanics, the average or expectation value
〈r〉 was calculated by numerical integration

〈r〉 = N

∞∫

0

r3R2dr, (4)

where N is the normalization constant so that holds:

N

∞∫

0

r2R2dr = 1.

Table 1 displays the radial partR(Z, r) for the orbitals 1s
to 6h of hydrogen-like atoms together with the correspond-
ing radial expectation values (forZ = 1, wavefunctions taken
from reference [7]). The expectation values are given in Å
and were rounded to three significant digits after decimal
point.

In a second step, these numerical values were expressed
on the logarithmic number line by continued fractions. Nu-
merical values of continued fractions were always calculated
using the the Lenz algorithm as indicated in reference [8].

3 Results and discussion

3.1 The standard model is insufficient

In order to interpret the expectation values〈r〉 as proton res-
onance lengths, following strictly the formalism of previous
articles, it must be written:

ln
〈r〉
λC

= p+ S, (5)

whereS is the continued fraction as given in equation 3,λC =
h

2πmc is the reduced Compton wavelength of the proton with

the numerical value 2.103089086×10−16 m. In the following
tables,p+S is abbreviated as [p; n0 | n1,n2,n3, . . . ]. The free
link n0 and the partial denominatorsni are integers divisible
by 3. For convergence reason, one has to include|e+1| as
allowed partial denominator. This means the free linkn0 is
allowed to be 0,±3,±6,±9 . . . and all partial denominatorsni

can take the valuese+1,−e−1,±6,±9,±12. . . .
For consistency with previous publications, the follow-

ing conventions hold: a data point is considered as an out-
lier (i.e. does not fit into M̈uller’s model), when its continued
fraction representation produces a numerical error higher than
1%. The numerical error is always understood as the absolute
value of the difference between〈r〉 from quantum mechanics
(given in Table 1), and the value obtained from the evaluation
of the corresponding continued fraction.

It was found that the complete set of radial expectation
values can be interpreted as proton resonance lengths with-
out any outliers according to equation 5 (results not shown).
However, small numerical errors were still present. Having in
mind that this is a data set without measurement errors, this
result is not satisfying.

From the obvious fact that the wavefunction is an electron
property, it arouse the idea to interpret the data set as electron
resonance lengths. Then, a fully analogous equation can be
set up:

ln
〈r〉
λCelectron

= p+ S, (6)

whereλCelectron is the reduced Compton wavelength of the elec-
tron with the numerical value 3.861592680× 10−13 m.

Again the expectation values could be interpreted as elec-
tron resonance lengths according to equation 6 without the
presence of outliers, but some numerical errors remained (re-
sults not shown).

Since the aforementioned equations do not reproduce the
dataset exactly as proton or electron resonance lengths, pos-
sible changes of the numerator were investigated.

Müller had already proposed continued fractions with all
numerators equal 2 in one of his publications [9]. As a first
numerical trial, the number of outliers was determined when
modeling the data set with numerators from 2.0 to 3.0 (step-
size 0.05). Figure 1 displays the results for both, proton and
electron resonances. It turned out that number 2 must be ex-
cluded from the list of possible numerators, as outliers are
present. Moreover, the results suggest that the whole range
from 2.55 to 2.85 can be used as numerator in equations 5 and
6 without producing outliers, thus, another criterium must be
applied to determine the correct numerator.

Considering only the range of numerators which did not
produce outliers, the sum of squared residuals (or squared nu-
merical errors) was calculated. It strongly depends on the nu-
merator (see Figure 2). Again the results are not satisfying.
As can be seen, considering electron resonances, the “best
numerator” is 2.70, while for proton resonances it is 2.78, de-
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Table 1: Radial wavefunctionsR(Z, r) of different orbitals for hydrogen-like atoms together with the corresponding radial expectation values
according to equation 4 (Z= 1 assumed).ρ = 2Zr

na0
, n= main quantum number,a0 = Bohr radius,Z = atomic number.

Radial wavefunctionR(Z, r) 〈r〉 [Å]

R1s = (Z/a0)
3
2 2e−

ρ
2 0.794

R2s =
(Z/a0)

3
2

2
√

2
(2− ρ)e−

ρ
2 3.175

R2p =
(Z/a0)

3
2

2
√

6
ρe−

ρ
2 2.646

R3s =
(Z/a0)

3
2

9
√

3

(
6− 6ρ + ρ2

)
e−

ρ
2 7.144

R3p =
(Z/a0)

3
2

9
√

6
(4− ρ) ρe−

ρ
2 6.615

R3d =
(Z/a0)

3
2

9
√

30
ρ2e−

ρ
2 5.556

R4s =
(Z/a0)

3
2

96

(
24− 36ρ + 12ρ2 − ρ3

)
e−

ρ
2 12.700

R4p =
(Z/a0)

3
2

32
√

15

(
20− 10ρ + ρ2

)
ρe−

ρ
2 12.171

R4d =
(Z/a0)

3
2

96
√

5
(6− ρ) ρ2e−

ρ
2 11.113

R4 f =
(Z/a0)

3
2

96
√

35
ρ3e−

ρ
2 9.525

R5s =
(Z/a0)

3
2

300
√

5

(
120− 240ρ + 120ρ2 + 20ρ3 + ρ4

)
e−

ρ
2 19.844

R5p =
(Z/a0)

3
2

150
√

30

(
120− 90ρ + 18ρ2 − ρ3

)
ρe−

ρ
2 19.315

R5d =
(Z/a0)

3
2

150
√

70

(
42− 14ρ + ρ2

)
ρ2e−

ρ
2 18.257

R5 f =
(Z/a0)

3
2

300
√

70
(8− ρ) ρ3e−

ρ
2 16.669

R5g =
(Z/a0)

3
2

900
√

70
ρ4e−

ρ
2 14.552

R6s =
(Z/a0)

3
2

2160
√

6

(
720− 1800ρ + 1200ρ2 + 300ρ3 + 30ρ4 − ρ5

)
e−

ρ
2 28.576

R6p =
(Z/a0)

3
2

432
√

210

(
840− 840ρ + 252ρ2 − 28ρ3 + ρ4

)
ρe−

ρ
2 28.046

R6d =
(Z/a0)

3
2

864
√

105

(
336− 168ρ + 24ρ2 − ρ3

)
ρ2e−

ρ
2 26.988

R6 f =
(Z/a0)

3
2

2592
√

35

(
72− 18ρ + ρ2

)
ρ3e−

ρ
2 25.401

R6g =
(Z/a0)

3
2

12960
√

7
(10− ρ) ρ4e−

ρ
2 23.284

R6h =
(Z/a0)

3
2

12960
√

77
ρ5e−

ρ
2 20.638

spite presenting a local minimum at 2.70 too. However, nu-
merators different frome are inconsistent with previous pub-
lications. The fact that these “best numerators” are numeri-
cally very close to Euler’s number, suggests that the choice of
e as numerator is probably correct and something else in the
model must be changed for this particular dataset.

For any common experimental data set, the here found
numerical inconsistencies could be explained with measure-
ment errors. One could even think that Müller’s model is just
too simple to reproduce nature’s full reality; then the numeri-
cal deviations could also be explained by the insufficiency of
the model itself. Fortunately the high accuracy of the expec-
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Fig. 1: Determination of the correct numerator for the dataset of
expectation values (equations 5 and 6): the number of outliers as a
function of the tested numerator.

Fig. 2: Determination of the correct numerator for the dataset of
expectation values (equations 5 and 6): the sum of squared residuals
as a function of the tested numerator.

tation values creates the opportunity to test Müller’s model
very critically and to extend it.

3.2 Extending Müller’s model

It is now shown that the following extension provides a solu-
tion, so that (i) Euler’s number can be persist as numerator,
and (ii) the whole dataset can be expressed by short contin-
ued fractions without any numerical errors, which means, this
extended model reproduces the datasetexactly.

An additional phase shiftδ was introduced in equations 5
and 6. For proton resonances, it can then be written:

ln
〈r〉
λC

= δ + p+ S. (7)

And analogously for electron resonances:

ln
〈r〉
λCelectron

= δ + p+ S. (8)

As shown in previous articles, the phase shiftp varies
among the dataset, so that some data points takep= 0 and
othersp= 3/2. Contrary to this, the phase shiftδ must be
equal for all data points in the set. This means the fractal
spectrum of resonances is shifted on the logarithmic number
line and the principal nodes are not more at 0,±3,±6,±9 . . . ,
but now at 0+ δ,±3+ δ,±6+ δ,±9+ δ . . . .

The underlying physical idea is thatδ should be a small
positive or negative number, characterizing a small deviation
from Müller’s standard model. To guarantee that the model
does not become ambiguous, values of|δ| must always be
smaller than 3/2.

For the here considered data set, the phase shiftδ could
be determined as avery small number, with the consequence
that all numerical errors vanished (were smaller than 0.001
Å). The numerical values wereδ= 0.017640 when interpret-
ing the data as proton resonances andδ= 0.002212 in case of
electron resonances. Tables 2 and 3 show the continued frac-
tion representations when interpreting the expectation values
as proton and electron resonances, respectively.

3.3 Interpretation

As can be seen, when accepting asmallphase shiftδ, the ra-
dial expectation values can be perfectly interpreted as both,
proton and electron resonances. Besides that, the continued
fraction representations are equal for proton and electron res-
onances, only the free link and the phase shiftp differ. This is
unavoidable due to the fact that different reference Compton
wavelengths were used; so the logarithmic number line was
calibrated differently.

The free link and the phase shiftp are parameters which
basically position the data point on the logarithmic number
line, indicating the principal node. Then the first partial de-
nominator determines whether the data point is located before
or after this principal node. So the data point can be either in
a compression or expansion zone, thus, now a specific prop-
erty of its oscillation state is indicated. The equality of the set
of partial denominators in the continued fraction representa-
tions is a necessary requirement for interpreting the expec-
tation values as both, proton and electron resonances. Both
oscillators must transmit at least qualitatively the same “os-
cillation property information” to the wavefunction.

However, when accepting the phase shift idea, it is al-
ways mathematically possible to interpreteanyset of proton
resonances as a set of phase-shifted electron resonances. So
what are the physical arguments for associating the expecta-
tion values to both oscillators?

• In an atom, electrons and the nucleus share a very small
volume of space. The electron wavefunction is most
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Table 2: Continued fraction representation of the radial expectation
values of Hydrogen orbitals according to equation 7, considering
proton resonances (δ = 0.017640).

Orbital Continued fraction representation
of 〈r 〉

1s [0; 12 | e+1, -6, -6]
[1.5; 12| -e-1, -9]

2s [0; 15 | -e-1, 9, e+1]
[1.5; 12| e+1, 24, 6]

2p [0; 15 | -e-1, e+1, -e-1, 12, e+1]
[1.5; 12| 6, -e-1, 6, -e-1]

3s [0; 15 | 132, -e-1]

3p [0; 15 | -48, -6]

3d [0; 15 | -12, 12, e+1]

4s [0; 15 | e+1, e+1, -6, 6]
[1.5; 15| -e-1, e+1, 27, -e-1]

4p [1.5; 15| -e-1, e+1, -6, e+1, e+1, e+1]

4d [0; 15 | 6, -21, -e-1, e+1]

4f [0; 15 | 9, -15, 9]

5s [1.5; 15| -6, 45]

5p [1.5; 15| -6, 6, e+1, -e-1, 6]

5d [0; 15 | e+1, -e-1, e+1, 6, -e-1, -12]
[1.5; 15| -6, e+1, -e-1, e+1, -9]

5f [0; 15 | e+1, -e-1, -e-1, e+1, -33]
[1.5; 15| -e-1, -e-1, -e-1, e+1, -6]

5g [0; 15 | e+1, -471]
[1.5; 15| -e-1, 15, 9, e+1]

6s [1.5; 15| -30, e+1, -18]

6p [1.5; 15| -24, -9, e+1, -e-1]

6d [1.5; 15| -18, -27]

6f [1.5; 15| -12, -e-1, e+1, 12]

6g [1.5; 15| -9, -21]

6h [1.5; 15| -6, -6, 6, -e-1, 6]

basically an electron property, always existing in close
proximity to the nucleus (protons). From this it would
not be a surprise that both oscillators contribute to the
properties of the wavefunction. In general, one can now
speculate that particularly physical parameters related
to an atomic wavefunction are hot candidates to be in-
terpretable as electron resonances.

• The phase shift was not invented to justify electron res-
onances, it is also required for an exact reproduction of
the data set through proton resonances.

• When considering M̈uller’s standard model (equations
5 and 6), the sum of squared residuals is much lower
when interpreting the data as electron resonances. In
this case the “best numerator” is also closer to Euler’s

Table 3: Continued fraction representation of the radial expectation
values of Hydrogen orbitals according to equation 8, considering
electron resonances (δ = 0.002212).

Orbital Continued fraction representation
of 〈r 〉

1s [0; 6 | -e-1, -9]
[1.5; 3 | e+1, -6, -6]

2s [0; 6 | e+1, 24, 6]
[1.5; 6 | -e-1, 9, e+1]

2p [0; 6 | 6, -e-1, 6, -e-1]
[1.5; 6 | -e-1, e+1, -e-1, 12, e+1]

3s [1.5; 6 | 132, -e-1]

3p [1.5; 6 | -48, -6]

3d [1.5; 6 | -12, 12, e+1]

4s [0; 9 | -e-1, e+1, 27, -e-1]
[1.5; 6 | e+1, e+1, -6, 6]

4p [0; 9 | -e-1, e+1, -6, e+1, e+1, e+1]

4d [1.5; 6 | 6, -21, -e-1, e+1]

4f [1.5; 6 | 9, -15, 9]

5s [0; 9 | -6, 45]

5p [0; 9 | -6, 6, e+1, -e-1, 6]

5d [0; 9 | -6, e+1, -e-1, e+1, -9]
[1.5; 6 | e+1, -e-1, e+1, 6, -e-1, -12]

5f [0; 9 | -e-1, -e-1, -e-1, e+1, -6]
[1.5; 6 | e+1, -e-1, -e-1, e+1, -33]

5g [0; 9 | -e-1, 15, 9, e+1]
[1.5; 6 | e+1, -471]

6s [0; 9 | -30, e+1, -18]

6p [0; 9 | -24, -9, e+1, -e-1]

6d [0; 9 | -18, -27]

6f [0; 9 | -12, -e-1, e+1, 12]

6g [0; 9 | -9, -21]

6h [0; 9 | -6, -6, 6, -e-1, 6]

number (see Fig. 2). Therefore, the wavefunction is
principally governed by the electron oscillations. Cer-
tainly the proton oscillations influence the system too,
they can be interpreted as a perturbation. The system
tends to adjust to both oscillators and this seems to be
the cause of the observed phase shifts. Hopefully, sim-
ilar data will confirm this in near future.

4 Conclusions

Müller’s model must be extended in two ways. First, it must
be recognized that electron resonances exist in the universe as
proton resonances do, and the same mathematical formalism
for a chain of proton oscillators can be applied to a chain of
electron oscillators. Second, an additional phase shiftδ is
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proposed to provide a reasonable mathematical extension of
the model.

Of course, much more data must be analyzed and the fu-
ture will show if this extended model can stand and give use-
ful results when applying to other data sets. Particularly inter-
esting for analyses would be quite accurate data from quan-
tum mechanics.

Now one has to ask regarding previously published pa-
pers on this topic [4–6]: are there any results that must be re-
considered? The answer is definitively yes. In reference [4],
masses of elementary particles were analyzed and only for
86% of the particles a continued fraction expression could
be found. There is high probability that this exceptional high
number of outliers (14%, nowhere else found) can be reduced
considering a phase shiftδ; or different phase shiftsδ can put
the elementary particles into different groups. In another pa-
per [6], half-lifes of excited electronic states of atoms were
found to be proton resonance periods, however, a possible
interpretation as electron resonance periods has not been at-
tempted yet. Possibly a small phase shift could here also re-
duce the number of outliers. This everything is now subject
of future research.
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