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We propose a natural decomposition of the spacetime metric tensor of General Relativ-
ity into a background and a dynamical part based on an analysis from first principles
of the effect of a test mass on the background metric. We find that the presence of
mass results in strains in the spacetime continuum. Those strains correspond to the dy-
namical part of the spacetime metric tensor. We then apply the stress-strain relation of
Continuum Mechanics to the spacetime continuum to show that rest-mass energy den-
sity arises from the volume dilatation of the spacetime continuum. Finally we propose
a natural decomposition of tensor fields in strained spacetime, in terms of dilatations
and distortions. We show that dilatations correspond to rest-mass energy density, while
distortions correspond to massless shear transverse waves. We note that this decom-
position in a massive dilatation and a massless transverse wave distortion, where both
are present in spacetime continuum deformations, is somewhat reminiscent of wave-
particle duality. We note that these results are considered to be local effects in the
particular reference frame of the observer. In addition, the applicability of the proposed
metric to the Einstein field equations remains open.

1 Introduction

We first demonstrate from first principles that spacetime is
strained by the presence of mass. Strained spacetime has been
explored recently by Tartaglia et al. in the cosmological con-
text, as an extension of the spacetime Lagrangian to obtain a
generalized Einstein equation [1, 2]. Instead, in this analysis,
we consider strained spacetime within the framework of Con-
tinuum Mechanics and General Relativity. This allows for the
application of continuum mechanical results to the spacetime
continuum. In particular, this provides a natural decomposi-
tion of the spacetime metric tensor and of spacetime tensor
fields, both of which are still unresolved and are the subject
of continuing investigations (see for example [3–7]).

2 Decomposition of the Spacetime Metric Tensor

There is no straightforward definition of local energy density
of the gravitational field in General Relativity [8, see p. 84,
p. 286] [6, 9, 10]. This arises because the spacetime metric
tensor includes both the background spacetime metric and the
local dynamical effects of the gravitational field. No natu-
ral way of decomposing the spacetime metric tensor into its
background and dynamical parts is known.

In this section, we propose a natural decomposition of the
spacetime metric tensor into a background and a dynamical
part. This is derived from first principles by introducing a
test mass in the spacetime continuum described by the back-
ground metric, and calculating the effect of this test mass on
the metric.

Consider the diagram of Figure 1. Points A and B of the
spacetime continuum, with coordinates xµ and xµ + dxµ re-

spectively, are separated by the infinitesimal line element

ds2 = gµν dxµdxν (1)

where gµν is the metric tensor describing the background state
of the spacetime continuum.

We now introduce a test mass in the spacetime continuum.
This results in the displacement of point A to Ã, where the
displacement is written as uµ. Similarly, the displacement of
point B to B̃ is written as uµ + duµ. The infinitesimal line
element between points Ã and B̃ is given by d̃s

2
.

By reference to Figure 1, the infinitesimal line element
d̃s

2
can be expressed in terms of the background metric tensor

as
d̃s

2
= gµν(dxµ + duµ)(dxν + duν). (2)

Multiplying out the terms in parentheses, we get

d̃s
2
= gµν(dxµdxν + dxµduν + duµdxν + duµduν). (3)

Expressing the differentials du as a function of x, this equa-
tion becomes

d̃s
2
= gµν(dxµdxν + dxµ uν;α dxα + uµ;α dxαdxν+

+ uµ;α dxα uν;β dxβ)
(4)

where the semicolon (;) denotes covariant differentiation. Re-
arranging the dummy indices, this expression can be written
as

d̃s
2
= (gµν + gµα uα;ν + gαν uα;µ + gαβ uα;µuβ;ν) dxµdxν (5)

and lowering indices, the equation becomes

d̃s
2
= (gµν + uµ;ν + uν;µ + uα;µuα;ν) dxµdxν. (6)
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Fig. 1: Effect of a test mass on the background metric tensor
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The expression uµ;ν + uν;µ + uα;µuα;ν is equivalent to the
definition of the strain tensor εµν of Continuum Mechanics.
The strain εµν is expressed in terms of the displacements uµ

of a continuum through the kinematic relation [11, see p. 149]
[12, see pp. 23–28]:

εµν =
1
2

(uµ;ν + uν;µ + uα;µuα;ν). (7)

Substituting for εµν from Eq.(7) into Eq.(6), we get

d̃s
2
= (gµν + 2 εµν) dxµdxν. (8)

Setting [12, see p. 24]

g̃µν = gµν + 2 εµν (9)

then Eq.(8) becomes

d̃s
2
= g̃µν dxµdxν (10)

where g̃µν is the metric tensor describing the spacetime con-
tinuum with the test mass.

Given that gµν is the background metric tensor describing
the background state of the continuum, and g̃µν is the space-
time metric tensor describing the final state of the continuum
with the test mass, then 2 εµν must represent the dynamical
part of the spacetime metric tensor due to the test mass:

g
dyn
µν = 2 εµν. (11)

We are thus led to the conclusion that the presence of mass
results in strains in the spacetime continuum. Those strains
correspond to the dynamical part of the spacetime metric ten-
sor. Hence the applied stresses from mass (i.e. the energy-
momentum stress tensor) result in strains in the spacetime
continuum, that is strained spacetime.

3 Rest-Mass Energy Relation

The introduction of strains in the spacetime continuum as a
result of the energy-momentum stress tensor allows us to use
by analogy results from Continuum Mechanics, in particular
the stress-strain relation, to provide a better understanding of
strained spacetime.

The stress-strain relation for an isotropic and homoge-
neous spacetime continuum can be written as [12, see pp.
50–53]:

2µ0ε
µν + λ0g

µνε = T µν (12)

where T µν is the energy-momentum stress tensor, εµν is the
resulting strain tensor, and

ε = εαα (13)

is the trace of the strain tensor obtained by contraction. ε
is the volume dilatation defined as the change in volume per
original volume [11, see p. 149–152] and is an invariant of
the strain tensor. λ0 and µ0 are the Lamé elastic constants of
the spacetime continuum: µ0 is the shear modulus and λ0 is
expressed in terms of κ0, the bulk modulus:

λ0 = κ0 − µ0/2 (14)

in a four-dimensional continuum. The contraction of Eq.(12)
yields the relation

2(µ0 + 2λ0)ε = Tαα ≡ T. (15)

The time-time component T 00 of the energy-momentum
stress tensor represents the total energy density given by [13,
see pp. 37–41]

T 00(xk) =
∫

d3pEp f (xk,p) (16)

where Ep = (ρ2c4 + p2c2)1/2, ρ is the rest-mass energy den-
sity, c is the speed of light, p is the momentum 3-vector and
f (xk,p) is the distribution function representing the number
of particles in a small phase space volume d3xd3p. The space-
space components T i j of the energy-momentum stress tensor
represent the stresses within the medium given by

T i j(xk) = c2
∫

d3p
pi p j

Ep
f (xk,p). (17)

They are the components of the net force acting across a
unit area of a surface, across the xi planes in the case where
i = j.

In the simple case of a particle, they are given by [14, see
p. 117]

T ii = ρ vivi (18)

where vi are the spatial components of velocity. If the parti-
cles are subject to forces, these stresses must be included in
the energy-momentum stress tensor.
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Explicitly separating the time-time and the space-space
components, the trace of the energy-momentum stress tensor
is written as

Tαα = T 0
0 + T i

i. (19)

Substituting from Eq.(16) and Eq.(17), using the metric
ηµν of signature (+ - - -), we obtain:

Tαα(xk) =
∫

d3p
(
Ep −

p2c2

Ep

)
f (xk,p) (20)

which simplifies to

Tαα(xk) = ρ2c4
∫

d3p
f (xk,p)

Ep
. (21)

Using the relation [13, see p. 37]

1

Ehar(xk)
=

∫
d3p

f (xk,p)
Ep

(22)

in equation Eq.(21), we obtain the relation

Tαα(xk) =
ρ2c4

Ehar(xk)
(23)

where Ehar(xk) is the Lorentz invariant harmonic mean of the
energy of the particles at xk.

In the harmonic mean of the energy of the particles Ehar,
the momentum contribution p will tend to average out and be
dominated by the mass term ρc2, so that we can write

Ehar(xk) ≃ ρc2. (24)

Substituting for Ehar in Eq.(23), we obtain the relation

Tαα(xk) ≃ ρc2. (25)

The total rest-mass energy density of the system is obtained
by integrating over all space:

Tαα =
∫

d3x Tαα(xk). (26)

The expression for the trace derived from Eq.(19) depends
on the composition of the sources of the gravitational field.
Considering the energy-momentum stress tensor of the elec-
tromagnetic field, we can show that Tαα = 0 as expected for
massless photons, while

T 00 =
ϵ0
2

(
E2 + c2B2

)
is the total energy density, where ϵ0 is the electromagnetic
permittivity of free space, and E and B have their usual sig-
nificance.

Hence Tαα corresponds to the invariant rest-mass energy
density and we write

Tαα = T = ρc2 (27)

where ρ is the rest-mass energy density. Using Eq.(27) into
Eq.(15), the relation between the invariant volume dilatation
ε and the invariant rest-mass energy density becomes

2(µ0 + 2λ0)ε = ρc2 (28)

or, in terms of the bulk modulus κ0,

4κ0ε = ρc2. (29)

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum, and is a mea-
sure of the energy stored in the spacetime continuum as vol-
ume dilatation. κ0 represents the resistance of the spacetime
continuum to dilatation. The volume dilatation is an invariant,
as is the rest-mass energy density.

4 Decomposition of Tensor Fields in Strained Spacetime

As opposed to vector fields which can be decomposed into
longitudinal (irrotational) and transverse (solenoidal) compo-
nents using the Helmholtz representation theorem [11, see
pp. 260–261], the decomposition of spacetime tensor fields
can be done in many ways (see for example [3–5, 7]).

The application of Continuum Mechanics to a strained
spacetime continuum offers a natural decomposition of tensor
fields, in terms of dilatations and distortions [12, see pp. 58–
60]. A dilatation corresponds to a change of volume of the
spacetime continuum without a change of shape (as seen in
Section 3) while a distortion corresponds to a change of shape
of the spacetime continuum without a change in volume. Di-
latations correspond to longitudinal displacements and distor-
tions correspond to transverse displacements [11, see p. 260].

The strain tensor εµν can thus be decomposed into a strain
deviation tensor eµν (the distortion) and a scalar e (the dilata-
tion) according to [12, see pp. 58–60]:

εµν = eµν + egµν (30)

where
eµν = εµν − eδµν (31)

e =
1
4
εαα =

1
4
ε. (32)

Similarly, the energy-momentum stress tensor T µν is de-
composed into a stress deviation tensor tµν and a scalar t ac-
cording to

T µν = tµν + tgµν (33)

where similarly
tµν = T µν − tδµν (34)

t =
1
4

Tαα. (35)
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Using Eq.(30) to Eq.(35) into the strain-stress relation of
Eq.(12) and making use of Eq.(15) and Eq.(14), we obtain
separated dilatation and distortion relations respectively:

dilatation : t = 2(µ0 + 2λ0)e = 4κ0e = κ0ε

distortion : tµν = 2µ0eµν.
(36)

The distortion-dilatation decomposition is evident in the
dependence of the dilatation relation on the bulk modulus κ0
and of the distortion relation on the shear modulus µ0. As
shown in Section 3, the dilatation relation of Eq.(36) corre-
sponds to rest-mass energy, while the distortion relation is
traceless and thus massless, and corresponds to shear trans-
verse waves.

This decomposition in a massive dilatation and a massless
transverse wave distortion, where both are present in space-
time continuum deformations, is somewhat reminiscent of
wave-particle duality. This could explain why dilatation-mea-
suring apparatus measure the massive ’particle’ properties of
the deformation, while distortion-measuring apparatus mea-
sure the massless transverse ’wave’ properties of the defor-
mation.

5 Conclusion

In this paper, we have proposed a natural decomposition of
the spacetime metric tensor into a background and a dynami-
cal part based on an analysis from first principles, of the im-
pact of introducing a test mass in the spacetime continuum.
We have found that the presence of mass results in strains
in the spacetime continuum. Those strains correspond to the
dynamical part of the spacetime metric tensor.

We have applied the stress-strain relation of Continuum
Mechanics to the spacetime continuum to show that rest-mass
energy density arises from the volume dilatation of the space-
time continuum.

Finally we have proposed a natural decomposition of ten-
sor fields in strained spacetime, in terms of dilatations and
distortions. We have shown that dilatations correspond to
rest-mass energy density, while distortions correspond to ma-
ssless shear transverse waves. We have noted that this de-
composition in a dilatation with rest-mass energy density and
a massless transverse wave distortion, where both are simul-
taneously present in spacetime continuum deformations, is
somewhat reminiscent of wave-particle duality.

It should be noted that these results are considered to be
local effects in the particular reference frame of the observer.
In addition, the applicability of the proposed metric to the
Einstein field equations remains open.
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12. Flügge W. Tensor Analysis and Continuum Mechanics. Springer-
Verlag, New York, 1972.

13. Padmanabhan T. Gravitation, Foundations and Frontiers. Cambridge
University Press, Cambridge, 2010.

14. Eddington A.S. The Mathematical Theory of Relativity. Cambridge
University Press, Cambridge, 1957.

8 Pierre A. Millette. On the Decomposition of the Spacetime Metric Tensor and of Tensor Fields in Strained Spacetime


