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The paper shown that notions of resonance and roughness of real physical systems in
applications to the real numbers set lead to existence of two complementary fractals on
the sets of rational and irrational numbers accordingly. Also was shown that power of
equivalence classes of rational numbers is connected with well known fact that reso-
nance appear more easily for pairs of frequencies, which are small natural numbers.

1 Introduction

Well known that resonance is relation of two frequenciesp
andq, expressed by rational numberr ∈Q:

r =
p
q
, (1)

wherep,q∈N andN is the set of natural numbers,Q is set of
rational numbers. Ifr is irrational number, i.e.r ∈Q∗, where
Q∗ is set of irrational numbers, resonance is impossible.

Resonance definition asr ∈Q leads to the next question.
For real physical systemp, q and, consequently,r cannot be
a fixed number due to immanent fluctuations of the system.
Consequently, conditionr ∈Q cannot be fulfilled all time be-
cause of irrational numbers, which fill densely neighborhood
of any rational number. By these reasons, resonance condi-
tion r ∈Q cannot be fulfilled and resonance must be impossi-
ble. But it is known that in reality resonance exists. The ques-
tion is: in which way existence of resonance corresponds with
it’s definition asr ∈Q?

Also is known that resonance appear more easily for such
r ∈Q for which p andq are small numbers. As will be shown
this experimental fact is closely connected with the question
stated above.

2 Rational numbers distribution

The question stated above for the first time was considered
by Kyril Dombrowski [1]. He suppose that despite the fact
that rational numbers distributed densely along the number
axis this distribution may be in some way non-uniform. In
cited work K. Dombrowski used proposed by Khinchin [2]
procedure of constructing of rational numbers set, based on
the following continued fraction:

{
Qai

i

}
=

1

a1 ±
1

a2 ±
1

. . .

ai ±
1
. . .

(2)

wherea1,a2, . . . , ai = 1,N, i = 1,N. Continued fraction (2)
gives rational numbers, which belongs to interval [0,1].

Is known that exists one-to-one correspondence between [0,1]
and [1,∞) intervals. I.e., any regularities obtained from (2) on
the interval [0,1] will be also true and for interval [1,∞).

In caseN→∞ expression (2) leads to

{
Qai

i

∣∣∣N→∞
}
→Q.

Apparently, in this case no distribution available, because ra-
tional numbers distributed along number axis densely.

For case of real physical system, conditionN→∞means
that any parameters of the system must be defined with in-
finite accuracy. But in reality parameters values of the sys-
tems cannot be defined with such accuracy even if we have an
ideal, infinite-accuracy measuring device. Such exact values
simply don’t exist because of quantum character of physical
reality.

All this means that for considered physical phenomenon
– resonance – we need to limit parameteri in (2) by some
finite numberN. Fig. 1 presents numerical simulation of (2)
for the first two cases of finiteN: N= 1, N= 2, andN= 3.
In the caseN= 1 (Fig. 1a) we have only one valuei = 1, and
from (2) we can obtain:

{
Qa1

1

}
=

1
a1
, i = 1, a1 = 1,∞. (3)

In the case ofN= 2, analogously:

{
Qai

i

}
=

1

a1 ±
1
a2

=
a2

a1a2 ± 1
, i = 1,2, a1,a2 = 1,∞. (4)

For the caseN= 3 we have

{
Qai

i

}
=

1

a1 ±
1

a2 ±
1
a3

=
a2a3 ± 1

a1(a2a3 ± 1)± a3
,

i = 1,2,3; a1,a2,a3 = 1,∞.

(5)

It’s easy to see that final set presented in Fig. 1c has a fractal
character. Vicinity of every line in Fig. 1b is isomorphic to
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Fig. 1: Rational (a) – (d) and irrational (e) – (f) numbers distribution.
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whole set in Fig. 1a. Consequently, vicinity of every line in
Fig. 1c is isomorphic to whole set in Fig. 1b. Apparently that
such regularity will be repeated on every next step of the al-
gorithm and we can conclude that (2), in the case ofN→∞,
gives an example of mathematical fractal, which in the case
of finite N gives an pre-fractal, which can be considered as
physical fractal.

From Fig. 1c we can conclude that rational numbers for
the case of finiteN distributed along number axis inhomo-
geneously. This conclusion proves density distribution of ra-
tional numbers, constructed on the base of set presented in
Fig. 1c, and given in Fig. 1d.

Summarizing, we can state that roughness of parameters
of real physical system modeled by finiteN in (2) leads to
inhomogeous fractal distribution of rational numbers along
number axis. As follows from Fig. 1d major maxima in the
distribution defined by first steps of algorithm given in (3).

3 Equivalence classes of rational numbers and resonance

Expression (1) can be rewrite in terms of wavelengthλp and
λq, which corresponds to frequenciesp andq:

r =
p
q
=
λq

λp
. (6)

Suppose, thatλq>λp. Then (6) means that wavelengthλq is
an integer part ofλp. In this case resonance condition can be
write in the formλq modλp = 0, or in more general form:

n mod i = 0, (7)

wherei,n∈N, i,n= 1,∞. All i, which satisfy (7) gives integer
divisors of natural numbern. Fig. 2 gives graphical represen-
tation of numbers of integer divisors ofn, obtained from (7).

Analogously to previous, roughness of physical system
in the case of (7) can be modeled if instead ofn→∞ will
be used conditionn→N, whereN is quite large, but finite
natural number. In this case we can directly calculate power
of equivalence classes ofn, which belong to segment [1,N].
Result of the calculation forN= 5000 is given in Fig. 3.

As follows from Fig. 3a – b the power of equivalence
classes is maximal only for first members of natural numbers
axis.

From our point of view this result can explain the fact
that resonance appears easier whenp andq are small num-
bers. Really, for the larger power of equivalence classes exist
the greater number of pairsp andq (different physical situa-
tions), which gives the same value ofr, which finally make
this resonance relation more easy to appear.

An interesting result, related to the power of equivalence
classes, is presented in Fig. 4. This result for the first time was
described, but not explained in [3]. In Fig. 4 are presented
diagrams, obtained by means of the next procedure.

Number sequence, presented in Fig. 2, was divided onto

Fig. 2: Numbers of integer divisors ofn.

(a)

(b)

Fig. 3: Power of equivalence classes forN= 5000, (a); magnified
part of (a) forN= 100, (b). X-axis: value of N, Y-axis: power of
equivalence classes.

equalΔ n-points segments. In this way we obtain
N
Δn

seg-

ments. The points in the segments was numerated from 1 to

Δn. Finally all points with the same number in
N
Δn

segments

were summarized.
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2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19 20 21

22 23 24 25

26 27 28 29

Fig. 4: Diagrams constructed on the base of sequence, presented in Fig. 2. The length ofΔn-points segments pointed by number below the
diagrams.
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It can be seen from Fig. 4 that form of straight case when
Δn is a prime number diagram always have a line. Other-
wise presents some unique pattern. If we examine patterns,
displayed in Fig. 4, we can find that in the role of buildings
blocks, which define structure of the patterns with relatively
big Δn, serve the patterns obtained for relatively smallΔn.
The patterns with smallΔn based on numbers with greater
power of equivalence classes and therefore manifests itself
trough summarizing process in contradiction from relatively
big values ofΔn.

4 On irrational numbers distribution

Presented in Fig. 1c – d rational numbers distribution displays
some rational maxima. Existence of such maxima means that
in the case of rational relations, which correspond to the max-
ima, resonance will appear more easy and interaction between
different parts of considered physical system will be more
strong. If parameters of the system correspond to the max-
ima, such system becomes unstable, because of interaction,
which is maximal for this case.

Analogously to rational maxima is interesting to consider
existence of irrational maxima, which in opposition to ra-
tional one, must correspond to minimal interaction between
parts of the system and to its maximal stability. Work [1] sup-
pose that irrational maxima correspond to minima in rational
numbers distribution. In the role of “the most irrational num-
bers” was proposed algebraic numbers, which are roots of
equation

α2 + αb+ c = 0. (8)

Assume thatc=− 1. Then

α =
1
α + b

=
1

b+
1

b+
1

b+ ∙ ∙ ∙

=

√
b2 + 4− b

2
. (9)

Infinite continued fraction gives the worst approximation for
irrational numberα the smaller is itsk+ 1 component. So,
the worst approximation will be in the caseb= 1:

α1 =
1

1+
1

1+
1

1+ ∙ ∙ ∙

=

√
5− 1
2

= 0.6180339. (10)

The caseb= 1 corresponds to co-called golden section. Far-
ther calculations on the base of (9) give:

α2 =
1

2+
1

2+
1

2+ ∙ ∙ ∙

=

√
8− 2
2

= 0.4142135,

α3 = 0.3027756,

α4 = 0.2360679,

. . . . . . . . . . . . . . .

Results of calculations are presented in Fig. 1e. Grey lines
in Fig. 1e give rational numbers distribution, which is identi-
cal to Fig. 1c. Black lines give results of numerical calcula-

tion, based on (9) forb = 1,100. Bold black lines point cases
α1, . . . , α4.

As possible to see from Fig. 1e algebraic numbers with
grows ofb have tendency became closer to rational maxima.
This result, indicate that such numbers, possibly, are not the
best candidate for “the most irrational ones” [1].

In present work we don’t state the task to find explicit
form of irrational numbers fractal. It is clear, that first ir-
rational maxima must be connected with golden section. The
question is about the rest of the maxima. Fig. 1f gives another
attempt to construct such maxima on the base of set, given by
generalized golden proportion [4]. It is obvious from Fig. 1f
that this case also is far away from desired result.

5 Summary

All results described in the paper are based on the notions of
resonance and roughness of real physical system. This no-
tions in applications to set of real numbers leads to existence
of rational numbers distribution, which has fractal character.
Maxima of the distribution (Fig. 1d) correspond to maximal
sensitivity of the system to external influences, maximal in-
teraction between parts of the system. Resonance phenomena
are more stable and appear more easy ifr (1) belong to ratio-
nal maxima (Fig. 1d).

Obtained rational numbers distribution (Fig. 1c – d) con-
tains also areas where density of rational numbers are mini-
mal. It’s logically to suppose that such minima correspond to
maxima in irrational numbers distribution. We suppose that
such distribution exists and is complementary to distribution
of rational numbers. Maxima in such distribution correspond
to high stability of the system, minimal interaction between
parts of the system, minimal interaction with surrounding.

Both irrational and rational numbers distribution are re-
lated to the same physical system and must be consider to-
gether.

Question about explicit form of irrational numbers dis-
tribution remains open. At the moment we can only state
that main maxima in this distribution must corresponds to co-
called golden section (10).

Ideas about connection between resonance and rational
numbers distribution can be useful in [4–8] where used the
same mathematical apparatus, but initial postulates are based
on the model of chain system.
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