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The crucial role of a Lorentz scalar Lagrangian density whose dimension is [L−4]
(~= c= 1) in a construction of a quantum theory is explained. It turns out that quan-
tum functions used in this kind of Lagrangian density have a definite dimension. It is
explained why quantum functions that have the dimension [L−1] cannot describe parti-
cles that carry electric charge. It is shown that the 4-current of a quantum particle should
satisfy further requirements. It follows that the pion and theW± must be composite par-
ticles. This outcome is inconsistent with the electroweak theory. It is also argued that
the 125GeV particle found recently by two LHC collaborations is not a Higgs boson
but att̄ meson.

1 Introduction

The fundamental role of mathematics in the structure of the-
oretical physics is regarded as an indisputable element of the
theory [1]. This principle is utilized here. The analysis relies
on special relativity and derives constraints on the structure
of equations of motion of quantum particles. The discussion
examines the dimensions of wave functions and explains why
spin-0 and spin-1 elementary quantum particles cannot carry
an electric charge. This conclusion is relevant to the validity
of the electroweak theory and to the meaning of recent results
concerning the existence of a particle having a mass of 125
GeV [2,3].

Units where~= c= 1 are used in this work. Hence, only
one dimension is required and it is the length, denoted by [L].
For example, mass, energy and momentum have the dimen-
sion [L−1], etc. Greek indices run from 0 to 3 and the diagonal
metric used isgµν = (1,−1,−1,−1). The symbol,µ denotes the
partial differentiation with respect toxµ and an upper dot de-
notes a differentiation with respect to time. The summation
convention is used for Greek indices.

The second section shows that quantum functions have a
definite dimension. This property is used in the third section
where it is proved that Klein-Gordon (KG) fields and those
of theW± particle have no self-consistent Hamiltonian. The
final section contains a discussion of the significance of the
results obtained in this work.

2 The dimensions of quantum fields

In this section some fundamental properties of quantum the-
ory are used for deriving the dimensions of quantum fields. A
massive quantum mechanical particle is described by a wave
functionψ(xµ). The phaseϕ(α) is an important factor ofψ(xµ)
because it determines the form of an interference pattern. For
the present discussion it is enough to demand that the phase
is an analytic function which can be expanded in a power se-
ries that contains more than one term. It means that in the

following expansion of the phase,

ϕ(α) =
∞∑
i=0

aiα
i , (1)

the inequalityai , 0 holds for two or more values of the
indexi.

The requirement stating that all terms of a physical ex-
pression must have the same dimension and the form of the
right hand side of (1) prove thatα must be dimensionless. By
the same token, in a relativistic quantum theory,α must also
be a Lorentz scalar. (The possibility of using a pseudoscalar
factor is not discussed here because this work aims to ex-
amine the parity conserving electromagnetic interactionsof a
quantum mechanical particle.) It is shown below how these
two requirements impose dramatic constraints on acceptable
quantum mechanical equations of motion of a charged parti-
cle.

Evidently, a pure number satisfies the two requirements.
However, a pure number is inadequate for our purpose, be-
cause the phase varies with the particle’s energy and momen-
tum. The standard method of constructing a quantum theory
is to use the Plank’s constant~ which has the dimension of
the action, and to define the phase as the action divided by
~. In the units used here,~=1 and the action is dimension-
less. Thus, a relativistic quantum theory satisfies the two re-
quirements presented above if it is derived from a Lagrangian
densityL that is a Lorentz scalar having the dimension [L−4].
Indeed, in this case, the action

S =
∫
Ld4xµ (2)

is a dimensionless Lorentz scalar. It is shown below how
the dimension [L−4] of L defines the dimension of quantum
fields.

Being aware of these requirements, let us find the dimen-
sion of the quantum functions used for a description of three
kinds of quantum particles. The Dirac Lagrangian density of
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a free spin-1/2 particle is [4, see p. 54]

L = ψ̄[γµi∂µ −m]ψ. (3)

Here the operator has the dimension [L−1] and the Dirac wave
functionψ has the dimension [L−3/2].

The Klein-Gordon Lagrangian density of a free spin-0
particle is [4, see p. 38]

L = φ∗,µφ,νgµν −m2φ∗φ. (4)

Here the operator has the dimension [L−2] and the KG wave
functionφ has the dimension [L−1].

The electrically charged spin-1W± particle is described
by a 4-vector functionWµ. Wµ and the electromagnetic
4-potentialAµ are linear combinations of related quantities
[5, see p. 518]. Evidently, they have the same dimension.
Hence, like the KG field, the dimension ofWµ is [L−1].

The dimension of each of these fields is used in the dis-
cussions presented in the rest of this work.

3 Consequences of the dimensions of quantum fields

Before analyzing the consequences of the dimension of quan-
tum fields and of the associated wave functions, it is required
to realize the Hamiltonian’s role in quantum theories. The
following lines explain why the Hamiltonian is an indispens-
able element of Relativistic Quantum Mechanics (RQM) and
of Quantum Field Theory (QFT). This status of the Hamilto-
nian is required for the analysis presented below.

The significance of hierarchical relationships that hold be-
tween physical theories is discussed in the literature [6, see
pp. 1-6] and [7, see pp. 85, 86]. The foundation of the argu-
ment can be described as follows. Physical theories take the
form of differential equations. These equations can be exam-
ined in appropriate limits. Now RQM is a limit of QFT. The
former holds for cases where the number of particles can be
regarded as a constant of the motion. Therefore, if examined
in this limit, QFT must agree with RQM. By the same token,
the classical limit of RQM must agree with classical physics.
This matter has been recognized by the founders of quantum
mechanics who have proven that the classical limit of quan-
tum mechanics agrees with classical physics. The following
example illustrates the importance of this issue. Let us exam-
ine an inelastic scattering event. The chronological orderof
this process is as follows:

a. First, two particles move in external electromagnetic
fields. Relativistic classical mechanics and classical
electrodynamics describe the motion.

b. The two particles are very close to each other. RQM
describes the process.

c. The two particles collide and interact. New particles
are created. The process is described by QFT.

d. Particle creation ends but particles are still very close
to one another. RQM describes the state.

e. Finally, the outgoing particles depart. Relativistic clas-
sical mechanics and classical electrodynamics describe
the motion.

Evidently, in this kind of experiment, energy and momen-
tum of the initial and the final states are well defined quan-
tities and their final state values abide by the law of energy-
momentum conservation. It means that the specific values of
the energy-momentum of the final state agree with the corre-
sponding quantities of the initial state. Now, the initial and the
final states are connected by processes that are described by
RQM and QFT. In particular, the process of new particle cre-
ation is described only by QFT. Hence, RQM and QFT must
“tell” the final state what are the precise initial values of the
energy-momentum. It follows that RQM as well as QFT must
use field functions that have a self-consistent Hamiltonian.

The HamiltonianH and the de Broglie relations between
a particle’s energy-momentum and its wave properties yield
the fundamental equation of quantum mechanics

i
∂ψ

∂t
= Hψ. (5)

The Hamiltonian densityH is derived from the Lagran-
gian density by the following well known Legendre transfor-
mation

H =
∑

i

ψ̇i
∂L
∂ψ̇ i

− L, (6)

where the indexi runs on all functions.
The standard form of representing the interaction of an

electric charge with external fields relies on the following
transformation [8, see p. 10]

−i
∂

∂xµ
→ −i

∂

∂xµ
− eAµ(xν). (7)

Now let us examine the electromagnetic interaction of the
three kinds of quantum mechanical particle described in the
previous section. This is done by adding an interaction term
Lint to the Lagrangian density. As explained above, this term
must be a Lorentz scalar whose dimension is [L−4]. The
required form of the electromagnetic interaction term rep-
resents the interaction of charged particles with electromag-
netic fieldsand the interaction of electromagnetic fields with
charged particles. This term is written as follows [9, see p.75]

Lint = − jµAµ. (8)

Here jµ is the 4-current of the quantum particle andAµ is the
electromagnetic 4-potential.

Charge conservation requires thatjµ satisfies the continu-
ity equation

jµ,µ = 0. (9)

The 0-component of the 4-vectorjµ represents density. It
follows that its dimension is [L−3] and the electromagnetic in-
teraction (8) is a term of the Lagrangian density. For this rea-
son, it is a Lorentz scalar whose dimension is [L−4]. Hence,

10 Eliahu Comay. Quantum Constraints on a Charged Particle Structure



October, 2012 PROGRESS IN PHYSICS Volume 4

a quantum particle can carry electric charge provided a self-
consistent 4-current can be defined for it. Furthermore, a self-
consistent definition of density is also required for a construc-
tion the Hilbert space where density is used for defining its
inner product.

It is well known that a self-consistent 4-current can be
defined for a Dirac particle [8, see pp. 8,9,23,24]

jµ = eψ̄γµψ. (10)

This expression has properties that are consistent with
general requirements of a quantum theory. In particular, the
4-current is related to a construction of a Hilbert space. Here
the densityψ†ψ is the 0-component of the 4-current (10). As
required, this quantity has the dimension [L−3]. Thus, elec-
tromagnetic interactions of charged spin-1/2 Dirac particles
are properly described by the Dirac equation.

Let us turn to the case of a charged KG orWµ particle.
Here the appropriate wave function has the dimension [L−1].
This dimension proves that it cannot be used for constructing
a self-consistent Hilbert space. Indeed, letφ denote a function
of such a Hilbert space and letO be an operator operating on
this space. Then, the expectation value ofO is

< O >=
∫

φ∗Oφd3x. (11)

Now, < O > andO have the same dimension. Therefore
φ must have the dimension [L−3/2]. This requirement is not
satisfied by the functionφ of a KG particle or byWµ because
here the dimension is [L−1]. Hence, there is no Hilbert space
for a KG or Wµ particle. For this reason, there is also no
Hamiltonian for these functions, because a Hamiltonian is an
operator operating on a Hilbert space. Analogous results are
presented for the specific case of the KG equation [10].

The dimension [L−1] of the KG and theWµ functions also
yields another very serious mathematical problem. Indeed,in
order to have a dimension [L−4], their Lagrangian density has
terms that arebilinear in derivatives with respect to the space-
time coordinates. Thus, the KG Lagrangian density is (4) and
theWµ Lagrangian density takes the following form [11, see
p. 307]

LW = −
1
4

(∂µWν − ∂νWµ + gWµ ×Wν)
2. (12)

As is well known, an operation of the Legendre trans-
formation (6) on a Lagrangian density that islinear in time
derivatives yields an expression that isindependentof time
derivatives. Thus, the Dirac Lagrangian density (3) yields
a Hamiltonian that is free of time derivatives. On the other
hand, the Hamiltonian density of the KG andWµ particles de-
pends on time derivatives. Indeed, using (5) , one infers that
for these particles, the Hamiltonian density depends quadrat-
ically on the Hamiltonian. Hence, there is no explicit expres-
sion for the Hamiltonian of the KG and theWµ particles.

Two results are directly obtained from the foregoing dis-
cussion. The Fock space, which denotes the occupation num-
ber of particles in appropriate states, is based on functions of
the associated Hilbert space. Hence, in the case of KG orWµ

function there are very serious problems with the construc-
tion of a Fock space because these functions have no Hilbert
space. Therefore, one also wonders what is the meaning of
the creation and the annihilation operators of QFT.

Another result refers to the 4-current. Thus, both the KG
equations and theWµ function have a 4-current that satisfies
(9) [11, see p. 12] and [12, see p. 199]. However, the contra-
dictions derived above prove the following important princi-
ple: The continuity relation(9) is just a necessary condition
for an acceptable 4-current. This condition is not sufficient
and one must also confirm that a theory that uses a 4-current
candidate is contradiction free.

The contradictions which are described above hold for the
KG and theW± particles provided that these particles are ele-
mentary pointlike quantum mechanical objects which are de-
scribed by a function of the formψ(xµ). Hence,in order to
avoid contradictions with the existence of charged pions and
W±, one must demand that the pions and the W± are compos-
ite particles.Several aspects of this conclusion are discussed
in the next section. It should also be noted that the results of
this section are consistent with Dirac’s lifelong objection to
the KG equation [13].

4 Discussion

An examination of textbooks provides a simple argument sup-
porting the main conclusion of this work. Indeed, quantum
mechanics is known for more than 80 years. It turns out that
the Hamiltonian problem of the hydrogen atom of a Dirac par-
ticle is discussed adequately in relevant textbooks [8,14]. By
contrast, in spite of the long duration of quantum mechanics
as a valid theory, an appropriate discussion of the Hamilto-
nian solution of a hydrogen-like atom of a relativistic elec-
trically charged integral spin particle is not presented intext-
books. Note that the operator on the left hand side of the KG
equation [14, see p. 886]

(∂µ + ieAµ)gµν(∂ν + ieAν)φ = −m2φ (13)

is notrelated to a Hamiltonian because (13) is a Lorentz scalar
whereas the Hamiltonian is a 0-component of a 4-vector.

An analogous situation holds for the Hilbert and the Fock
spaces that are created from functions on which the Hamil-
tonian operates. Thus, in the case of a Dirac particle, the
densityψ†ψ is the 0-component of the conserved 4-current
(10). This expression is suitable for a definition of the Hilbert
space inner product of any pair of integrable functions

(ψ†i , ψ j) ≡
∫

ψ
†
i ψ j d3x. (14)

Indeed, it is derivative free and this property enables the
usage of the Heisenberg picture which is based on time-
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independent functions. Integration properties prove that(14)
is linear inψ†i andψ j . Thus,

(aψ†i + bψ†k, ψ j)=a(ψ†i , ψ j)+b(ψ†k, ψ j).

Furthermore, (ψ†i , ψi) is a real non-negative number that van-
ishes if and only ifψi ≡ 0. These properties are required from
a Hilbert space inner product. It turns out that the construc-
tion of a Hilbert space is the cornerstone used for calculating
successful solutions of the Dirac equation and of its associ-
ated Pauli and Schroedinger equations as well.

By contrast, in the case of particles having an integral
spin, one cannot find in the literature an explicit construc-
tion of a Hilbert space. Indeed, the [L−1] dimension of their
functions proves that the simple definition of an inner prod-
uct in the form

∫
φ∗i φ j d3x has the dimension [L] which is

unacceptable. An application of the 0-component of these
particles 4-current [11, see p. 12] and [12, see p. 199] is not
free of contradictions. Thus, the time derivative includedin
these expressions prevents the usage of the Heisenberg pic-
ture. Relation (7) proves that in the case of a charged particle
the density depends onexternalquantities. These quantities
may vary in time and for this reason it cannot be used in a
definition of a Hilbert space inner product. In the case of the
Wµ function, the expression is inconsistent with the linearity
required from a Hilbert space inner product.

The results found in this work apply to particles described
by a function of the form

ψ(xµ). (15)

Their dependence on a single set of four space-time coordi-
natesxµ means that they describe an elementary pointlike par-
ticle. For example, this kind of function cannot adequately
describe a pion because this particle is not an elementary par-
ticle but a quark-antiquark bound state. Thus, it consists of a
quark-antiquark pair which are described bytwo functions of
the form (15). For this reason, one function of the form (15)
cannot describe a pion simply because a description of a pion
should use a larger number of degrees of freedom. It follows
that the existence of aπ+, which is a spin-0 charged particle,
does not provide an experimental refutation of the theoretical
results obtained above.

Some general aspects of this work are pointed out here.
There are two kinds of objects in electrodynamics of Dirac
particles: massive charged spin-1/2 particles and charge-free
photons. The dimension of a Dirac function is [L−3/2] and the
dimension of the electromagnetic 4-potential is [L−1]. Now,
the spin of any interaction carrying particle must take an inte-
gral value in order that the matrix element connecting initial
and final states should not vanish. The dimension of an inter-
action carrying particle must be [L−1] so that the Lagrangian
density interaction term have the dimension [L−4]. These
properties must be valid for particles that carry any kind ofin-
teraction between Dirac-like particles. Hence, the pions and

the W± have integral spin and dimension [L−1]. However,
in order to have a self-consistent Hilbert and Fock spaces, a
function describing an elementary massive particle must have
the dimension [L−3/2]. Neither a KG function nor theWµ

function satisfies this requirement.
The conclusion stating that the continuity equation (9) is

only anecessary conditionrequired from a physically accept-
able 4-current and that further consistency tests must be car-
ried out, looks like a new result of this work that has a general
significance.

Before discussing the state of theW± charged particles,
let us examine the strength of strong interactions. Each of the
following arguments proves that strong interactions yieldex-
tremely relativistic bound states and that the interactionpart
of the Hamiltonian swallows a large portion of the quarks’
mass.

A. Antiquarks have been measured directly in the proton
[15, see p. 282]. This is a clear proof of the extremely
relativistic state of hadrons. Indeed, for reducing the
overall mass of the proton, it is energetically “prof-
itable” to add the mass of two quarks because the in-
creased interaction is very strong.

B. The mass of theρ meson is about five times greater
than the pion’s mass. Now these mesons differ by the
relative spin alignment of their quark constituents. Ev-
idently, spin interaction is a relativistic effect and the
significantπ, ρmass difference indicates that strong in-
teractions are very strong indeed.

C. The pion is made of au, d quark-antiquark pair and
its mass is about 140MeV. Measurements show that
there are mesons made of theu, d flavors whose mass
is greater than 2000MeV [6]. Hence, strong interac-
tions consume most of the original mass of quarks.

D. Let us examine the pion and find an estimate for the
intensity of its interactions. The first objective is to
find an estimate for the strength of the momentum of
the pion’s quarks. The calculation is done in units of
fm, and 1fm−1 ≃ 200MeV. The pion’s spatial size is
somewhat smaller than that of the proton [16]. Thus, let
us assume that the pion’s quark-antiquark pair are en-
closed inside a box whose size is 2.2 fmand the pion’s
quark wave function vanishes on its boundary. For the
x-component, one finds that the smallest absolute value
of the momentum is obtained from a function of the
form sin(πx/2.2). Hence, the absolute value of this
component of the momentum isπ/2.2. Thus, for the
three spatial coordinates, one multiplies this number
by
√

3 and another factor of 2 accounts for the quark-
antiquark pair. It follows that the absolute value of the
momentum enclosed inside a pion is

| p | ≃ 1000MeV. (16)

This value of the momentum is much greater than the
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pion’s mass. It means that the system is extremely
relativistic and (16) is regarded as the quarks’ kinetic
energy. Thus, the interaction consumes about 6/7 of
the kinetic energyand the entire mass of the quark-
antiquark pair. In other word, the pion’s kinetic energy
is about 7 times greater than its final mass. It is interest-
ing to compare these values to the corresponding quan-
tities of the positronium, which is an electron-positron
system bound by the electromagnetic force. Here the
ratio of the kinetic energy to the final mass is about
7/1000000. On the basis of this evidence one concludes
that strong interactions must be much stronger than the
experimental mass of the pion.

Relying on these arguments and on the theoretical con-
clusion stating that theW± must be composite objects, it is
concluded that theW± particles contain one top quark. Thus,
theW+ is a superposition of three meson families:td̄, ts̄ and
tb̄. Here the top quark mass is 173GeVand the mass of the
W is 80GeV [16]. The difference indicates the amount swal-
lowed by strong interactions. This outcome also answers the
question where are the mesons of the top quark? The fact that
the W± is a composite particle which is a superposition of
mesons is inconsistent with the electroweak theory and this
fact indicates that the foundations of this theory should be
examined.

Another result of this analysis pertains to recent reports
concerning the existence of a new particle whose mass is
about 125GeVand its width is similar to that of theW± [2,3].
Thus, since the mass of the top quark is about 173GeV and
this quantity is by far greater than the mass of any other quark,
it makes sense to regard the 125GeV particle as att̄ meson.
For this reason, thett̄ meson is heavier than the 80GeV W±

which consists of one top quark and a lighter quark.

A tt̄ mesonic structure of the 125GeV particle explains
naturally its quite sharp disintegration into two photons.In-
deed, the disintegration of a bound system of charged spin-
1/2 particle-antiparticle pair into two photons is a well known
effect of the ground state of the positronium and of theπ0

meson. On the other hand, the results obtained in this work
deny theW+W− disintegration channel of the 125GeV par-
ticle, because theWs are composite particles and aW+W−

system is made of two quark-antiquark pairs. For this rea-
son, their two photon disintegration should be accompanied
by other particles. Hence, aW+W− two photon outcome
should show a much wider energy distribution. This kind
of W+W− → γγ disintegration is inconsistent with the quite
narrow width of the 125GeVdata. It turns out that for a Higgs
mass of 125GeV, Standard Model Higgs decay calculations
show that theW+W− → γγ channel is dominant [17, see sec-
tion 2.3.1]. However, it is proved in this work that theW+W−

disintegration channel of the 125GeVparticle is incompatible
with the data. Therefore, one denies the Higgs boson interpre-
tation of the 125GeVparticle found at the LHC [2, 3]. This

outcome is consistent with the Higgs boson inherent contra-
dictions which are discussed elsewhere [10].
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